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INTRODUCTION

It is essential for the design of controllers to know something of
the dynamic characteristics of the plant concerned. The main method to
obtain these characteristics at present is largely based on experimental
analyses of existing plants. 1In a previous paper [l|, a useful analytical
model for a symmetric binary distillation was deduced. Its transfer fﬁnc-
tion matrix had a diagonal form and the elements of this matrix showed
dynamic behaviour approaching that of a first order lag. These properties
are significant for the controller design and plant design.

The present investigation, based on previous research |l|, involves
the effect of hydraulic delay which, in practice, is not a negligible
factor because it is evident that the ligquid on one stage must take some
time to flbw down to another stage, in fact, the delay time takes the
value from 1.0 second to 20 seconds for each stage |2|. Although the
transfer function is very complicated and cannot be reformed into diagonal
form, the inspection and analysis by the aid of computer indicate that the
dynamic behaviour of all the elements of this matrix are still very near
to that of a first order lag.

In the second part of this paper the authors design a set of con-
trollers for this system using the dyadic expansion method |3|. The
powerful interaction which exists between top and bottom products, is
reduced with the proper choice of controllers, and it is obviously ob-
served that even if the system without hydraulic delay has very high
controller gain it can still keep stability while the system with
hydraulic delay only a very low gain can be employed if instability is

to be avoided.



MODELLING
1.1 Assumptions
(1) Equilibrium assumption:

Assume the column is operating under equilibrium condition. Then
the composition of wvapour and liquid should accord with the equilibrium
relation shown in Fig 1. In the present instance, the eguilibrium curve
is approximated with two straight lines. These vield,

Y = ¥X/a + (a-1)/0 in rectifier (1.1)
Y'= ogx' in stripper {142)
where the slope parameter is considered as a constant (o > 1.0).
(2) Symmetric assumption:

As shown in the Fig. 2 it is assumed that the stage numbers in
the rectifying section equals to those of the stripping section i.e. N =

Also, the average molar flow of both vapour and liquid are assumed
to be constant and have the following relations:

V = oL i L =gV

r r S S

V. =1L 2 V =1 (L+3)
R S S ha

i

where the subscript r and s denote rectifying and stripping respectively.

(3) Feed assumptions:

The feed rate of vapour is assumed to equal to that of liguid i.e.
FV = ER = F, and their composition are denoted by“XP_and X respectively.
These yield

F=vVv -V

V(L -1/a) =V e/a (1.4)
r %

Furthermore, if the feed mixture is assumed to be in equilibrium, such
that

Y = aX
F F

o
And the point (X_, YF} will be the intersection of the minus 45 line of

equilibrium diagram with the equilibrium lines. That leads to:



=1-X
g F

a/(a+l) ; X_ = 1/(a+l) (1.5)

Y
and -

FE

(4) Vapour hold-up is neglected and the vapour flow on stages are
egqual to each other. The density of vapour is considered as a constant.

1.2 Total mass-flow balance for stage:

(1) For the rectifying section.

As shown in Fig. 3, the mass-flow balance is:

L -L +V -V =M
n-1 n n n-1 n
According to the assumption Vn = Vn—l =V
=fe) . e L -~ L =M
=l n

For small sinusoidal signal:
- _ g
foog A, = dom (1.7)
where the notation jw denotes the derivative operator.
The liquid hold-up is the function of liquid flow, vapour flow and
vapour density.

M= £{1, v/¢5; }

Now that we assumed the vapour flow and density to be constant, we can

write
oM
M = —
A n oL ALn
Or:
. 1.8
mn T,Q, Qn ( )
where T = 9M/0L isa hydraulictime constant.

L
Substituting (1.8) into (1.7) yields:

= = 3 2 1.9
Zn—l En Juty & ( )

If the number of the stages are large enough we can use Taylor theorem

and truncate the high order terms. Then equation (1.9) can be rewritten as

df .
ok e ijR.l (1.10)

Tts solution is:



lo EE-— - 2
- B Jszo
Considering the boundary condition:
when n=o, 2n= Eo(reflux) can decide the integral constant ¢ = £ .
o

So the final expression is
—ijg.n (1.11)

A similar expression can be deduced for the stripping section but note
the stage order is from terminals to centre.
=jw(2M+1 - n)t,
L =48 e £:21)
Where the number n denotes the stage order in stripper. So it is evident
from the above expressions that the difference between two liquid flows
on different stages is only a time delay, and its value is in direct

proportion to the distance from one stage to another.

1.3 Partial mass-flow balance:

(1) Small signal differential equation:
As shown in Figure 3 the mass flow balance in rectifying section is:

d
L X - L X+ V Y o= Y = — (M .X 1.12
n-1 n-1 nn n+l n+l Vn n dt ( n n) ( )

For small sinusoidal signal

£ +0 X -L x -0 X +vV tv.Y -Vy-vY
¥ Xn—l n-1 n-1 ¥ n nn r yn+l n+l ryn v n

= joMx + ju m .X
A n 4 n n
where the notation '-' denotes average value, and it is assumed that the
average value of all parameters are constant. Rearranging the above

equation can yield

Vr v &
r
= + - = + = + —_—
Xn-—l xn Lr n+1 Lr yn A Lr xn
1 _ — e -
= — X'-. = e ] + Y Sl l-
Lr[gn—l -1 (Qn jujmn)xn v n+1 Yn)J (el

The equation (1.12) has the steady state form as following:

Y _-Y)=(X -X 1.14
Vr( n+l n) ( n n—l) ¥ ( )



Substituting (1.14) and (1.7) together with the assumptions of

V =nq Lr and x = a v into (1.13) yields:
i

- + - + 5 Il e WS -
yn—l 2 yn yn+l Juw T% yn v a zn-li (1.15)

where TX = EYLI is a time constant.

Again using Taylor theorem and substituting (1.11) into (1.15) can yield
2 Y -y -(n-1) j
Jy : n Yn+l (n-1) jut

ez WL Y= —<—
n g

]
[v -age (1.16)

For the sake of symmetry we assume ﬂ-‘/LS = E/Lr = T then a similar
X

equation for stripping section is:

BZX. Xn+i Xn - (2N=-n) jwt

. oo BEL T _ ‘ g
ﬁ = ijXx - = [C! v Qo.e J (1.17)
2k X

"(2) Steady State Version:

To solve the above differential equation, first we turn our attention

to the steady state version of equation (1.12), we have

T, X = LX *W ¥ -V Y =0
r n-1 ¥ n r n+l r n

With the relations of Vr = q Lr and X = ¢ Y - (a-1) above equation can be

simplified as:

v -29Y %Y =0 1.18
Yn—l n n+1 ( )

A similar equation for the stripping section is:

X' - 2X' +X' _ =0 1.19
n+1 n n-1 ( )

the «(1.18) and (1.19) are second order homcgeneous difference equations,

and have two repeated characteristic roots.

|- :l
17 %5
So the solutions of these have the form as follows:
Y =A +A
R T }
X' =B. +B_n 1.20
n 1 2 ( )

The constants can be decided by boundary conditions. For the top

accumulator as shown inFig. 3 the mass-flow balance is:



e B
d
-X)=— (MX
V(Yl O) dt(Ao)
Its steady state form is
Y. -X =0 (1.21)

1 o

where MA is the capacity of the accumulator.
Substituting the relation [E; =aq ?; = (u—l)] into (1.21) yields

§i = q ?; - (a-1) (1.22)

Similarly we can get equations for the reboiler:

§1 = q E; (1.23)

As for the feed boundary condition, the steady state mass flow balance

for the stage just above the feed point is:

FY + I X -LX +V Y -vY =op 1.2
F r N-1 r W s N r N ( 4

And for the stage just below the feed point

FX +LX -LX +VY __v 3 = .3
F r N s N VSYN—l s YN 2 EL25]

Substituting the relations (1.3), (1.4) and (1.5) into Equation (1.24)

and (1.25) and noticing X =Y - (a=1); Y' = o X! yields

-2Y_ +X' = - +
YN—l YN X e/ (o+1)

N
X' -2%_+Y
XN“l N YN = g/ (a+l) (1-26)

Now substituting boundary conditions (L.22), (1:23) and (1.26] inte
(1.20) yields the solution:

- —

Y, =Ygt C(N-n)

X' =1-% (1.27)
n n

where C = 2 ¢/(a+1l) (2N & 4+ o + 1) is the gradient of steady composition.

X' =1 -Y =2(Ne + 1)/(a+1) (2Ne + & + 1) (1.28)

From (1.27) and (1.28) it is clear that

? - = _' — 3 = ? 1.29
n Yn+l Xn+l n & ¢ )

Substituting (1.29) into p.d.e (1.16) and (1.17) vyields:



= G, 25
f' " -(n—l)pTh
Yo -py =2 [v -a 2t e |

2 v

an r

E)2}{, @ - (2N-n)pT, {1.30)
2 - Px' = {]"“ [CI AL == L e

an r

where p = juTy and T& = TE/TX
(3) Boundary conditions for small signal differential equations: |

The mass-flow balance of top accumulator is:

a
= 3 MaX)

V(Yl - Yo)
where MA is the capacitance of accumulator which is a constant provided
the level of accumulator is stable.

For small sinusoidal variations, above equation can be rewritten:

Vr(yl = xo) + v(?i - E;) = jw MAXO

From (1.2) it is known that §i - X

0]
o

So the above equation can be reduced to:

_ = W
Vr(yl xo) J MAXO

Replacing Yy by (yO + Byo/an) and using the relation x = oy can reduce

the above eugation to:

5o

-£€ + — = jw T
yo on J yo A
- i .
or yg (e+ PT)Y (1.31)
. 3y the
where y = —— , T. = M /L Iis/residence time of accumulator
(o} on - A A r

and

5%

o ;

— N = L
5 g an jmXo A

or x' = (g + pTIX' (1.32)
o o

where TB = MB/LSiS the residence time of reboiler and for the sake of



cassume T = T
symmetry we a B &

MB is the capacitance of the reboiler which is a constant provided the
level keeps stable.

Laplace transforming p.d.e (1.30) in s with respect to n get:
pT

2 = . _ g L
(s~ Pyy ~ 8 Y, ~ Y, = g; [V/s o fe /(S—pTR)J (1.33)

5 -2NpT |

bl !_‘r-_:S - =
(s - plx -85 x! - x| v, [ccV/S Le /(s pTQ)]

The Laplace transform of Equations (1.31) and (1.32) is:-

o
1l

+
(e pT) ¥,

W
1l

(g + pT)X(') (1.34)

Substituting (1.34) into (1.33) to eliminate yo.

2 - Q , pTﬁ
(s -ply - (s +¢ +pDy_== |v/s -a e /(s) +pT,) |
o v o &
r (1.35)
b - & —2NpT£
- Ve + -+ ' = — - -
(s P X (s £ pT)xO vrj a v/s L e /(s PTE)
Rearranging both sides of (1.35)
:ePe
5 . =)
S #* g & pF (s v o4 O
y==—3 _— ¥, 7y 2 2
s -p r {s(s - p) (s + pTQ)(s i)
=-2N
. o T (1.36)
w1 =3 +e+pT 2, . c [ av o =
2 o vV 2 2
s =-p r s(s -p) (s - pTR)is -p)
Inverse Laplace transforming (1.36) into n domain leads to:
Yy = [cosh /E-n + E*pT sinh /E-n] ¥ oo S‘~z-[l = cosh/g—n]
n /B @ V. P
pT
a-L pTe & pT
+ %~ = e (n l)pT2+ ——%§7-sinh /E-n -e Qcosh/ghn}
¥ p-p T2
(1.37)
+
xé = [cosh /E-n 4 £ Bl -sinh/g-n] xé - %— %E [l - cosh/g n]
/o -2NpT, ¥k
L -(2N-n)pT_  pT e -2NpT
.- L A it sinhvp n ~-e JECDSI’)/E n
v 2 VD
r p-p T

(1.38)



Now turning the attention to the feed boundary condition. We first
take the partial mass-flow balance of the stage just above the feed

point.

d
FY + L X -LX +V'Y' -V == X
P N-1 N-1 N N N N NYN dt{MN N)

For the small sinusoidal perturbation the above equation becomes:
i

I + X - L x - X +Vy' +vy' -V , - VY = M3 + Gem. X
YAn-1 T Ino1tn-1T TN T WO I T Vi T VN N JuXy T Il

si i = L an = it Z
Using relations VS e d XN Yy reduces to

-y ) - jux M

vV {xl - + 'V
r( yN) r(yNHl N N

N

= + 5 X -v(Yr -Y) -
Ly *+ Jumd Xy = v¥L = ¥ - & 1%

(1.39)
According to the equation (1.7) we have
+ A =
£N Jum EN—l
and substituting it into equation (1.39) then using Taylor theorem the

equation (1.39) reduces to

The above equation can be further reduced by using relations (1.28) and

(1.29)
a+1 ~(N-1)pT,

Y c
| - - i = —_— —_— -
*n T YN T ¥y T Py v, [ 7 Vool e (140}

Applying similar method to the stage just below the feed point can get

similar equation
a1 “NpT

[ov - —— b= 2] (1.41)

L

I

L

=2

}

e

X

]
<0

Differentiating equation (1.37) and (1.38) and replacing n by N so that

E t v d x':
o ge YN an XN



v. = [/E-sinh/gﬁ + (E+pT) cosh/ENJyo + %—. EJE-sinh/E_N

N r P
al -—(N-l)pT pT PT
2 2
+ g. wﬂﬁa_i.[_pTEe . + p'I'2 = cosh/E.N - /E-e sinh/gﬁ]
r¥r p-p T
(1.42)
k& = [/E'Sinh/gﬁ + (g+pT) cosh/ﬁﬁ] xé + g—' gg'/E-Sinh /E_N
r
) ~-NpT -2NpT -2NpT
2 — ')
3 g. g 5 [pTge E pT, © . cosh/pN - V5e sinh/gﬁ]
¥ p-p TQ
(1.43)
1.4 Solution
Now substituting (1.37), (1.42) and (1.38), (1.43) into (1.40) and (1.41)

respectively can yield the expressions of B and xé, but it will be very
complicated and some notations must be introduced so that to make the

results brief.

bx’

(6]

[asrs + o) v,

=
g
1

((p1g + 0] =l + 9, 2 2+, v (1.44)
where

— + pT
¢ = coshy/p N + E——:gl— sinh vp N
Vp

p' = /5 sinhv/p N + (e +pT) cosh YpN

= [(1 + 2T2 T )a _(N_l)pTR - Q-NpTg +
8y = P g =P 5lhe .
pT pT
+ a(l+p)e 2( g——ﬁsinh /E-N - cosh /S N)
p

pT
+ oe 2.(pT2cosh /EN - /E'sinh VE_N) +

—ZNpT
pT 2 2
L e L (&—fsinh vp N + cosh /E-N)J/ (p - p TE)

%



=0 [
4, =[/p sinh/pN - (14p-a) (1-cosh/pn) +a%l p] /o

~NpT —(N—l)pTR pT2

¢3 = [(l+p+pT£)é ¢ - oe +oe
PTR
-(cosh/gﬁ = 51nhV5-N)
43
~2NpT -2NpT
T
- (l4pe .(eplﬂsinhfgﬁ + cosh/oN) -e £ \
;p.
(pT, coshVpN + vp sinhv/p N)
-NpT
o+l 2 2 2 2 2
- (pp T, )e ]/(P - P T
¢4 = [(l—a—ap)(l—cosh/g N) + o/p sinh /p N + apJ/p

The final expressions of ¥ and x' are:
o

A=GF (1.45)
where : .
v,
A = is the composition vector
xl
©)
()
2o C
F = e 6- is the flow vector
VJ f o
-1
- (1+4p) - ¢ (¢l 4,
G )
- - &
¢ (1+p) $=9 by b,

G is called the transfer function matrix or T.F.M. for short

The results are very tedious, but when either p or TE leads to zero it will
..pT
L

be the same as those in reference [lJ. In fact, the factor e leads to

1 as pTﬁ “ 0, and in this case the T.F.M. can be reduced to diagonal form

just the same as the results in reference |l|.



_ll__
If we define
y - xé v + 8 &
0= o} SHA D = o] c
1 \Y
y + x v - 4 r
o o o
g' g'
Gr= ( 11 12
] i
921 92

] e N + - -
9'11 = 0-3(gyy Y9y, T 9y T 9y,)

i — ; - e =
9’12 T 920915 T 911 T 9y T 9y
(1.46)
; = 0.5 + + +
9 (911 * 915 ¥ 95 + 9y))
! = 3 - e +
9'9p = 020915 791 T 9y F9y,)
where :
gll'ng'ng and g,, are the elements of matrix G.
As pT =0, g =-g and g = ey
Then we can write: L 4l B 1k
Q0 =G"D (1.47)
In the case of pTﬁ = 0. g'12 = g’21 = 0 i.e. the matrix G' is diagcnal,
and the elements of this diagonal matrix are:
2
g'll = (gN + eN + 0.5e)/(2eN + o + 1)
9y, = [(a+1)N + 0.5(3a + 1)] /e (1.48)

These results are all the same as those in reference |l|
In general case G' is not a diagonal matrix and the off-diagonal elements
are not negligible.

CONTROLLER DESIGN

To design the forward-path controller, the 'dyadic Expansion' method|3|

is used here. The important feature of this metod is that it enables
systematic compensation of characteristic loci by independent choice of
proper scalar transfer functions of the controller.

2.1 Dyadic Approximation of Systems

As distillation columns systems are of quite complicated structures,

it is difficult to get a dyadic approximation form by means of analysis.



o e
Therefore, choose an interesting high fregquency wl, for example 0.2,
(it is high enough because their corner frequencies about equal to
0.065) and write

Gliw.) = A, + i A

1 1 2
Where Al and A2 are real 2x2 matricies. for wl = 0.2
[-0.441 0.345 [—3.463 3.337
A, = 2, = '
L—2.764 0.398 l—2.27l 3.695

: ; g ; -1 ;
It is easy to prove that if Al is nonsingular and A_A has a nonsingular

271
eigenvector matrix W and eigenvalues Aj’ j = 1,2 then
Gliw,) = w diag{l + ilj}W_lAl (2.1)
i.e. G(p) can be transformed into diagonal form by W and W_lAl in
p = iw, point
i 1
When wl = 0;2 W =
34.79 1.108
, =1
Define H(p,ml) =W (wl}G(p)U{wl) (2.2)

~ (—14.8 0.005]
where U{wl} = A W=

l—ls.e 2.818J =02

According to continuity, H(p,ml) is of approximately diagonal form

over the range of frequencies in the wvicinity of wl. The wvalidity of this
approximation can be investigated by obtaining the plot of gj(im,ml) (the

diagonal terms of H(iw,ml) and superimposing the Gershgorin circles with

radii

(Lw,w,) | (2.3)

'Y-(—imlw ) = |H
L :
1 L#3

L3

in it.
Sometimes, the range of frequencies may appear to be small, but it

can be improvedby scaling the rows of H(im,ml), i.e. write



w TG e

G(p) = E?diag{u.}diag{—i} H(p,w }W_lA (2.4)
J uj i} 1

1
and regard diag{a—} H(p,wl) as H(p,ml)

J
5 [1 o?
In our case, choose diag {Gﬂﬂ = 1] - and their plots are shown
j lo 1EJ

in Fig. 6.

It can be seen from Fig. 6 that fractional error is less than 0.5

\

over the range of frequencies 0.05 - 1.0. This is wide enough for controller

design purpcses.

2.2 Controller Design

Set the forward-path controller to be of the form
-1 . . Lo
K(p) = K(p,w,) = A, W diag {k,(p,w. )} diag{—}w (2. 5)
i 1 il 1 . u,
j=1,2 J
Where kj(p,wl) are proper scalar minimum-phase compensation elements.
Forward-path transfer function matrix is

G(p)K(p) =w diag{u,ldiag {—E&H(p,w Ydiag{k. (p,w )}diag{—i%w”l
J uj 1 ] 15 uj

(2.6)

The closed-loop transfer function matrix is

H_(p) = {1, + G(p) X(®)} G(p)K(p)

2
g.k.
JUR - il g p Lyl
W diag {uj}dlag{figgig}dlag{uj}W (2.7)

(by neglecting the off-diagonal terms in H(p,wl))

so
gl
P TE -1
Hc(p) = § diag {l+gjkj }w

(2.8)

Choose kj(p,wl) such that

1) Closed-loop system is stable and gjkj have the desired gain and

phase margins.

2) glkl = g2k2 over the frequency range of interest (in order to

reduce their interaction).



- 14 -
Through a lot of computing, the final diag{kj(p,wl)} choice is

(2 o)
diag{kj(p,wl)} =
0 -1.2(1+10p)

The plots of gj(im'ml)kj(iw'wl) are shown in Fig. 7. Their Gershgorin

Circles are superimposed in the same Fig. 7. The plots and their |
Gershgorin Circles do not encircle (-1,0) point, so the closed-loop

: 3 \ ; 5
system is stable.l ’ Furthermore, the phase margin and gain margin are

the phase margin is 145°

62O and 3.9.respectively for glk For g2k2,

1
and the gain margin is infinity.

The controller transfer function matrix is

2 0 1 o]
i =i
K(p) = Allw W
1
l -1.2 {1410 —;J
0 ( ) 0 o
0.976 - 0.006p -0.881
(2.9)
©.678 — 35p =0.916 + O.lp

3.3 Investigation of interaction

At high frequency, for example, 0.1 < » < 0.3, it can be seen from
Fig. 7 that

gl(lm,wl)kl{lm,ml) = g2(1w,ml)k2(1m,wl)

Then from (2.8) we can write closed-loocp T.F.M. as

g (iw,wl)kl(iw,ml)

gl

ol
l+gl(iw,wl)kl(im,wl) I2 (2.10)

Hc(p):

This formula roughly indicates that interaction effects are small over the
frequency range of 0.1 - 0.3.

At very low frequencies, we use the decomposition



= P e

-1
H,(p) = {I, + 0@} "0(p)

2

q. (p)
] } V(p) (2.11)

¥ g diag{
P37 4,0

Where qj are eignevalues of Q(p), and V(p) is eigenvector matrix of 2(p)

For our system, when yp = 0.0l

_ ol 4.6-0.781
H (p) =V "(p) 1+(4.6-0.781) 0 | V(p) (2.12)

0 12.28 = 16.361
1+(12.28-16.361)

.

Lo |qj| B TECAER - - )

That means the interaction effects are also small when O < w < 0.0l.
Of course, interaction effects still exist. Exact decoupling controller
design requires special study.

2.4 Compare with T2 = 0O case

The forward-path controller can be designed by some way for T2 = 0 case.

For simplicity, we discuss proportional control only. 1In T2 = O case,

controller can have very high gain and closed-loop system is still stable.

For example when
46.5 -46.3

K(p) the plots of gj(iw,ml)kj(im,wl) are shown

46.3 -45.5
in Fig. 8.
2.92 -2.64
But for T = 0,2 case . When K = ; closed-loop
. .73 =398
system is near unstable. The plots are shown in Fig. 9.
|l| pointed, when Tg = 0, plant can be regarded as first-order type
systems, i.e. its T.F.M. can be written as

G(p) = {ap + ayt (2.13)

where AO and A are constant matrices.
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In |3 , Owens points out that, for first-order type systems, if we choose

a forward-path controller K(p) = k Ao - A.then one can easily prove that the
system is asymptotically stable if and only if k>0. This means one can set
the gain value arbitrarily large. The above example illustrates however
that, when time delay is present, the gain must not be set too high. 1In
other words, time delay can cause instability even when occuring in conjunc-
tion with first order type systems.

Discussion and Conclusion:

Although the T.F.M. has a very complicated form, the Bode diagrams
show that the dynamic characteristics of all elements of T.F.M. is very
near to first order lag (Fig. 4), and the fact that their phase lags exceed
90O shows this system to be non-minimum phase. A better way to approximate
the system is therefore to use a first order lag in series with a dead
time lag. For the sake of comparison, Fig. 4 shows the Bode diagrams for
both systems with and without hydraulic delay makes negligible difference
to the elements of T.F.M. with the exception of 95y whose phase angle at
high frequency shows big difference increasing with frequency. This change
of phase angle can be expressed as the difference of dead time, as
following:
éﬂT.p

lg,. | = k.|g,,|
21 21
TR > 0 T,Q.

where: AT is the difference of dead time between Tg > 0 and T2 =0

p is Laplace operator.
Using Least Square Method at Tl = 0.2 and within the frequency range from
0.0001 to 1.0 gets the results as follows:
k =1.0 ; At = 3.76 = 0.2 % 20

and the error is very little.
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These results show that the hydraulic delay mainly effects the dead time
of elements g2l of T.F.M.
From the technological point of view, gll is the response of top
omposition yo to reflux 20 and because the reflux point is very near to
the distillate point, the hydraulic delay only has a small influence
on g4 while 991 is the response of bottom composition xé to reflux %o
and there are (2N+1) stages between reflux point and bottom so the influence
of hydraulic delay is obvious. Similarly, for gl2 and Iop because
it is assumed that the vapour flow involves no time delay, they are inde-
pendent of hydraulic delay, and from the above discussion, we can
reasonably suppose that if the vapour hydraulic delay is taken into account,
it will mainly influence the dead time of 912 of T.FWM.
The forward-path controller is designed using ' Dyadic Expansion Method'
This paper also demonstrates that hydraulic delay has an obvious influence
on system stability and controller design. Dead time lag can cause
instability when it occurs in conjunction even with first order type systems.
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