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SUMMARY

The spatial stability of a sequence of accelerating repetitive
operations is investigated using the cutput spectral-density in a
frequency-band enclosing the first resonance-peak as a stability
indicator. The operations of the sequence are identical in dynamic
structure but subject to a constant rate of acceleration between
operations thus resembling the rolling of metal strip and other
repetitive manufacturing processes such as machining. The technique
readily yields a value for the critical number of éperations within
which stability can be expected to be achieved, within the chosen
frequency band. Simulation of a variety of systems confirms the
physical usefulness of thisnumber which correlates well with the
observed number of operations found to be necessary to achieve an

output profile that is adeqguately stable from a practical viewpoint.
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List of Symbols and Abbreviations

Gn(s) = transfer-function of nth operation in a repetitive seguence
G (8), G(s) .. G . (s) !

k = gstaticgain of second order process

kl,k2 = gain parameters in metal rolling process model

Ln = length of metal strip after nth operation

Qn = distance from leading end of strip to slice of interest

after nth cperation

L = normalised strip length = LO
S = normalised value of § =42 L /L
n n o] n
n = integer representing number of repetitive operations undergone

by workpiece

N = total number of operations in repetitive sequence

n = critical value of n above which spectral-density of output
of Gn(s) {in response to impulse applied to GO(S)} will not

increase at any frequency in band w < w < w
a

- — b
o = constant = l/acceleration rate or process dynamics between
operations
5 = Laplace wvariable
Sn(m) = spectral-density of cutput of Gn(s)
X = fixed transport delay distance in metal rolling (between

rolls and gauge sensor)

Xn = n-dependent delay distance in hypothetical rolling model
yn(ﬁ) = output from nth operation at normalised distance ¢
n(s) = Laplace transform of yniﬁ) in s w.r.t. 2



angular natural frequency in radians p.u. normalised

distance £.

lowest value of w making ]Gn(jm)' =1.0
lowest value of w at which {Go(jw)‘ = L.@
next higher value of w at which |GO(jw)| = 1.0

undamped natural frequency of nth second~order operation

fixed damping ratic of second-order operation.



Introduction

In the course of manufacture it is common for each individual
workpiece flowing along a section of production line to be subjected to
a sequence of operations GO(S), Gl(s) S & Gn(s) it GN_l(s), in being
converted from its initial (rough) state to its final(finished) state.
Examples of such sequential processes include the machining of precision
components, the production of metal strip by rolling, etc. In the
interests of standardisation, the individual operations Go(s),... G (s)
may be extremely similar to one another.

Because each operation may require a significant floorspace, the cost
of which is ill-afforded in a depressed sconomic climate, there is consi-
derable incentive to explore the possibility of minimising the total number
N of such operations. Consequent time-saving is clearly an important
additional consideration.

One important characteristic of the operation sequence is that the
dynamics of each successive unit operation, whilst retaining the same basic
form of frequency response (e.g. analogous modes having identical damping
ratios), tend to become progressively faster as n increases from O to N-1.

This is fairly readily appreciated in the case of metal rolling(l)'(Z)

-

where the dynamics of each rolling operation are dominated by the transport-
delay resulting from a fixed spacing, X, between the rolls and the output-
thickness (gauge) sensor used for automatic gauge-control. Although X is
fixed, due to the progressive lengthening of the metal strip with each

rolling operation, the relative magnitude of the delay, viewed from any

given vertical slice of material, appears to progressively shorten with

each operation, i.e. as n increases. Furthermore, if rolling takes place
repetitively at constant speed through the same (or identical) rolling

stands, the fixed dynamics of unit rolling system (i.e. the complex spring/

mass network representing the roll-structure and the gauge-setting servo)
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will also appear to vibrate faster and faster when viewed from any chosen
vertical slice of the metal strip: a phenomenon again resulting from the
progressive lengthening of the strip.
b i . 3) ) .
In a sequence of similar machining operations ; this progressive

step-wise 'acceleration' of the dynamics of each successive operation may

result from the use of progressively lighter-cutting-tools and their
associated support-structures as the average thickness of metal removed
|
is reduced as the final finishing cut is approached.
Unless machines of enormous mass and rigidity are employed, there

will always exist some dynamic interaction between spatial profile
yn(ﬁ) produced during operation n-land that,i.e. yn+l{£) produced on
operation n, and it is this interaction which is here represented by
transfer-function Gn(s}. The length coordinate, £, will clearly lie
within a finite range, i.e.

0< & <L (1)
in practical processes where L is the normalised* length of the workpiece
but it is usual for L to greatly exceed the wave-length of the slowest mode
of Gn(s) so that, for practical purposes, Gn(s), if stable may be regarded
as a continuous process over all time. Thus, by taking Laplace transforms

in s w.r.t. £ we get:

V4 (s) = Gn(s) yn(s) # © <n < N-1 (2)

where superscript ™ denotes the Laplace transform of the associated spatial
variable. The overall system may therefore be represented by the block-
diagram of Fig. 1 which implies a single continucus process of transfer-

function G (s) G,(s) G, (s)...... G (s).... 6 (s). Such a representation
o 1 2 n N-1

is appropriate provided the boundary conditions can be engineered to induce

In metal rolling, L would be the length of the strip prior to its first
rolling operation and £ would be a normalised quantity related to real
distance L, (of the slice in question after pass n) by the relation

g = RnL/Ln where Ln is the strip-length after pass n.



no transients at the start of each subprocess or if attention is
confined to process variables at distances far from either end of the
workpiece.
Stability

Now although Gn(s) may be stable for all values of n, the sequence
of processes Go(s}, Gl(s).... Gn(s).... Gle(s) may, in a practical sense,
constitute an unstable process overall. In particular, any impulse in |
yo(ﬂ) may generate oscillations in yl(z), and hence in yz(z),...yn(ﬂ)....
yN(g}, that grow in number and/or amplitude with increasing n: clearly

an undesirable state of affairs.

Repetitive Systems of Constant (n-independent) Dynamics

In the special case Gn(s} = Gn+l(5) = G(s), (n=0,1...,N-1) then, to
avoid instability in the sense described above, G(s) must satisfy the
condition that:

|G(iw)| < 1.0, for all real (3)
This is because the spectral density of yn(g) is |Gn(jm)l2 {in response
to a unit impulse in yo(z)} and for this to reduce, over the entire range
of w, with increasing n, criterion (3) must be satisfied. Fig. 2 illus-
trates a frequency response [G(jw)f that would produce instability in the
repetitive system GN(S) since within the frequency band

w, 2w jﬁwb (4)
criterion 3 is clearly contravened.

In a special-case, delay-dominated metal-rolling example:

G(s) = kz/ {1 + klexp(—Xs)} & | % (5)
where k_, k2 are constant gain parameters and X the constant normalised* delax
distance, it is readily shown(l) that criterion (3) reduces to simply

kl <1 - k2 (6)

This example involves the rather hypothetical case of an increasing transport
delay-distance, X,, with each rolling operation)proportional to strip length

L, such that normalised delay X = Xn L/Ln, where L = LO, the initial strip
length.



The result is confirmed by the computed transient responses of Fig. 3
for k1 = 0.4, k2 = 0.5, i.e. a stable case and Fig. 4 for k1 = 0.75,

k2 = 0.5, i.e. an unstable case.

(1),(2)

Criterion (3) has been developed more fully elsewhere and
interpreted in a variety of different ways. The spectral-density concept
used above however is the most important in the present context of
systematically varying processes“Gn(s) , n=0,1,2....N-1. |

n
Systems of Accelerating Dynamics Gn(s) i Go(sr )

If the unit process transfer-functiore are interlated thus

G (s) = ¢ (sx') (7)
X @]

where r is a fixed positive parameter less than unity, then it is clear

that all subprocesses of the repetitive system have modes that are identical
in form (i.e. in damping ratio) but subject to a uniform increase in speed
(i.e. in natural-frequency) with increase in n. The form of model (7) is
particularly appropriate tometal rolling if r is the nominal ratio of output-
to input-strip-thickness on each pass(= ratio imput- to output-strip-

length if the strip-width remains unchanged ). The reasons for this have

been outlined in Section 2 and are more fully treated in reference (2).

The form does have more general application in manufacturing systems,
|
however, as has already been mentioned.

\

The Stability-Band Concept

Fig. 5 illustrates the frequency responses of the n individual sub-

(s) .... G .. (s) when these are

processes contributing the sequence Go(s),G -~

1

subject to condition (7). The spectra clearly spread and shift towards
the higher frequency domain as n increases. Had r been unity then all the
spectra would have been identical to ]Go(jm)l and the repetitive sequence
would have been unstable for the case illustrated since

le,Gw | > 1.0 , 0w <w<uw ' (8)

a b
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Because of the shifting operation resulting from r < 1.0, however, it is
clear from Fig. 5 that, in response to a unit impulse in yo(l), the

output signal's spectral-density, Sn(m), from Gn(s), given by:
n-1
; =
s.(w = 1 |6 Gu (9)

1=0

will increase with increasing n, within the narrowing frequency-band:

w' < w < p w' > ow (10)

The Critical Number of Repetitions, n_

-

The progressive increase of spectral-density at any frequency

within the band

Mg T WS L (11)

will cease, however, when n reaches a wvalue such that

le (Gw )| < 1.0 éEGO(jwa)l (12)

By combining this condition with equation (7) we can therefore obtain the

critical value (nc) for n beyond which no spectral-density, in the band

w,o S w < w, will continue to increase. This value is thus obtained by

setting
. n .
|6, Gux ) | = |GO<3ma)[ (13)
- S wbr = ma (14)
log(wb/wa)
so that we get R e (15)
log(x )

So far as signalsrwithin frequency band (11) are concerned therefore,

nc, as calculated from equation 15, and rounded up to the nearest integer,
provides a useful upper-bound on the number of repetitive subprocesses
which will produce instability. Before this number of operations is com-
plete, natural oscillations within band (11) may be expected to begin
attenuation. Before contemplating higher frequency effects it is

profitable, at this stage, to examine specimen simulation results.



Results and Discussion

The foregoing analysis has presupposed a process GO(S) having a

single resonance peak. Such processes may well have high order but it

is sensible to investigate first the simplest of such systems, namely

a second-order-lag process:

2 2 2
G(s) =kw /(" +2czws +w) sy
o o o o
§
so that
2 2
G (s) =kw /(87 +2 tws + wz) (16)
n 1 n n
- :
where w r = g (17)
n o

Fig. & shows the spatial response for k = 0.65, ¢ = 0.3, and r = 0.9,

(for which wa = 0.52 w, and W, = 1.12 mo} giving a calculated value for

n, = 6.6. Clearly the process stability deteriorates*only for the first 6-7

operations and n , as calculated, provides a good estimate of the number
& e BulasE

of operations for a stable output to be achieved. Experiments conducted

on a wide variety of systems seem to indicate the general validity of this
conclusion so that n_ has an important practical significance as well as
being an easily calculated mathematical parameter. Fig. 8 confirms this
finding for the metal-rolling example examined in Section 2 but here with

r set to 0.95 rather than unity. We therefore have

n

Gn(S) — kE/{l + kl exp(-X s r )} _ (18)

from which we deduce that
(k2 1 - k2
w e =X *l[_{_g._i_;;__,%}'] : (19)
5 e cos { ok ¢
1

and with kl = 0.75 and k2 = 0.5 (as for Figs. 4 and B) the values for these

=1 ~1
'unit-gain frequencies' work out to be w, o= 2. E2% and mb = 3.67X so

yielding a value for n (via equation 15) of 6.8. From cobservation of
c
Fig. 8, stability clearly begins to improve after n = 3 or 4 and is again

achieved for practical purposes by n = n

Deterioration here means the spreading of the distance overwhich oscillation
of significant amplitude appears. Comparing Figs. 6 (r=0.9) and 7(r=1.0),
clearly demonstrates the stabilising effect of accelerating dynamics: The ins-

tability in Fig.7 is manifested as much by the spread as by the amplitude of yn(ﬂ).



This example again demonstrates the practical usefulness of parameter
nc but now on a system that has a multiplicity of resonances : the

numéricdal ' values of(ua andw  calculated above applying strictly to only

b
the first resonance peak. The results given in Fig: 8 clearly shows

the shift of the system's spectra towards higher and higher frequencies
but the relative amplitude of the high-frequency ripple that develops with

increasing n is obviously small and of minor practical importance.

Concentrating analysis on the first resonance peak would therefore seem to

be no less wvalid than using describing-functions in general nonlinear
systems analysis(4)g This conclusion is reinforced by the realisation
that, in practice, low-pass filtering processes, (justifiably excluded in
the mathematical-modelling of Go(s) because of their high bandwidths) are
likely to occur in positions interposed in the process sequence Go(s},
Gl(s).... Gn{s) of Fig. 1. The effect of these filters would be to prevent
the shift of system energy to ever higher frequency domains as n increases.
Conclusions

The stability of an important caiss of repetitive processes encountered
in metal rolling and manufacturing generally and described by a sequence of
transfer-functions Go(s}, Gl(s),...Gn(s),.... GN_l(S) has been investigated.
The individual subprocesses are inter-related thus: Gn(s) = Go(srn}, 0O <r <

and the sequence may therefore be described as one of accelerating dynamics.

It has been shown that, if the first resonance peak of Go(s) exceeds unity,

within the frequency band w <w < w the spectral-density of the output

8 b’

of Gn(s) {in response to a unit-impulse applied to Go(s)} will continue to
increase at some frequencies within this band, as n increases, until n

exceeds a critical value nc = ?log(mb/ma)}/iog(rhl). This value is there-
fore an upper bound on the number of operations for which instability per-

sists in the sequence output, within the band w <w < w

a b’



= 6 e

Simulation examples of single-and multiple-resonance systems have
demonstrated good correlation between the easily-caculated parameter
nC and the number of operations actually needed for a stable output to
be produced. The parameter would therefore seem to be of considerable
practical importance, particularly in view of the economic need to keep
the total number N of operations to minimum. ‘
The theory's disregard for oscillation in higher-frequency bands has
been shown by the simulation to be justifiable and in practice may be
further excused by the existence of high-bandwidth low-pass filtering

processes interposed between the subsystems. The approximation differs

little from that underlying describing-function methods for nonlinear

systems analysis.

References

(1) Edwards, J.B. 'Stability problems in the control of multipass processes'
Proc. I.E.E., Vol. 121, No. 11, pp. 1425-1432, 1974,

(2) Edwards, J.B. and Owens, D.H., 'Analysis and control of multipass
pbrocesses', J. Wiley, (Research Studies Press), Letchworth, 1982, 298pp.

(3) Welbourne, D.B. and Smith, J.D., 'Machine-tool dynamics' Cambridge
University press, 1970.

(4) Atherton, D.P. 'Stability of nonlinear systems', J. Wiley, (Research

Studies Press), Letchworth, 1981, 231 Pp-

Acknowledgements

The author is grateful to Messrs. M. Mazandarani and R. Bouhedda,
postgraduate students in the Department of Control Engineering at the
University of Sheffield, for computing the time-responses presented in

this paper. Thanks are also due to the Head of Department, Professor H.

Nicholson for the use of the computing facilities required by this research.



(s) &

ssa001d saTitiedsy sbeis-N Jo uoriejuesaxdsx wezbeTp-yooTd 1 " btd
O S u
I-N T+u (s) 9 - ......ql. z (s)
(s) (s) (s) & (s) A (s)

o
(s) o




Fig. 2 Form of Freguency Response |G(jm)f, that would
Produce Instability in N-Stage Sequence GN(S).

|G (w) |
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Fig. 3 Time-Response of Stable Metal-Rolling System with Fixed

Normalised Delay. (k1 = 0.4, k2 = 0:5)
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Fig. 5 Showing the Shifting And Spreading of the
Spectrum of G l(s) as n increases
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Fig. 8 Response of Metal-Rolling System with Variable
Normalised Delay (k, = 0.75, k, = 0.5)
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