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SYNOPSIS

Simplified models of piecewise rigid support structures for power-
loaders operating on lbngwall coal-faces are shown to be amenable to
analysis by z-transform methods. Such analysis predicts that increasing
the length of the structure's subsections sufficiently (compared to the
inherent delay within the machine's vertical steering system) should
stabilise the vertical steering of the entire coal face. Increasing the
width of the structure to embrace more than two consecutive cut floors is
shown analytically to eliminate the need for electronic tilt-feedback in
control systems.

In general terms, these analytical predictions are shown to hold good
in detailed simulations of the system that eliminate the simplifications
demanded by the analytical method. The general conclusion of the work is
therefore that an increase in the size of support-structure segments can
potentially reduce the complexity of steering control systems. The size -
increase must be substantial, e.g. to 4 to 5 times the size of

conventional structures.
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List of Symbols and Abbreviations |

A Function of k (egn. 11), a-gain parameter = k - 1 - M-l
a.f.c. Armoured Flexible Conveyor

B Function of k (egn. 12)

Del (X) Backward distance shift X

d.p. Dynamic programming

GS Steering system transfer operator

H(z) z-transfer function of Gs and a.f.c combined

h height profile of machine support structure

i Integer in Section 3

J Deflection of floor cutting drum

k Height-gain of steering system controller

kc value of k for critical multipass stability

kg Tilt gain of steering system controller (=1.0 in Section 3)
L Distance travelled in along-face direction (Figs. 1 and 4)
L Length of coal-face

machine Power-Loader

m " Integer (= L/Xp)

M Integer (= Structure width/w)

n Cut (pass) number

p Integer used in Section 3

power— Machine travelling along coal face for cutting and loading
loader coal onto a.f.c.
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r xp/x = integer in Section 3
s Laplace variable

Structure Structure forming the track on which the power-loader rides.

W wWidth of cut

X Delay distance between coal sensor and cutting drum

Xl Distance assbciated with coal sensor time constant

X2 Distance associated withhydraulic steering system actuator

Xp Length of discrete subsection (alongface) of machine support
structure

y Height profile of floor cut by power loader (= thickness of

floor coal left in a flat seam)
v y-function sampled at intervals Xp (Section 3) and W (Section 4)
; + sX, | :
z Independent variable for z-transforms (= e P in Section 3, =
sW i
e Section 4).
* Indicates sampled function at intervals Xp(Section 3) and W

(Section 4)

- Transform

y(s) .Laplace transform of y

;(Z) z-transform of y

o Tilt (in radians) of machine-support structure in the direction

of face-advance (Figs. 1 and 4)

6 Bngle swept out by vector in z-plane in describing unit circle.



2.1

INTRODUCTION

Conventional Systems

(1,2) i
previously

The present paper is offered as a companion to two
published that were also devoted to the effect of the supporting structure
of a longwall coal-cutting machine on the vertical steering of entire coal-
face systems. The systems there examined were of the conventional type, |
illustrated in Fig. 1, in which the coal cutting machine rides on the
semiflexible structure of a scraper-chain conveyor (a.f.c) extending along
the entire 100 to 300 m. length of the coal-face. In those papers, the
smoothing effect of the conveyor structure on the undulating floor cut by
the vertically-ranging cutting-drum as the conveyor is pushed forward
in the face-advance direction (fig. 1), between successive cuts, was
examined. The byroad conclusion reached was that, sufficient elasticity
built into the-a.f.c joints ( i.e. between consecutive trays) should smooth
out oscillations in the cut floor produced by resonant+ vertical steering
systems acting on the ranging cutting drum as so prevent repeated excitation
of the system resonance from cut to cut, thus producing stable behaviour
over a sequence of cuts. Detailed simulations conducted on conventional
conveyor models lacking this elastic restraining force, and relying only
on tray rigidity for any smoothing effect, failed to produce stable behaviour.

These findings are in broad accordance with practical experience undergound.

Thick Seam Systems

With the discovery of coal seams of 4 to 5m. in thickness in recent
and

years, in the Selby coal field, the Doncaster/West Midlands Areas and else-
where, it has become increasingly important to investigate and develop

modified longwall systems for their extraction. Coal-cutting machines

fMachine steering systems are fundamentally resonant because of transport
delays involved in (a) the sensing of the roof coal thickness behind the
cutting drum and (b) the geometrical offset between drum centre and the

rear skids of the machine.



(power-loaders) of progressively increases size and rating have naturally
emerged over the past 10 to 15 years in response to demands for higher
productivity and to extract bands* of coal that previously might have been
left behind as uneconomic. Machines equipped with double cutting drums,
one for roof- and one for floor-coal extraction have been one outcome of
this trend. The increase in heightof the excavation has, of course, also
demanded the development and introduction of more massive hydraulic roof-
supports to maintain the temporary walkway and passage for ventilation and
service along the face. Figs. 2 and 3 allow a comparison of the scale of
. equipments needed for conventional faces extracting seams of 1 to 2 m in
height and for the extraction of the verf thick seams (4 to 5m) now
coﬁtemplated.

The key point to note from Figs 2 and 3 is that whereas, in conventional
systems, the a.f.c structure supports the weight of the power-lcader and
provides an anchor-beam for drawing forward the seif—advancing roof-
supports between cuts, in really thick seam extraction, the a.f.c can no
longer perform these functions. Not only are the power-loader and roof-
supports now greatly increased in scale relative to the a.f.c., but the
power—loadér body mﬁst now ride much higher to avoid the need for an
impractically long boom for the roof-cutting drum. As shown in Figs. 3
and 4 therefore, large bench-type structures must now be introduced to
provide the machine track and to anchor the supports. The a.f.c. now
reverts to its basic function of coal conveying only. The system is
termed a bench mining system and was first proposed by Robson(B) in the

Doncaster Area.

Initial concepts involved a so-called full-face bench, i.e. a

rigid bench extending along the full face-length, so apparently avoiding

*
Some coal seams comprise distinct bands of coal of differing quality

separated by dirt bands of thickness range from, say, 2 to 20cm.
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the need for vertical steering other than at the face ends. Design studles( 0} (5)

rapidly revealed the impracticallity of constructing such a structure under-
ground however, and instead the structuré was subdivided into a number of
loosely coupled subsections each some 4.5m in length (i.e. each accommodating
three a.f.c. trays in;line) and again resting on the floor produced by the
floor-cutting drum along the face. In basic principle therefore the machine
track remains as a sequence of loosely articulated rigid subsections as with
conventional a.f.c. systems. The subsections are now three-times longer,
however and bridge many (typically five to seven) cut floors whereas a.f.c
trays bridge only two.

This particular type of system therefore highlights the need to examine
the effect of using larger machine support structures on coal-face control
and on its vertical steering particularly. It should be re—-emphasised,
however, that the bench system is but one manifestation of a trend towards
the adoption of larger units of mining machinery generally throughout the
U.K. and abroad and there therefore exists a strong motivation for investi-
gating the effect of machine size on mining control problems. The paper
reports somé of the findings of a collaborative theoretical study of this
question sponsored at the University of Sheffield by the Mining Research
and Development Establishment (M.R.D.E) of the National Coal Board (N.C.B).

Nature of the Investigation

The theoretical investigation reported here is divided into two parts,
one concerned with increasing the length (along-face) of subsections of the
support structure and the others with increasing structure width (in
direction of face-advance). The analytical investigations, necessitating
certain simplifying assumptions,are described with supporting simulation
results in Section 3 and 4 respectively. In Section 5 the extent to which
these 'ideal' system results carry over to a fuller system simulation is
examined and general rules of thumb established for a stabilising structure

size.



INCREASING STRUCTURE LENGTH

System Model Assumed

For initial analytical studies it is assumed that the vertical steering
system is proportional, linear and that its only significant dynamics are
due to the delay-distance, X, between cutting-drum and coal-sensor (see
Fig. 1). Cut-floor height, y(n,%) and the height profile, h(n,%), of the
machine-support-structure (where n denotes cut-number and { distance cut

along-face) are thus related as follows:

y(n,2) = Gsh(n,ﬂ) (1)
where transfer-operator GS is given by

2, = 1/{1 + k Del(X)} | (2)

Del (X) denotes the sensor distance shift and k the controller gain. The
operator is identical to that used in the companion papers (egns. 17 and 5
respectively) for analytic studies with the sensor time-constant neglected ,

Equations (1) and (2) are in fact derived from

v(n,2) = h(n,) -k y(n,L-X) (3)
For simplicity of analysis, we shall here consider the length, Xp, of each
subsection of the support structure to be an integer number of delay
distances, i.e.

X =r X ,xr=1,2,3,4..... (4)
(The case of r = o corresponds to the so called 'rubber-conveyor assumption'
examined in the previous papers and shown to predict system instability for
all k).

To complete the process description, it is necessary to relate the

structure profile, h(n+l,%), to the cut floor profile, y(n,%), upon which

*
In previous papers, the cut floor profile was denoted by y(n,%) + z(n,%),

y there representing floor coal thickness left by the machine and z
representing the coal seamls natural undulations. For stability studies,
external disturbance z can be set to zero and this is done in the present

paper.




the structure rests after its pushover, in the face-advance direction,
between cuts n and n+l. In the campanion papers(l)'(2) the a.f.c. was
likened to two parallel chains of rods, one representing the leading edge
of the structure (in the face-advance direction, Fig. 1) and the other the
trailing edge. One pair of rods represented the side channels of one tray
of the a.f.c. structure and the stiffness of the intervening deckplate was
neglected such that the two chains of rods could undulate independently of
one .another. Thus all the structure stiffness was assumed to be concentrated
in the side channels. In the analysis of this Section (3) we assume the
machine support structure to have the same basic form, but we allow the
length Xp of the subsections(rods)}o be increased by alter ation of integer r.

In the first companion paper the rods were taken to be completely rigid
and not to penetrate the cut floor. These assumptions together precluded
analytical solution and demanded an expensive computed solution by dynamic
programming. In the second paper)analytic solutions were obtained by
allowing elasticity of the structure and some penetration of the cut floor
profile by accepting the presence of a superimposed layer of fine coal. 1In
the present investigation analytic solution has proved possible by retaining
rod rigidity (and free angular play at the joints) but allowing some floor
penetration, i.e. by a compromise. The type of floor fitting assumed is
illustrated in Fig. 5 in which only the ends of the rods rest on the cut-
floor. In between, valleys are bridged whilst hills are planed flat.
(Alternatively the fit illustrated can be regarded as that produced on a
hard floor by standing each rod on short pedestals at each end: their action
being not unlike that of the beams shown in Figs. 3 and 4).

With this type of fit, the support structure merely samples the cut
floor profile at distances iXp, where i = 0,1,2...m and mxp = face length
I.. Between samples the structure linearly interpolates between the two

end-~heights. Mathematically therefore the structure's response may be
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described thus:
h(n+l, i XP) = y(n, ixp) ¢ T =012 500 (5)
and

h(n+l,2) = ,1iX i+1)X - 2}+ ,(A+1)x F(e-ix X
(n+1,2) [y(nlp){(:l. )X = L} yin, (141X lp)]/P
i X < g2 < (i+1)x (6)
P = e P

The composite system model comprising steering system (egn. 3) and support
structure (egn. 6) may thus be regarded as a sampled-data system, the
stability of which may be investigated by z-transform methods. It is first
necessary to determine "the z-transfer-function H(z) of this composite system
illustrated in block-diagram form in Fig. 6.

z-Transfer-function

*
To find H(z) we must first determine the response of y (n,%) (i.e. at

point Q in Fig. 6 to a unit impulse &pplied at point P. The triangular
impulse response of the structure alone is indicated in Fig. 6 and we must
now determine its effect on steering system Gs at delay intervals X, i.e. at
L =1iX,4i=-r, -(r-1), - (xr-2)...0,1,2, etc. where discontinuities will
occur. For this purpose argument n is dropped for simplicity of notation,
i.e. we set

h(i) h(n, iX) (7)

y(n,iXx) (8)

and v (i)

n and X being common to the arguments both variables. Knowing that h(i)
follows the triangular pattern of Fig. 6, y(i) is readily calculated
analytically by recursive use of equation 3, written in the : new notation
thus

y{d) = h({i] = k y{i-1)} (9)

The procedure is carried out in Table 1.



TABLE 1 Calculation of unit impulse response of H(z)

i h (1) y(i) = h) -k y(i-1) (eq”: @)
-r (o] 0
-(r-1) r_l r_1
-(r-2) 21‘“l (2—k)r*l
= {13} o AT W
o rr e 1 | {rr(e-1) (<k) + (r=2) (=k) . .. .. o™ o i
1 (r-l)r-l {(r-1) - k A}rwl
2 -2y T {(r-2) + (r-1(-k) + A(-k)z}r—l
3 (r-3)r T | {(x=3) + (r-2) (k) + (r-1) (<k)° + A(~k) }r %
# o LK) + 2602 ... =13 0T 4 a(a0) et
= B * Alk) "}
r+l 0 - k{B + z-x(—k)x}r_1
r+2 0 (—sz{B + A(—k)r}r_l
. ‘ r E: =1
2r 0 (k) {B+A(-k) }r
3r 0 33 B+ n-E) Tt
qr o) (k) ‘T T g () Tt




*
Now the desired output of H(z) is y (n,%) which is the function
obtained by sampling y(n,%), and therefore y(i), at intervals Xp (= r X),
i.e. at i = ~-r,0,r,2r,3r,etc. and from inspection of Table 1 therefore

we deduce that, if §(2-Y) denotes a unit impulse at & = ¥, then:

(g-1)r

y*(n,E) = nt §(8) + ) (-k) {B+A(—k)r}r_16(£—rx) (10)

g=1

where the parameters A and B from the table are given by

E-1 :
A= J (z-i)(-k)7" (11)
i=1
and
=l :
B= ) i(-k)" ' (12)
i=o

On taking Laplace transforms in s w.r.t. £ gives

r [=¢]
~* -1 B+A(-k Y -rxs
77 (e) = a7t 4 BRERY 7 mrEs)d (13)
(k) r g=1
X
and on substituting z for er s (recalling that the structure samples at
~ *
distances Xp = rX) we obtain the z-transform, = y(z), of ¥y (n,%) and hence
z transfer function H(z). Hence:
. r @
~ ~ B+A(-k -],
H(z) = y(z) = Ap- + {———i_;l—} T (kT e
' ’ (-k) r g=1
r [ee]
-r -1 B+A (- -1
= —Bl-k) T ¥ 4 {B+a(-k) '} y 37 =32
r
(-k) r g=o
-r -1 {B+A(-k) T}z (14)
#e Bkl % - =
(-k) "r{z-(-k) "}
Further simplification of equation 14 gives finally
H(z) = z2A + B (15)

r{iz-(-k)T}




3.3

Multipass Stability

(Ee_mxps

fact that the support structure rests

The long delay term z_m
being formed by the cutter. Thus for
loop's z-transfer-function, H(z) z_m,

(in its own plane) as z describes the

= e—LS) in Fig. 6 accounts for the
on profile y(n-1,%) whilst y(n,%) is
the rapidly spiralling locus of the
not to embrace the critical -1 point

unit circle (i.e. the stability

boundary) in the z-plane, it follows that, since m is a very large integer,

the multipass stability criterion+ must be

[H(z)] <1.0,z=14sg, 0 <

Now from equations (11) (12) and (15)

e
—

< 27

it is clear that H(z), for the simplified

system here considered,is a function only of z and the system parameters k
)

and r. For stability of the steering

system itself on any single pass it

is)of course, necessary that controller gain k be constrained such that

o<k <1.0

(17)

(6)

and under such circumstances it is readily shown from equations (11) and

(12) that, for any chosen value of integer ratio r.-

A+B>0
and A =B >0

The locus of the numerator expression

unit circle is therefore itself a circle enclosing the origin.

is also included inside the circular denominator locus because of constraint

(17) .

(18)

(15) for H(z) as z varies round the

The origin

Thus, by substituting (15) in stability condition (16) it is clear

that the necessary and sufficient requirements for multipass stability are

simply

+

Bt ;5 . : 1
The condition is similar to that used in the earlier paperé )

¢, (2) ;
, viz

er(jm)Gc(jw)l < 1.0, = < < + =, for continuous steering systems Gs(s)

and continuous conveyor models Gc(s).

(16)
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_lo_

A+ B <r(l-k") and A-B < r(l+k') , r = 2,4,6, etc. (19)
whilst
x r
A+ B < r(l-k') and A-B < r(l—k‘) , r=1,3,5, etc. (20)
6
Although a more general treatment is possible( : in the following section

(3.4) we confine ourselves to varying r between a few values of practical
interest. Comfirmatory simulation results of the system analysed are also
presented or stated. Fuller results have been reported by Edwards and

(6)

Yazdi "

The effect of varying r

Setting r = 1 (i.e. XP = X in condition (2) reveals that for stability
we must have that
K + 2k +1<0 (21)
which is clearly impossible for any gain k > o. Multipass stability is
therefore unattainable in this situation and the conclusion is confirmed
by the traces of Fig. 7 showing the attempted recovery of the simulated
system over four passes (cuts) from a disturbed initial condition towards
a flat desired horizon.
When r is set at 2.0 however, (i.e. XP = 2X), condition (19) demands
merely that
1+2k +k° >0 (22)
which is clearly satisfied for all k within the allowed range (17).
Lengthening the structure subsections twofold has thus produced stability
in this simplified system as confirmed by the traces of Fig. 8. {The
general treatment mentioned above, in fact, reveals that stability is
attainable for any even value of r > 2 for all k in the alldwed range
o < k < 1.0 since k must merely satisfy the condition

+
(r-2)+ kr + (x42) kK= + r K% > 0 (23)

of which condition (22) is but a special case}




oy

Setting r = 3 in conditions (20), however, shows that, for stability:

3 k2 < k+l (24)
which is satsified only if

0 <k < 0.768 (25)
and indeed, whereas values of k within this range produce a stable, though
less rapid recovery in the simulated responses (when compared to Fig. 8),

|

setting k above 0.768 is found to produce the unstable behaviour typified
by Fig. 9. This result again demonstrates that incrreasing Xp beyond the
value X aids the stability of the multipass system. The somewhé£ inferior
behaviour noted with r = 3, or indeed with any odd integer value, compared
to cases in which r is even (and non-zero), may be attributed to the fact
that odd-integer sampling picks up both the peaks and the troughs of the
somewhat oscillatory response of GS whereas even-integer sampling detects
only one or the other. With r even therefore, no naturai oscillation of Gs
is transmitted from pass to pass, whereas a proportion of the oscillation
energy is transmitted when r is odd.

The principle that increasing structure length aids multipass stability

has been tested in fullex simulation of the true steering process and support
structure as reported in Section 5. For the moment . we turn to a separate
analysis of the likely benefits of increasing structure width.

INCREASING STRUCTURE WIDTH

For thisinvestigation, all dynamics in the along-face direction are
ignored so reducing the problem to one in two dimensions only, viz:
the face-advance direction and the vertical. Aall lags and delays in GS
are thus neglected and each discrete subsection of the machine support
structure is assumed to be free to move gquite independently of its neighbours.
The two-dimensional system to be studied is illustrated in Fig. 10 and
differs primarily from the real-life bench system of Figs. 3 and 4 in as

much as the idealised system of Fig. 10 has a gutaway base (beam) allowing
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cut-floor steps to be bridged. Thus only the leading and trailing ends

of the beam are here assumed to contact the cut-floor. ffhere appears to
be divided opinion in practice as to whether flat or cutaway bases for
mining machinery are superior and both types do exist(3’7). By keeping

the leading edge in better floor-contact, a cutaway base can avoid fine
coal, left by the cutter, from penetrating beneath the base so causing an
upward and sometimes cumulative bias on the machine's steering. On soft
floors, however, such a narrow leading edge can severely tear up the floor
leading to a loss of climbing ability. Floor strength is clearly a crucial
parameter in these considerationé].

Inspection of the geometry of Fig. 10 reveals that, for small angular
changes the floor heights, y, tilt, & and cutting drum deflection, J, are
interelated thus:

v(n+l) = y(n) + W a(n) + J(n) (26)
and

aln) = {y(n) - y(n-M)}/MW) (27)
where W denotes the cutting drum width and MW the width of the structure
base (i.e. the beam length). Integer n again denotes cut number, M is also
assumed to be an integer but argument £ has been dropped since the study
is here only two-dimensional as stated earlier |

We here assume a control law of the form

J(n) =k {yr -yn)} - kgWa(n) (28)
Whereas in the preceding companion papers, and implicitly in Section 3 of
the present paper, kg was set at 1.0 to remove tilt effects from the process

equations (26), we here, however, set this electronic derivative action to

zero by putting kg = 0.0. The object of this is to investigate the

stabilising power of structure size i.e. the effect of increasing M, as an

alternative to electronic compensation using a tilt transducer since the
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device is always vulnerable to damage in the arduous coal-face environment.
Combining equations we therefore arrive at
-1 -1
y(n+l) = k ¥ y(n){1+M = - k} - y(n-M)M (29)
and, on putting Y. = O for stability studies and taking z-transforms of
this discrete system,gives

-1~
" u y(2) (30)

z y(z) = ?(z){i+M_l -k} -z
and cancellation of y(z) {the z-transforms of y(n)} produces the characteristic
equation

My k-1 - h Mt =0 (31)
The effect of various values of M on systems stability is now readily
determined by examination of the root loci derived from this characteristic
equation. For this purpose, equation(31)is more conveniently expressed in
terms of a ratio of polynomials of z thus

a ZM/(ZM+J. +M_l) =i (32)

where

! (33)

a=k-1-M
The parameter 'a' may therefore be treated as the variable 'gain parameter'
whose variation causes the roots of equation (32) vary in the z-plane.
Critical values of 'a' may subsequently be interpreted in terms of true
gain k for any preselected value of M using equation (33).
The general effect of increasing M , however, can be assessed merely
by considering the position of the open-loop system poles and zeros (at

which the loci start and finish). The M-zerosare clearly located at the

origin whilst single distinct poles occur at positions given by

Y =T | i=1,3,...M (M-o0dd)
2. = = " K L 7 1=1.3 (34)

The poles (i.e. the starting points of the loci) clearly lie on the unit
ci¥cle when M = 1 (i.e. for conventional support structures such as a.f.c's)

but the poles move progressively deeper inside the region of stability as M
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is increased. This suggests that increase of M does represent a powerful
potential stabilising force under these circumstances. Loci computed from
characteristic equation (32) using the Sheffield root locus package are
illustrated for M = 1,2,3,4 and 5 in Figs. 11 (i) to 11(v) respectively.

In the case of conventional systems, (M=1l), the locus follows the boundary

of the unit circle for o < k < 4 indicating its well known critical
stability(a) in this range. The system is completely unstable for higher
gains in the absence of tilt feedback. For the larger values of M the

loci remain well inside the unit disc for substantial ranges of gain, critical

stability not being reached until the values kc set out in TABLE II are

attained.

TABLE II Critical stability gains for various base widths
M : kc
*
1 : 0.0 (to 4.0)
2 2.0
3 2.67
4 2.0
B 2.40

A dramatic improvement in critical gain kc therefore occurs immediately

M is increased to values exceeding unity but, thereafter, little improvement
in this parameter occurs. Due to the poles progressively nearing the origin
as M increases however, the system damping, for a given gain in the range
o<k < kc )improves progressively and significantly as M is increased.

The predictions are confirmed by the computed step responses illustrated in

Fig. 12 which clearly show the improvement in damping. At a fixed value

*
In the case of M=1 the system can never be better than critically stable

for k > o and therefore the value of 4.0 in Table II is of only academic
interest.
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of k however the speed of response (in terms of number of cuts taken to
complete a response) deteriorates and some scope therefore exists for
optimising M and k.

IMPROVEMENTS PREDICTED BY MORE-DETAILED MODELS

The models employed in the preceding Sectionsof the paper have been
simplified versions to permit analytic solution. These solutions have
indicated that stability improvements should be derived by increasing the
length XP(= rX) and/or the width MW of the loosely-articulated subsections
that, together, comprise the support-structure for the power-loader. The
question now arises as to whether or not these findings can be expected
to carry over to the real-life situation. To generate confidence in pos-
sible future designs and to avoid an unnecessary number of prototypes (which
in mining are enormously expensive) it is therefore necessary to test these
preliminary conclusions on simulations close to reality.

Confining attention still to the uncoupled rod model of Section 3 the
first step in this exercise was to relax the constraint that ratio r = XP/X
should be an integer value as z-transform analysis dictates. Simulation
in fact revealed that for r set at any value exceeding or equal to 2.0
would produce stability. We are thus reassured that the stability observed
in Section 3 for r = 2,3,4 etc., is not merely a quirk of synchronism between
the response of Gs and that of the structure. A more stringent test however,
involves elimination of the floor penetration allowed in Section 3 thus
demanding use of the potential-energy-minimising, dynamic programming kd.p.)
simulation fully described in the first companion paper(l)_ It was found
that for stability, the subgection length needed toﬂbe increased to Xp > 4X
under these circumstances and Fig. 13 illustrates the stable behaviour
achieved with r = 4 and k = 0.5. Convergence to the flat horizon is

obviously somewhat slower than with the simplistic model (Fig. 8) so that
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floor penetration as well as section length, is clearly a stabilising

factor. Fig. 13, however, represents the first stable performance ever

achieved with the d.p. model since all earlier studies had been confined

to smaller values of r and the stable solution would not have been pursued

first obtaining

nearly so vigorously without the incentive provided by/the stable analytic

solutions of Section 3. &
Inclusion of sensor and actuator lag distances Xl and X2 in the

dynamics of GS increases the critical wvalue of XP still further and the

following rule of thumb emerges (from these later d.p. studies) for multipass

stability)viz-

< X) (35)

X 4(X + X. + X
o > ( 1 XZ} r (Xl: 2

Probably for this reason, d.p. simulation of a chain of structures resembling
more closely the benches of Fig. 4, failed to produce multipass stability
since these structures, although three terms longer than a.f.c. trays, each
have a length, Xp, of only about 2(X +Xl*f Xz): the minimum practical values
of X, Xl and X2 being of the order of 75, 60 and 20% of the conventional tray
length (XP(B in this case).

The idealised structure used in the latter d.p. investigation is shown
in Fig. 14. It clearly resembles the bench structure more closely than the
twin, uncoupled rod model used earlier, but the beams are assumed to have
cutaway bases as in the two-dimensional studies of Section 4. Because floor
penetration (or bridging) appears to aid stability, it was thought important
to conduct two-dimensional simulations using flat based beams. Indeed,
using colour graphics, such a flat-based two-dimensional model, embodying
extensive légié(g%or the .fittgng of both the bench and its associated roof-
support, tosthe-cut floor has been developed into an interactive process-
trainer for future operators of the system. Fig. 15 shows a typical response

of the simulation in automatic mode (as opposed to the primary manual control
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mode for operators) using control law (28) with M = 5, k = 1, and kg =0
(i.e. again no tilt feedback). Clearly a stable response is still obtained

with M > 1 (as also predicted by the simpler cutaway base model of Section 4)
but rather greater overshoots tend to result with flat bases on hard floors
because of their greater tendéncy to topple as the centre-of-gravity passes
over an intermediate supporting step.
CONCLUSIONS

It has been shown that increasing length, Xp,of the power-loader support-
structures with given steering system dynamics,GS,involving a delay distance
,¥,can stabilise the vertical steering of the multipass longwall coal-cutting
process. Using z-transform methods, simple analytic models predict that
Xp > 2X should give multipass stability. Mdre realistic models based on
dynamic programming methods, however, show that a practical rule of thumb
stability criterion is XP > 4(X + Xl + X2) ; Xl and X2 being the sensor and
actuator lag distances respectively. It therefore, appears that loosely
articulated piecewise-rigid structures for the track of the power-loader
can eliminate repeated excitation of the resonance of GS but a very considerable

increase in the subsection length,X  jon conventional designs is needed. This

P’
probably means that the bench system (Fig. 4) will require elastication of
the joints between benches or the use of prétensioned cables, as proposed

in the preceding companion paper(z) to ensure stability despite the three-
fold increasein Xp that the present bench system represents. Much depends

on the strength of the cut-floor however. BAnalysis and detailed simulation
have shown that increasing structure width eliminates the need for electronic
tilt feedback in steering systems so 'aiding their robustness but slowing
their response. A more gradual response for wide-based roof support
structures (Fig. 15) is probably what is needed however, to ensure good roof

contact and therefore good roof-control. The stability of most systems can

be achieved either by means of control of adequate intelligence (complexity)



- 18 -

or by means of adequate system inertia. The paper has demonstrated this
general principle in this particular application. The paper has also
demonstrated the need for analytic solutions of simplified systems to guide
the choice of parameters in detailed process simulations for results of

real value to be obtained. This, in the authors' view, is another important
principle sometimes neglected.
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initial condition
(n=0)

Fig.%

Traces of y(n,!)

and h{n+l,2) showing multipass instability

(r=1, k= 0.5)




Fig. 8 Traces of y(n,l) and h(n+ly£) showing multipass
& stability (r=2, k=0.8)
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Fig. 9 Traces of y(n,%) and h(n+l,5?,) showing multipass
instability (r=3, k = 0.95)




l ‘ Bench

Cutaway base profile

Beam

Floor cutting drum (lowered)

Cut floor profile

Fig. 10 Showing cutaway base to allow bench to bridge floor steps




Fig. 11 Root loci for various values of M
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r'r Fig. 18 Traces of y(n &) and h(n+lﬂ,) showing stability of rigorous
dynamic programming model (r=4, k=0.5)
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