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Abstract

The distributed parameter root locus is considered and a relation
between simple delay equations and the left-shift operator is developed.
This gives a rigorous explanation of the s-plane behaviour of delay
systems and shows that the classical root locus starting on the open-
loop poles of the system can become bands swept out by connected com- !
ponents of the spectrum of the system operator in the infinite-dimensional

case.




1. Introduction

The classical theory of control in the frequency domain and in the
state formulation is now well known and widely applied, The corresponding
theory for infinite dimensional systems has been extended to cover most aspects
of the state space approach (see for example [Curtain & Pritchard, 1975] Y.
However, the frequency domain methods for distributed systems have not received
so much attention; the main area of study has been in the field of stabilitw
theory, as in Falb & Freedman, 1969, Banks , 1981. The root locus and
classical compensation techniques have barely been touched on in the literature:
see, however Pohjolainen, 1981, 1982. Of course, the Laplace transformation
technique has been applied to distributed systems in the past, usually involving
some form of finite-dimensiotidal approximation, since the transfer function
is not ratiomal.

In this paper we shall discusg a simple delay equation and relate it to
another equation on a certain Hilbert space, involving a bounded operator.
This correspondence will simplify the spectral structure of the system and
will show that the root locus can become expanded into bands of the complex
plane in the infinite-dimensional case.
2. Terminology

In this paper we shall be concerned with systems of differential equations
defined on the Hilbert space Ez consisting of sequences x = (xl,xz,...)T

such that
1

Il = [ 314) <

We recall that the space 22 has the orthonormal basis {ei} consisting of

- th ; ’
sequences e, whose 1 element is 1 and all others zero; i.e.
i

T
ei = (0,¢a»,0,1,0,...) °
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If ICR is an interval we shall denote by C(I) the space of all real valued

functions defined on I with the norm

| £ = sup |£(t)
tel

The space of all sequences (xl,x )T(With no restriction) will be denoted

2,-nn

by ¢ . We shall assume that the reader is familiar with the theory of
|
integration of vector - and operator - valued analytic functions. Using

the same ideas as in the finite - dimensional case, we use the Laplace transform

-st

F(s) = e f(g)ds

C -

of such a function, together with the usual inverse transform

c+ie
)

3 ¥ e £ F(s)ds ,
2mi e=iw
the conditions for existence of the integrals being similar to the classical case.
Finally, we mention the two main results from functional analysis
which we shall need. The first is the spectral mapping theorem which states
that
o(£(T)) = £(o(T)) ,
where

FEMO-D tar

£f(1) = 1
27l B

and B is a Jerdan curve containing o(T) and such that f is analytic on a
neighbourhood of B and its interior. (o(T) is the spectrum of the bounded
operator 1, defined precisely in the next section.) (cf. Yosida, 1974)

The other result we require is the fact that the system

X = AX,
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where A is a bounded operator, is stable iff «(A) is contained in the left
half plane, This, of course, generalizes the classical matrix result and

is called the spectrum determined growth condition.

3. The Left Shift Operator

In this section we consider some basic properties of a certain bounded

operator A defined on 22. This operator is call el the left-shift operator
|

and is defined by

- I
Ax = (XZ,KB,.n.)

5
where x = (xl,xz,xg,..,)T 2" . A is clearly bounded, and in fact

|| 4]] = 1. Recall the definition of the spectrum of an operator B defined
on a Banach space X.

Definition 3.1, The complex number X is said to belong to the spectrum ¢(B)

of the operator B if (AI-B) is not boundedly invertible on X. The spectrum
is usually divided into three disjoint sets:
(i) if (AI~B) is not 1-1 then Xeo (B) and we say that X is in the point

P

spectrum of B.

e .

(ii) if (?\I-“B)“1 exists, is unbounded and JD(AT—B)_I = X, then

AEGC(B), the continuous spectrum,
(iii) if (AI-B) ° # X then AEUR(B) , the residual spectrum,

The spectrum of the lefit~shift operator A is the closed unit disc

D= {A: k|§j} . It is instructive to prove this result; in fact, since
I|A || = 1 we certainly have o(A) € D. Now, if [x]<1 and XEQZ satisfies
(AI-A)x = 0 (3.1)
then
Ax, = X i>1

i i+1’



" Hence

)T belongs to T Bor any X,

_ 2
and so the sequence (xl,Axl, A Kyowse

o, ; 5 dh :
any A € D is an eigenvalue since (3.1) has a nontrivial solution. Suppose

that AedD i.e. Af = 1, and let 25 be the linear subspace of lz consisting
of finitely-nonzero sequences, Of course, (3.1) has no solution in 22 if
|l| = 1 and so such a A is not in Gp(A). However, if y = (Yl"""’yn’ O,O}T.
,.,E)T EEZF, then the equation

(AL = A)X = ¥

has the unique solution x(y) given by

J .

n
x, = 1£jYL/Aimj+l , 1gi<n (3.2}

Xj =0 , jn .
= J 2 . 2 2 .
Clearly x(y) ef (in fact to 2 F) and since EF =98" , it follows that
ab = OC(A)‘
Hence og(A) = op(AJUUC(A) = D,
If A&U(B), then we say that A belongs to the resolvent of the
operator B and we write R (A;B) = (AIuB)_l. It follows from (3.2) that the

resolvent of the left-shift operator A is given (in terms of the standard basis

of 22) by the matrix function

R (A5 &) = f 1/, 1/}\2 1_/3: ) (3.3)
0 bty L e
0 0 Ly eees
0 s
) /

4. A Simple Delay Equation

We shall now give an interpretation of the simple controlled delay

equation

;(t) x{t-%) + u(t), t30

(4.1)

x(t) £(t), ts[—s, O) 5 X(0)=x0
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for some given data f and X where, for technical reasons which will
become clear shortly, we shall assume that £(t) is (real) analytic on a
neighboutrhood of [}6,0). We could use the theory of M2 spaces (Delfour
and Mitter ,1972) but we shall find it more convenient here to consider the
connection between (4,1) and a certain equation defined on 12, Consider
first the unforced equation

x(t) = x(t~6) ‘

£(t) , t e[~8,0) , x(0) = x_ (4.2)

x{(t)
and, if x(t) is a solution of (4.2) on [;S,W} , define an erxtension of
%(t) on (=o,») (also denoted by x(t)) by

x(t) = £ty , 10, te[-(ie1)s, - i5).

Of course, x(t) so defined is not necessarily even continous at t = =i§ ,

1>0 and so (4.2) cannot be satisfied for all t e (=~,*) by x(t). However,

it is clear that x(t) is differentiable on E}(i+1)6, -id) and satisfies (4.2)

almost everywhere., Now, in order to specify the 22 interpretation, define

xl(t) = x(t)
xz(t) = x(t=G§)

Xi<t)'= x(t~(i~1)8)
Then we have, on each interval [35,(i+1)6) , m®<I<e

il(t) = %x(t) = x(t=§) = xz(t)

x(t=6)

]

iz(t) x(t=28) = x3(t)

xg(0) = x, (),
and so, if x = (xl,xz,.ea)T , we have
X = Ax (4.4)

where

|
KB(t) = K(t"26) 9 t e (”msm) (4-3‘)
i
\
|
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is the left shift operator. For the initial condition of (4.4) we have

xl(O) = x(0) = X,

XZ(O) = x(~§) = £(-8) |
x,(0) = x(-26) = E(~5) (4.5)
x, (0) = x(=(i-1)8) = £72) (=)

For simplicity, let wus assume that f has an analytic continuation (again
denoted by f) to ("w,m),-and put
Sh = {f g C (~»,») ¢ £ is analytic}.

If £ 3k write

= g
fn £ (=8)
Then we have
f=  § £ (£+)"
L n e
n=0 .

and by the uniqueness of the Taylor series, we can regard ék as a sunset

of <, under the map.

T: fis {fn} N

0 ¢

Recalling that A% is the right shift operator we define the injection
j*“—b ¢, by

1
F &= (x,,0,0,0..)

+ AXTE,
Then by (4:5)93' defines a one-to-one map between the initial condition
of (4.2) and that of (4.4). Put
2 -1, 2
aac = 3; (coﬂSL )

Then we have



Lemma 4.1 The systems

x(t)

It

X(t"‘ﬁ) ] X(t) = f(t) on E_69O) ’ X(O) = XO’ (4-6)

and

%(t) = Ax(t) , x(0) = f 4.7)
have solutions related by
x, (£) = x(e=(i-1)8) , 21 , te [0,8) (4.8)
provided that f sﬂiz_
Proof We have already seen that , for £ 58%2, a solution x(t) of (4.6)
defines a solution of (4.7) on [b,ﬁ) by (4.8) , which is uniquely defined by
x(t) = e x(0) , t e[0,8)
since 5(0),8 22 . Conversely, if x(0) € 22 is given, write
.)

D 0f course, f euﬁczgact and so

E(O) = (Xosfosfls"

and define £ =T (£ ,f .-
(4.6) has a unique solution with initial data f and X . The functions X,
defined by (4.8) satisfy (4.7) on EJ,S) as before and so these functions

must coincide on [b,ﬁ) with the components of the unique solution eASE(O)

of (4.7)« H

This lemma only allows us to relate the solutions of the delay equation and
the infinite dimensional equation on 22 on the time interval E),d). However,
let us note that the initial conditions (4.5) suggest that we consider the

values of x(t) at each point i¢ (O<i<e ), Then, .we have

x(68)

xl(é)
xz(ﬁ) = x(0) = X

x(=8) = £(=8)

]

33(6)

s a e e @ e @

x, (8) £ 48y _g

and generally,



xj+1(35) = x_

(36)

Xj+2 £(-6)

x (58) = £ ey, ixje
Now, if y € 22 , let Pi denote the projection of y onto the subspace
generated by the basic elements 2y EQ""‘Ei’ i.e.

Pi_z = Pi{(yi,yz,...)} = (yl,...,yi,0,0,...).
Then, as a simple corollary of lemma 4.1 we have

Corollary 4.2  The solution of (4.6) can be obtained from the system (4.7)

(via the formulae (4.3)) by defining

x(t) = eAFEﬁo) " t 5[0,6)
eA(t-—é)

x(t) {p,x(8) + A*x(0)} , t e[6,26) (4.9)

il

x(t)
i.e. we let the flow of §_= Ax proceed from x(o) for a time & , then we
jump to the point Plﬁ(ﬁ) + A* x(o) and follow the flow for another time
interval § , etc. [
Consider now the controlled equation (4.1) when u(t) = 0 , t<0 ,
Then, as above, we have

il(t) = %(t) = x(t=8§) + u(t) = xz(t) + u(t)

iz(t) x(t=8) = x(t-28) + u(t-9) = x3(t) + u(t=9)

ii(t) Xi+1(t) + u(t—-(i~1)48).
This leads is to consider the controlled equation
x(t) = Ax(t) + u(t) (4.10)
with gﬁt) = (ul(t), uz(t),...) € 12. 0f course, the control u(t) in
(4.10) is, in general, not the same as the control (u(t))u(t—S),...) in

(4.1). However, if we apply (for example)a simple gain feedback in (4.1),

i.e. u(t) = -kx(t), then (4.10) becomes




%(t) = (A-kI)x(t) (4.11)
and the solution of (4.1) with such a control and that of (4.11) are again
related by (4.9), with A replaced by A-kI.
Let us recall now the definition of stability of a delay equation,
as given, for example, in Hale (1971).

Definition 4.3 Let CH = {feC : sup |¢|<H} , and denote by
te[—ﬁ,o]

x(t3;f) the solution of (4.1) with x(t)=£f(t), tE[;ﬁﬂﬂ, and x(o) = f(o0)

Then (4.1) is stable if 3 b>o such that
(i) f ¢ Cb e xt(f) € CH for some H>o
(ii) V s>o,3 §>0 such that
fe C6 .3 xt(f) € CE . t>o.

The system is asymptotically stable if it is stable and duo

f 1i =0 .
such that e Gy b ) imw Ext(f)| 0
Here we have used the standard notation
x (£)(8) = =x(t+638) , @ ¢[-5,0] .

Then we have the following result.

Theorem 4.4 (Hale 1971) The System

%(t) = —ax(t) - bx(t—$)

is stable in the region shown in fig. 4.1 ., 1

* stebility
Re_gion 0

a

Eig. il

This leads to the following result,
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Theorem 4.5 The system (4.11) is stable for k>o iff the delay system

x(t) = x(t=8) - kx(t) (4.12)
is stable (in the above sense).
Proof. We first remark that by stability of (4.11) we mean, of course,
that H exp(ArkI)t]|5ﬁewt for some n\zp and w<o. Now o(A-kI) ={ i-k:)eo(a)}
which equals the closed unit disc shifted to the left by k, and this is in
the left half plane iff k>1. However, since A-kI is a bounded operatorf
it must satisfy the spectrum determined growth assumption and so the system
(4.11) is stable iff k>1 and this is equivalent by theorem 4.4 to the
stability of (4.12), O

Note however that if we consider the equation

x(t) = —=x(t-8) -kx(t) (4.13)
and the associated equation

i = -Ax ~kx (4.14)
on 22, then a similar argument to that in theorem 4.5 shows that (4.14)

is again stable iff k>1. Finally, the equation

[

= ~Ax +kx
is not stable for any k>o. It follows therefore that the equation
% = -aAx -bx

is stable in the region shown in fig 4.2

b
3.-[3:0\ \\
Stabilit
, \\&1\;\ Re,ﬂion :

N \\\ 2

a+l::0

Fig., 4.2
; ; ; . 2, .
Hence, replacing a delay equation by the associated equation on ¢ is likely
to produce conservative stability regions since the latter system does not

predict stability in the region Q=ﬂ£\92. This can be understood intuitively,
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since as the delay becomes large the region Q shrinks to the empty set,
and equation (4.9) ( which is equivalent to the delay equation) becomes
identical to equation (4.11) (over the large interval [b,é)). Conversely,
as 6+ o, the region 9 expands to a whole quadrant and the solutions of (4.9)
and (4.11) equates only on the small interval [0,6). Of course, the
purpose of introducing the equation on 22 is to replace the unbounded
operator and transcendental characteristic equation of the delay equation'
(cf Hale, 1971) by a bounded operator with simple spectrum consisting of
the closed unit disc.
Remark 4.6  Although the proof of theorem 4.5 is easy it is instructive to
prove the asymptotic stability of equation (4.9) for k>l directly since
this method may prove useful for nonlinear delay systems. To do this we
merely note that since A is an isometry (i.e. ” A H = 1) we have

| explaknye | <l | | e™HE|| <e™
for o =k-1 > o, Hence, we have

o 54 2

| x(e) ]| <™ 7] 2@ 5 t efo,8)

| x(0) ]| < 0T x|+l 2@ }, £ e[5,26)

I %0 | ie—oc(t-—iﬁ){e-ai6+e—a(i—1)5+..,+1}|[E(o)[] , t g[iﬁ)(i«fl)g)

_—a(t-i8) 1 D8] oy
=ad ]

l1-e )

If follows that x(t) is bounded in 22 as t»o, and it 1s an easy
consequence of the definition of x that
xl(t) = x(t)>0 as t>o
where x is the solution of the delay equation. Note that E(o)a&%?.
However ’%2 is dense in C and by the continuing of the solution of the delay
equation with respect to the initial function £, we have shown stability in

the sense of definition 4.3. O
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5 The Root Locus Method for Infinite Dimensional Systems.

We come now to discuss the root locus for infinite dimensional systems
in general and also to give an example involving the theory developed in

4, Consider then the system

X = Ax + Bu (5.1)

y = Cx
where A, B and C will be assumed to be bounded operators on a Hilbert
space H. (The more general case of unbounded operators can be dealt with
in a similar manner. We restrict consideration here to bounded operators
because of our intended application and to clarify the ideas involved).

For simplicity we shall consider the case of gain feedback of y, and thus

obtain the system

% = Ax + B(v-ky) (5.2)

Cx

g

Taking the Laplace transform of this equation, which one can do because
of the boundedness of the operators (in the unbounded case it would be
necessary to introduce further assumptions) it follows that
sX(s) = AX(s) + B(V(s) = k¥(s))
Y(s) = CX(s) .,
assuming, as usual, that x(&) = 0, Hence, if s ¢ o(A), we have
X(s) = R(A;8)B(V(s)-kY(s)) ,
where we recall that
R(Ass) = (sI-A) *
is the resolvent of A. Hence,
Y(s8) = CX(s) = CR(A;s)B(V(s)-kY(s)). (5.3)
In analogy with the classical case we call
G(s) = CR(A;s)B (s ¢ g(A))

the transfer function of the system, and then by (5.3)

Y(s) = G(s) (V(s)-kY(s)).
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Hence,

(1+kG(s))¥(s) = G(s)V(s),
and so if s is such that O *o(G(s)) 5

¢ () (T+G(s))Y(s) = V(s) (5.4)
Now, in order to solve (5.4) for Y in terms of V, we require to find those
values of s such that

0 £a(C " (s) (T+E(s)) - (5.5)
Let us define

F(s) = G (s) (I#kG(s))
which we know exists as a bounded operator-valued analytic function of s
for all s such that C)#g(G(s)) and s ¢G(A). Denote the set of all such
values s by Q. In order to satisfy the condition (5.5), we shall apply the
spectral mapping theorem. Then we have (if A# 0).

reo(G(s)) € L(1+k\)e o(F(s)) . (5.6)
For each kzp denote by ?(k) the set of complex values s such that

0¢a(F(s)).
Then we call the locus of the sets ﬁ}\r(k) the root locus (or spectral locus)
of the system. Thus, for fixed k, if $e€r(k), then we can write

¥(S) = F (s)V(s)
and Fql(s) is an analytic bounded operator valued function on T(k). Note
that although F(s) was defined only for SFKB, it may be that P(k)\Q #o3
all this means is that Fpl(s) is defined by analytic continuation from
r()\@ into I(k).

Let us now return to the example of the system

x = Ax + Bu

gz = Ok (5.7)
where XeQ2 and A is the left shift operator. Suppose, for now that B=C=I ,

from which we have
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(G(s) = (sI—A)_1 = R(s;A)
provided s¢o(A). However,
peo(A) £ 1 e o(R(s34))  (s#u)
and so by {(5.6) o
neo(a) & (s=1) ( +k_) e o(F(s))  (s#n)
Hence, for each k>o , o
Ocog(F(s)) 1iff s =pu -k
It follows that the spectral locus of the system (5.7)

for some pec(A).

is as shown in fig 5.1 (d).

Speckral locus g e
/\ N o e S e U—(A)
el s {n potes
— —= \\W N
AN 7,
mw;::::iszjbé:jkif%§&l
k
(b)
()
Fig 5.1
Remark 5.1
If we recall that
R(s;A) = (sI-A)_l =/1 1 1 ....
5 52 s3
1l 1
§ 52
1
Ls ) ;

it is interesting to note that any finite-dimensional approximation

. o
By 4 g 1

{1

d
At

. ®

1O

X ! X
n 0

to the system X = Ax has spectrum consisting of just n poles at the origin
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(i.e. an nth order integrator) which can be stabilized by an arbitrarily
small gain feedback as in fig. 5.1(b), whereas fig. 5.1(a) shows that we
require at least a gain of 1l+e in the feedback loop, in the case of the
infinite dimensional system. This explains why finite dimensional approx-—
imations to the delay equation do not correctly predict stability.
Remark 5.2

We see from this example that we can expect the root locus for
distributed systems to comsist of bands swept out by connected components

of o°(A).

To illustrate the comments in remark 5.2 in more detail we shall consider

a delay analogue of the trivial two dimensional system
x,\= 0 1 X + 0 u

X 0o -3 X 1

for which (sI-A) T = [1/s  1/s(s+3)
(0 1/(s+3)
and
G(s) = C(sI-A) B = 1 .

s(s+3)

The root locus of this system, as is well-known, is shown in fig. 5.2,

A

Fig. 5.2
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Consider then the coupled delay system
%, (t) NERCAEACD +(0 1 (xl(t) . O\U
%, (t) 01 /\x,(t=8) 0 =3/ %, (1) 1/

and replace it by the corresponding system |
= fa 1 [2_{.\+(O)u=§:\jx
0 A-31 35/ I

y=(I 0) :_c) 5

X

-

id e 4ide

. " ; .
where A 1s again the left-shift operator and x , Xel are related to

xl(t), x2(t) ; respectively, as in (4.3). Now,

(sI—A)-l (sI—A)—l(sI—A+31)—1

R 5 3 A I

0 A-3I 0 (sI—A+31)_1

(if s%G(A)nU(A-BI)), and so the transfer function for this system is
G(s) = (sI-A) ‘(sT-a#3D)"%

and by the spectral mapping theorem,

oo &= L L (O, ey 23

Hence, by (5.6), the root locus of this system is given by those values of

s which satisfy

(s=A)(s=A+3) \ 1 +k 1 1 %= 0, for )eg(A)
s A s=x+3
and is shown in fig. 5.3 (cf. fig. 5.2) , Kﬂﬁ'
N
A
(?\\E\S) (‘"-'/' :\'}‘KJ
S\ T
A [\
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Fig. 5.3

Remark 5.3 It is clear from the above results that to each finite-
dimensional system there corresponds an infinite~dimensional system whose
root-locus is a band of unit width about the root locus of the finite-
dimensional system.
Let us note finally that from
=1
Y(s) = F ~ (s8)V(s)
it follows that

y(t) =<_}___ eStF—l(s)ds *  v(t)

271 ‘
c=1m

and since F-l(s) defines a linear bounded sysfem, if we cloose k so that
the $pectrum of this system is in the left-half plane, we can take c<o
and the system is stable (by the spectrum determined growth condition).
6. Conclusions

In this paper we have discussed the connection between simple delay
systems and the left-shift operator and related them to the infinite-
dimensional root (or spectrum) locus. It has been seen that, for systems
defined by bounded operators, the root locus behaves in a similar way to
that of a finite—dimensional system, the connected components of the

spectrum of the former taking the counterpart of the poles of the latter.
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We have seen that if the initial function f(t), ts[—GJd] of a delay
equation is analytic, with {fg(-é)}ﬁ>0 elz, then we can identify the
solutions of the delay equation with ;£ose of a corresponding equation
involving the left-shift operator, at least on [o,&]. This led to a
stability theory for delay systems and demonstrated that finite dimensional

approximations do not correctly predict stability.
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