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Abstract

Controller design for scalar or multivariable systems whose models
are unknown or highly complex are frequently based in practice upon the
use of a highly simplified approximate plant model. In such circumstances
it is vital to be able to quantify the degree of uncertainty to be expected
from the use of such a model for prediction of closed-loop characteristics.
It is shown how frequency-domain design techniques can be simply extended
to incorporate information deduced from the observed differences between
open-loop plant and approximate model step response to quantify this uncer-
tainty and, in particular, to guarantee closed-loop stability and tracking
of step demands. A modificiation of this analysis also yields the possibility
of bounding the error in prediction of closed-loop transient performance.
The approaches are all graphical in nature and are easily implemented in

an interactive computer-aided-design mode.



Introduction

Closed-loop control systems design in practice makes frequent and
deliberate use of approximate plant models either because the available
model is regarded as being too complex for design work or because it is
known to possess both structural and data uncertainties or simply because
an accurate plant model is not available. An approximate model can be
of arbitrary dynamic complexity ranging from, for example, a simple

1 (2)

[
dead-time or first order model as considered by Astrom( and Owens
respectively to more complex models deduced from identification experiments(3)
or by analytic modelling techniques(4’5). In general however, it is

desirable that the model is low order with the consequent benefits of

reduced computational requirements and the possibility of achieving

simple, easily comprehended 'pencil and paper' designs(l' ) to form the
basis for further refinement and understanding.

Classically allowance for modelling uncertainties has been attempted
by ensuring adequate gain and phase margins for the approximate model in
the frequency domain. It would clearly be advantageous, however, to be
able to éssess the effect of modelling errors in a more precise manner
and, in particular, to be able to confidently assess both the stability
and transient performance of the implemented feedback scheme in terms of
the closed-loop dynamics of the approximate model. This problem is the
subject of this paper. The concepts used are similar to those underlying
the developing methods of robust stability theory (see eg. refs. (6),(7))

where modelling errors are regarded as being unstructured and characterised

in the frequency domain by (assumed known) upper bounds on the singular

values (i.e. 'multivariable gains') of the modelling error transfer func-
tion matrix at each frequency. Stability is then assessed by using these
error bounds in graphical Stability criteria. In contrast to this work we

concentrate on the situation where the step response of the plant is




[

reliably known and hence the modelling erros are well-known (i.e.

structured) and characterized in the time-domain in terms of graphical
properties of the error between the unit step responses of the plant and
its approximate model. In this sense the paper is in the same spirit on

(1) (8)

the work of astrom and a previous paper by the authors . We consider
here however, the more general case with the added bonus that a time-

domain characterization of modelling errors generates an easily used
graphical stability criterion together with graphical bounds on the deterio-
ration in predicted closed-loop transient performance. Although the derived
techniques require only graphical frequency response analysis and simulation
calculations for implementation,the proofs of the underlying theorems
require the use of functional analytic techniques similar to those found

in nonlinear systems analysis as discussed by, for example, Holtzmann .
Vidyasagar(lo) and Harris et al(ll) and in textbooks on numerical analysis(lZ'lB)
In order to focus attention on the basic concepts and application of the
ideas, the presentation is deliberately fairly informal with proofs only
outlined. Detailed proofs can be found in refs. (14), (15).

The frequency domain version of the‘theory is described in section 2
with particular emphasis on the use of non-interacting system models where
the technigues have an intepretation in terms of 'smudging' of inverse
Nyquist array(l6“19) plots based on error bounds deduced from graphical
analysis of step response data. The widths of the resultant 'confidence
bands' are related monotonically to the magnitude of the time-domain
modelling error and should be regarded as design parameters in the sense
that the design engineer has the option of choosing an accurate model to
reduce uncertainty at the expense of design complexity or of accepting a
highly simplified model (with consequent simplicity in the design process)

but a degree of conservation in the design. Stability assessment in the

time-domain using simulation data alone is described in section 3 and



used to generate easily computed graphical bounds on performance deterio-

ration due to the modelling approximations.

Finally, note that the techniquesdescribed require only a knowledge
of a plant step response obtained from any source. They can hence be
applied using step test data from a plant with unknown model in a similar
manner to ref (1), (2).

Frequency Domain Design based on Approximate Models

We consider an ﬂ—input/m—output, linear system G with output
measurements generated from an m-input/m-output linear transducer F and the
problem of the design of an m-input/{-output linear forward path controller
K to ensure the stability and acceptable dynamic characteristics of the
feedback system of Fig. 1l(a). 2All elements are continuous and linear, F
is known, K is to be designed and G is either unknown or is regarded as
unnecessarily or inconveniently complex for the design exercise under

(2)

\
(=] l ‘
consideration. Following Astrom( ) and previous work of the authors i }

assume that for each pair of indices ( i,j), the response Yij(t) from zero

o o s JEh ; ; Nl E

initial conditions of the i output to a unit step in the j input has
been reliably estimated from plant trials or simulations with an available
complex model. It is convenient to collect this data together in the plant

'step-response matrix'

¥(E) = (Y () . . . .Y (£)] , £2o0

Given the data Y(t), suppose that an approximate model GA of the plant
of desired simplicity is devised with a step response matrix YA(t)' Although
the theory to follow trivially covers the choice GA = G (and hence Y, = ¥)

obtained by exact identification of G and Y, we will concentrate on the



more interesting case of GA £ Gg. This assunption more closely describes

the practical situation where the design engineer wishes to use an approxi-

mate model to simplify conceptual and computational design problems. It is

also consistent with the generdl observation that, although a real plant

G (containing possibly series and feedback delays and other complex

dynamic effects) can be accurately represented by a model GA of the form

typically used in engineering practice, the representation is rarely exact. |

This is very important if the model GA is to be used for feedback controller

design when we remember that small open-loop modelling errors can lead to

large errors in prediction of closed-loop stability and performance.
Suppose that the model GA is used to design a controller K to meet

the required closed-loop stability and performance specifications applied

to the approximating feedback system of Fig. 1(b). The problem now consi-

dered is how the 'error function®

_ A ) _ (1)
E(t) = ¥(t) ~ ¥, (8) = [E7(t),...,E

with columns E(j)(t), 1l £3j £ %, can be used during the design exercise
with the approximate system to guarantee the stability of the real implemented
scheme shown in Fig. 1{(a).

It is.assumed that both G and GA can be described by input-output

relations of the convolution from(lo),
t t
y(£) = [ H(eDule-t)dt' , v, (8) = [ H (£') ult-t")at’ (3)
o Q

where the impulse response matrices H and HA have well-defined Laplace
transforms. This assumption covers the use of rational transfer function
matrix and state-space systems, but also admits, for example, some distri-
buted systems with time-delays.

Finally, throught the paper, it is assumed that the modelling error



A
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G-—GA is stable. Formally we write this as a requirement that
[ s - H, (t) | |m dt < + © (4)
o
and hence, noting that
L t
v(t) = [ m(enar' , v(0) = [ H (£ dt’ , (5)
o o
\
that, for all t 2z o,
el 54 Jew - e || <2 (6)
(Note: ||.l|m = max z |(.}ij| is the matrix norm induced by the vector norm

i 3
||.||m = maxl(.)i| in Cm). This clearly requires the error E(t) to be bounded
i
or, equivalently, that both G and GA are open-loop input-output stable in the
L_ sense or that GA models the 'unstable past' of G exactly.

Frequency Domain Stability Theory

0
If-the controller K successfully stabilizes the model GA we must have(l )

laet (1. + ¢ (s)k(s)F(s)) | 2 @ Re s >0 (7)
m A

form some real o > o. Clearly K will . also stabilize the real plant G if
laet (I + G(s)K(s)F(s)) | 28 Res >o (8)

form some real B > o. Using the identity |Im + M_.M | = II2 + M2M valid

™ |

for any mx ¢ matrix Ml and f xm matrix M2, it is easily verified that

det(Im + GKF) = det (Ig + KFG)

=1
det(I£'+ KFGA) det(I2 + (I2 + KFGA) KF(G—GA))

1

_ -1
det(Im + GAKF) det (IE e (12 + KFGA) KF(G—GA}) ()

and hence the following simple result similar to those used in robustness

(6,7) {11)

theory and nonlinear stability theory .
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Lemma 1l: If K stabilizes the model GA' it will also stabilize the real

plant G if

(a) the composite system GKF is both controllable and observable,

and (b) sup y(s) < 1 (10)
S€D

where D is the usual Nyquist 'infinite' semi-circle in the closed-right-

half complex plane, y(s) is any available real-valued function satisfying

y(s) » r(L(s)) for all seD , (11)
and L(s) is the ¢x¢ transfer function matrix

A .
L(s) = (IR + K(s)F(s)GA(s)) K(s)F(s)(G(s)-GA(S)) (12)

(Note: the spectral radius r(M) of an gx{ matrix M with eigenvalues ml,

. (12,13)
Myreees 0 is

r(M) = max |m, | ) (13)
l<i<yp
Proof: The controllability and observability assumptions ensure that input/
output stability implies asymptotic stability. Note also that L(s) is
analytic in Re s > o and hence this region can be replaced by the Nyquist
D—contourrin both (7) and (8). Eguation (10) ensures that
JdEt(I + L(S))l > B/a for all s on D and some B > o and the result follows

i)
by noting that (8) follows from (7) and (9).

Note that this result is a sufficient condition based on the single
numerical measure y of the effect of errors and hence, in general, contains
a degree of conservatism in its predictions. This conservatism will inc-
rease depending upon our choice of y(s)! The best that we can hope to

achieve is to computeG(s) - (s) for s& D by taking the numerical Fourier

GA
transform of E(t), to hence evaluate L(s) 'exactly' for s& D and to choose

y(s) = r(L(s)). For the purposes of this paper however, we will reject this
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e 1 2
possibility and adopt the philosophy of Astrom( ) and the authors( +8)

by insisting that our choice of Yinvolves only computations that are
simple, robust and preferably graphical in nature even at the expense

of increased conservatism Any increased conservatism is not regarded
as a problem here as, if the condition (10) of the lemma is violated, it
is always possible to retrieve the situation by using the step data Y(t)
to construct a more accurate model. The existence of a suitable model
is trivially verified by noting that L(s) = O if we choose GA = G and
that (10) holds with Yis) = r(L(s)).

The Choice of Y(s)

(6,7)

In frequency-domain based robust control analyses , it is typical

to choose Y(s) = E((I + K(S)F(S)GA(S))-lK(S)F(S)) Qa(s) where ga(s) is

L
assumed known on the D-contour and satisfies Qa(s)> EXG(S)—GA(S)) for

i 6
all s on D. The notation o (M) denotes the largest singular value( ) of
a sguare matrix M i.e. the positive square root of the spectral radius of

*
M M. In this section however we concentrate on bounds that are easily

computed from the time-domain data E(t).

x 12,13
It is convenient to introduce the partial ordering( o13) 1 ¥ n,
matrices by the relation
A< B iff A . < B,. for all (4ij) (14)
- i] — 1]
and define the 'absolute value' of an nl X n2 matrix to be the nl X n2
real matrix
r 3
A A
[ &4 |2,
s o 2
= N ‘ (15)
14,
la, o - - lnlnzl

The importance of this construction lies in its 'norm-like' properties

1]l > o ae)
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||aA|lp = Iu‘ E ||A[|P for all complex scalars o {1L7)
A+ B Jlali_ + ||B] 118
a +sll, <llali, + [In]], )
AB < ||a |B (10
[aal |, < [1all, [Isl], 19
and its use in bounding of spectral radii using the relations
o< |lall, =B or@ <xd|ali) < x®) (20)
deduced from theorem 2.4.9 in ref. (12). 1In fact, relations (16) (12} and
(20) immediately yield the following important result:
Theorem 1l: The conclusions of lemma 1 hold true with y satisfying
y(s) > r(i(s)) for all s & D (21)
where
L(s) = || (1, +k(s)F(s)G,(s)) " R(s)F(s) | [ (s) (22)
and A(s) is any available matrix-valued function satisfying
A(s) > || (c(s) - GA(S)HP for all sE D (23)

The result is an applicable stability criterion in its own right given
an available bound A(s). Note that (23) can be written in the form Aij(s)z
|(G(s) - GA(S))ij| and hence that Aij is any available upper bound on the
gain of the modelling error of the (i,j) element of G. It clearly therefore
has an interpretation in terms of robust control similar to those in ref (6)
but with spectral radii of absolute-values of matrices replacing their
maximum singular.values. Note that this framework is not necessarily more
conservative than robust stability techniques as examples are easily con-

structed of matrices M such that r(||M||P) < o(M). TIndeed, this framework

may be more convenient as the modelling error A(s) is constructed by



bounding the individual errors in G - GAI This is particularly important
in our development where we wish to relate A(s) to the time response data
E(t).

Remembering our philosophy of computational simplicity and the fact that
any increased conservatism in the stability criterion can be offset by
choosing a more accurate plant model, we concentrate in this paper on the

construction of the simplest possible choice of A i.e. a frequemncy-independent

bound. Using the identity

G(s) - G, (s) = [ (H(t) - HA(t))e_Stdt (24)
(o]

the following result is easily proved by considering elements:

Proposition 1:

fee]

e -6 sl < fo || ) - B, (0[] at

for all Re s > o (25)

Clearly the right-hand-side of (25) is a constant candidate for A(s). It is
particularly useful for time-domain studies as its value can be deduced by
visual inspection of the elements of the error E(t) and application of the

following result proved in Appendix 7.

Proposition 2: If<g€EILl(O,T) , d is a real scalar and
T
A
£(t) =d + [ g(t")at' (26)
o

is bounded and continuous on the infinite open interval o < t < + = with
local maxima or minima at times tl < t2< .... satisfying sup tj = + o«
in the extended half-line t > o. Then, taking to = 0. we have

T

lal + [ |g(t)|at = n_(£) (27)
O



&

where

and

*

NT(f)

N (f)

_lo.-.

*

i

K
| £ (o) | +k£l [£ee) - e, D]+ £ - £g 0] (28)

sup N, (£f) (29)
T>0

where k is the largest integer k such that tk < T |

(Notes: (i)

(11)

(iii)

(iv)

(v)

NT{f) is simply the norm of f regarded as a function of bounded
.. (20) :

variation on the half-open interval 0 < t St

for each.f, NT(f) is monotonically increasing and continuous

as a function of T so that Nm(f} can be obtained as the limit

as T » + o of NT(f).

NT(f) is easily computed from graphical inspection of f£(t)

in the manner illustrated in Fig. 2.
. . (14)

Noting that |N_(f) - N, (£)| + 0as T+ » it follows that

Nm(f) can be accurately estimated using data on a long enough

time interval o < t < T. On such an interval continuity of

NT(f) as a function of the stationary points tl,t2,... also
s o (14) T E o ; .
indicates that it is insensitive to errors in their
estimation.

If £(t) is contaminated by noise n(t), NT(f) must be evaluated
by inspection of f(t) + n(t). If however, the signal to noise
ratio is sufficiently large, the stationary points of f(t) can
be estimated fairly accurately by visual smoothing of the
recorded response f+n. Clearly, together with (iv), we must
conclude that estimation of N_(f) is a robust operation in

many practical situations).
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The importance of proposition 2 lies in its application to the error
t
E(t) = f (H(t‘)—HA(t'}dt'. More precisely, applying the result to the
(a]
elements of E(t), defining

rItJT(Ell) IR I?TT(EILR) |
My o8 = : (30)
|
NyE D ﬁT(Emg)J
and using proposition 1 yields the important result.
Lemma 2:
||G(s) = GA(S)||P f'Nz(E) , for all Re s > © (31)

A Stability Criterion based on Approximate Models

The following result follows directly from the discussion in Section
2.2 by choosing A(s) = Nz(E) in theorem 1 and represents a substantial

generalization of theorem 1 in ref. (8).

Theorem 2: If K stabilizes the model GA' it will also stabilize the real
plant G if
(a) the composite system GKF is both controllable and observable and

(B A £ sup y(s) <1 (31)
s€eD

where y(s) is any convenient real-valued function satisfying

v($) > (|| (@, + K(9)IF()8, () Tx(s)F(s)) || A (B))

for all s € D (32)

The application of the result proceeds by verification of the conditions
of the theorem and could proceed in a similar manner to the techniques of

ref (8):



Step 1:

Step 2:

Step 3:

Step 4:

Step 5

- 12 -
Obtain the plant step response matrix Y(t) from plant trials or
from simulations using an available plant model.
Choose an approximate plant model GA with the property that G—GA
is stable in the input/output sense. If the plant G is stable (the
most common case) this reduces to ensuring that GA is stable.

P
Calculate YA{t), E(t) and hence estimate Nw(E).

Design the controller K for GA' by any means available, to obtain
the required stability and perfdrmance characteristics from the
approximating feedback system.

Construct a convenient bound y(s) for the spectral radius of

-1
|[(x + xFG,)

KF}IP Ni(E) on the D contour and check the wvalidity
of (31l)at a selection of frequency points covering the bandwidth
of interest. If AO > 1, the given approximate model is not accurate
enough to provide stability predictions for the implemented scheme.
Return to step 2 to construct a more accurate version, or reduce
control gains in an attempt to reduce ||(I + KFGA}_lKF|| p and
hence Ao(see section 2.5).
Check that GKF is both controllable and observable. As pointed out
in ref. (8), this problem requires some structural information
about the plant. If, for example, m = &, F(s) = Im' K(s) is a
proportional plus integral controller and the plant G is rational
it essentially reduces to the requirement that G(s) is controllable
and observable and has no zero at the origin of the complex plane.
This can be checked if the plant is stable by checking that lim ¥Y(t)
t>tco
is nonsingular. More generally the problem is more complex however!
If a plant model is available, it can be checked numerically but, if
a model of the plant is not available, the designer could rely on
the fact that controllability and observability are generic and

hence likely to be present. 1In all cases, the results guarantee

input/output stability however.
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Steps 1-3 represent the well-used practical approach to design. Steps
4 and 5 are the important additions derived in this paper. They are not
designed to produce direct insight into the design of K being present as a
means only of guaranteeing the stability of the implemented control scheme.
They can produce insight indirectly however, by releasing the simple model
GA as a vehicle for the design.

The choice of ydepends upon the simplicity of computation required by
the designer and the conservatism tolerable for the given model GA' There

are a large number of candidates e.g.

Y(s) = x(|| (T + K($)IF()G, (1) K($)F(s) || N (B)) (33a)
= P
y(s) = x(sup{|[ (I + KFG) kF| [, N (E)D) (33b)
s€eD
—1 P
y(s) = r({sup [[(I + KFG) ke || 1, () (33c)
seD

(Note: the supremum in (33b) and (33c) is interpreted with respect to the

partial ordering on the space of fx? matrices)

y(s) = a(|](x + K(S)F(S)GA{S))_lK(S)F(S}|lPNi(E)) (33d)
y(s) = || (|| (x # xFG )y || W @) ] (33e)
A P = m
-1 P
v(s) = || (1 + xFG)) KFHm @] (33f)

Note that (33a), (33d) required repeated eigenvalue calculation whereas (33e)
and (33f) avoid this complication. The choiceof (33b) or (33c) requires the
evaluation of the maxima of scalar frequency response with a single eigen-
value calculation.

Graphical Stability Criteria using Non-interacting Models

If m = ¢ and it is conjectured that plant interaction is, on physical

grounds, small enough to be neglected during the design, the conceptual
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and design simplicity of a non-interacting model GA make this possibility
very appealing. In such a case theorem 2 has a useful graphical inter-

: i ol : . ; (16-19)
pretation similar to that of the inverse Nyquist array technique

and ref (8). The result applies directly to the single-input/single-output

case by settingm = 2 = 1.

Theorem 3: The conclusions of theorem 2 are valid if m = &, GA' K and F
are diagonal (non-interacting) systems and (31) is replaced by the conditions

(i) the inequality

Kkk(S)Fk (s)

. K 1
lim sup < — (34)
F
Res>o L+ Ky (8)F, (8) (G, (0], ? i
|5| Rl j=1 k3

is satisfied for 1 < k < m and,

{(ii) the ‘'confidence bands' generated by plotting the inverse Nyquist

locus of (G 1<k <mfor s = iw, w > o with superimposed

A)kkKkkak'

'confidence circles' at each point of radius

A -1, v '
r, (iw) = | (6, () ] 'Zl N, (B ) (35)
does not contain or touch the (-1,0) point of the complex plane.
(Note: (1) A graphical interpretation of condition (ii) is given in Fig. 3.
(2) The radii of the confidence circles are 'proportiocnal' to the
total variation of the modelling error E(t) and are zero if the
model is exact. They increase as the chosen modelling error
increases in the time-domain. If they are so large as to violate
condition (ii), an improvement is always possible by using a

more accurate model).



w 45, —

Proof: Applying theorem 2 with y given by (33e) yields (34) by considering
the 'infinite semi-circular' part of D. The imaginary axis component then
requires that

N_(E L) (36)

kk kj

Il 13

. y ; -1 =1

+ K i
|1+ (6, o))y, K, Hw)F, (i) 7] > | (G, () |
j=1
for ~» < @ <+~ and 1 < k < m. This is simply condition (ii) as the contri-

bution from the negative imaginary axis is simply the complex conjugate of

that from the positive imaginary axis. The result is hence proved.

Discussion and Robustness Analysis

The application of the results described above is illustrated on the

next section and is similar to that described in ref. (8). It is not possible

to make any more precise statements unless specific forms of model and/or
controller are assumed. For example, if integral action is not included in
K, the following result indicates that all the preceeding theorems are of

the 'low-gain' type(21):

Proposition 3: If G, GA' K and F are stable, then the conditions of theorems
T 3

1 - 3 are satisfied for all controllers K of low-enough gain.

'"Proof': G - GA is stable, all stable low-gain controllers will stabilize

a stable plant and it is trivially verified that y(s) -+ O as the control

. f )
gains become small.

If integral action is included however, the controller has high low-
frequency gains. In such a case the above arguments fail. The following
result indicates that the possibility of including integral action is
related to the magnitude of the modelling error and the steady state per-

formance of the model GA:
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Proposition 4: ILet m = ¢ and G, GA' F and sK(s) be stable, GA have no zero

at the point s = o and lim sK(s) be finite and nonsingular. Then a
| 5[
necessary condition for the existence of a function y satisfying (31) is

that

r(I!G;l(o)IIPNz(E)) &1 (37)

(Note: The condition on K(s) represents many practical situations e.g.

the choice of K(s) = Kl + s—lK2 with K2 nonsingular) .

Proof; Simply let s + o in (32) and use (31) to require that y(o) < 1.

Next, we note that designs based on the results are robust in the
sense that, if the plant G changes over a period of time to a new plant
G with step response matrix ?, stability of the implemented scheme will
be retained pravided G - G is 'small enough'. This is cbvious from the
observation that 'small' changes in E produce 'small' change in N:(E) and
hence in the spectral radius in (32). A useful computable measure of the
permissible G - G is not obtainable for -all choices of Y. Suppose therefore
that (33f) is used. The following result follows from the observation that
Ni(§”YA) ﬁ_Nz{i—Y) + Ni(E) using an argument similar to that used in

Proposition 7 of ref. (8).

Proposition 5: If the conditions of theorem 2 hold with y given by (33f)

then the controller K will also stabilize all plants G such that G - G is

stable, GKF is both controllable and observable and

]|NP(§—Y)|| L= &y
o i 2 - (38)
zzg ||(x + xre) “xr||_
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Finally note that when E(t) is monotonic(B), it is trivially verified
that NE(E) = |IE(T)|[P and hence that qf(E) = flE&n)]IP. Choosing ¥ by (33e)
or (33f) then yields previously published results(B). The work described

here is a complete generalization of that case.

Illustrative Example

To illustrate the application of the above theory is an elementary but
representative situation, suppose that a single-input/single-ocutput plant'

has an unknown transfer function

. 4
G(s) =773 (39)

(s + 28 + 4) (s + 1)

and that plant step tests yield the step response Y(t) illustrated in Fig. 4(a).
Following a commonly used practice, visual inspection of this response can

be used to fit a delay-lag model of the form

e—s 0.6
Gy (8) =70 (40)
with step response again illustrated in Fig. 4(a). The error E =Y - Y is

A

P
clearly stable and shown in Fig. 4(b). The required parameter N (E) = Nm(E)

(as m = £ = 1) is obtained graphically by the procedure implicit in
Proposition 2 to be

P

N (E) = 0.45 (41)

The next step is the choice of a proportional plus integral unity
=1

feedback controller K for GA of the form K(s) = Kl + s KZ' Kl o o K2 ¥ B
Proposition 4 indicates that the model is capable of including integral

action as r ([|G;l(o)|lqu(E)) e |G;l(o)| Nf(E) = 0.45 < 1. A preliminary

gain bound is obtained by invoking condition (i) of thecrem 3 i.e.

lim
Res>o
|5 |+

‘ = x| = = 2.22 (42)
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(Note: Taking, for simplicity, the case of Kz = 0, the pessimism in this
result is seen by comparing (42) with the real stability rénge @] j_Kl < 3.5
As is seen below, this pessimism is not a practical problem in this case.
If it were however, we could remove it by attempting to obtain a better
model GA!). Consideration of G, leads to the choice of Kl =1 L@

A

K2 = 0.5 to stabilize GA and produce the acceptable closed-loop characteristic

\

indicated in Fig. 5. This choice clearly satisfies (42) and the inverse
Nyquist plot of GAKF = GAK with superimposed confidence circles shown in
Fig. 6 indicates that the (-1,0) point does not lie in or on the confidence
band. In fact all the conditions of theorem 3 are satisfied provided that
GK is both controllable and observable when we can conclude that the given
controller stabilizes the real plant (39). The only ways that this final
condition can be violated is (a) the plant G is uncontrollable and/or

unobservable (b) the plant has a zero at s = o or (c) the plant has a pole

at s = - K2/Kl = - 0.5 . If (a) holds then we can do nothing using control
action. Clearly (b) is not valid as lim Y(t) = 1 # O and even if (c¢) acci-
troo

dentally-did hold it simply means that the closed-loop system has a stable
uncontrollable and/or unobservable mode.

Finally, for comparative purposes, the closed-loop response of the
real feedback scheme ‘- is also shown on Fig. 5. The success of the design
is indicated by the similar stability and overall dynamic characteristics
and identical steady-states of the real and approximating feedback schemes.

Time Domain Techniques based on Approximate Models

The procedures outlined in section 2 have a striking similarity to
well-known classical procedures but suffer from the general problem of
frequency domain,K techniques i.e. it is difficult to make predictions about
the details of the closed-loop transient performance. In particular, it
is not possible to make confident predictions about the response charac-

teristics of the approximating feedback scheme except that it is stable,
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and, if integrators are present, tracks step demands exactly and

rejects constant disturbances. Any design technique capable of resolving
this problem must, intuitively, rely heavily on time-domain calculations.
The general form of such a design aid is described in this section(l4’15).

The use of time-domain data in stability assessment is unusual but it may

have a number of advantages over frequency domain calculations, particularly
in the multivariable case. For example, checking condition (31) can require
the calculation of the inverse of the 2x matrix I + KFGA at a large number

of frequency points. In contrast, the corresponding time-domain result

(see, for example, theorem 4) requires only system simulations and one eigen-
value calculation. Similar techniques can also be used to bound the transient

performance deterioration due to the approximation used.

Mathematical Background

The proofs of the results use an extended version of the contraction
. (9-13) ;
mapping theorem . Let X be a Banach space (we will take X = L (o,t)
. . . d th )
in the following sections) and X be the d Cartesian product of X regarded

: T
as the linear vector space of columns x = (xl;x2;...,§i) of elements of X.

P |
The absolute value of x& X is denoted

T d
[l lp = Al [yl D e R (43)
where ||.|| denotes the norm in X. If L is a bounded linear operator mapping
d d
X 2 into X J} it can be represented as the operator y = Lx with yi = zLijxj

1
and Lij bounded, linear operators in X. The absolute value of L is defined

to be

(
||Lll|| =t ||le||

el ], = : : (44)

g ol - -
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where ||.]| is the operator norm induced by the vector norm in X. It is
easily verified that y = Lu implies l’Y’|P4i ||L||P [Iuljp and that, if
||y||P < M [|u[|P for all u, then [!L![P_i M.

Iet W be a mapping of Xd into itself, then(lz) W is a global P-

contraction = if there exists a real dxd matrix P > O with the property

that r (P) < 1, and, for all x,vy & Xd,
(Wi - ww) ], < P ||xy]], (45)

For example, if W is the map x + Lx + xo with xO(E Xd and L linear and
bounded, W satisfies condition (45) with P = ||L|]P and hence is a P-
contraction if r{]{Ll‘P) < 1. However, if (45) holds for any other P, we have
||LIIP < P and hence r(I|L|IP) < r(P) < 1. Clearly the condition r(l’L|lP} ol
is both necessary and sufficient for W to be a P-contraction.

We now state a generalized contraction result (ref (12), p. 433):

(o) Xd,

, d
Lemma 3: ILet W be a global P-contraction in X . Then, for any x

(k+1) X(k)

the sequence x = W( ). k >0, converges to the unigue solution x of

. . d . ‘
the equation x = W(x) in X . Moreover, we have the error estimate

(1) (o)
- x |

= (1 -2 7' ||x

I|pi P

(Note: the proof in ref(9) is givenfor X = R but it carries through with
no change to an arbitrary Banach space. It also follows from Section 12.1

of ref (13)).

: . d ;
Taking norms in R~ yields the following result:

Corollary: If ||P|’rn < 1, then

(1) R (1) (o)
max i|x =x || « m max ||x - x || (47)
k Ok 1 -9 k K K
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To complete this section we concentrate on the case of X = Lm(o,t}
e!
and bounded linear convoluticns mappings L of X into itself. Suppose that

the elements of L (denoted Lij)'have the structure

tl

(L,.x. ) (t") =d_x (£ + [ g (t'-t")x, (t")at" (48)

1] 7] i} J o 1] ]

; ; (10) ;
then it is well known that Lij has induced norm
\
t
o} + 1 ]

eyl = laggl+ S lagycen fae (49)

in Lm(o,t), Comparing with Proposition 2 immediately yields the result:

ILemma 4: If L is a bounded linear convolution map of Li(o,t) into itself

with elements of the proper form (48), then, denoting the step response
brix of L b : s ith el t (R h L =N

matrix v Q(t') with elements Qij( ), we have || ij||m t(Qij)'

1 <ij < d, and hence I|L[|P = Ni(Q).

The value of this result lies in the ability to compute absolute values of
system operators from step response data with no need to use, or have
availlable, a detailed system model. This fact is exploited in the proof
of the following results.

Time Domain Stability Test

The following result is a time domain version of theorem 2 that replaces
the frequency response calculations of condition (b) of that result by a
single eigenvalue calculation based on simulation tests and the time-domain

data E(t). A proof is given in Appendix 8.

Theorem 4: Suppose that the controller K stabilizes the model GA and that

simulations are undertaken to reliably calculate the matrix
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(D 7))
woe) = (W), e, w0 (8] (50)

where W;J){t) is the response from zero initial conditions of the system

(T + KFGA)—lKF to the input vector E(])(t) defined by (2). Then the con-

troller K will stabilize the real plant G if
GKF .
{(a) the composite system/is both controllable and observable and

(b) the following inequality holds

; ; P
where y is any available upper bound for r(Nm(WA)).

The application of the result is computationally straightforward

involving only ¢ simulations of the known (and normally low-order) system

1 ; )
(I + KFGA) KF (interpreted as a feedback configuration with forward path

KF and feedback GA) in response to assumed known plant data E(]){t), 1 <3j<4§,

followed by graphical analysis of the responses to estimate the real,
constant matrix NE(W ) and calculation of its eigenvalues. If & = 1 then
the eigenvalue calculation is trivial and, even if & > 1, it can be
removed if it is possible to estimate an upper bound on the spectral radius
that satisfies (51).

The application of the result is illustrated in section 3.5. It is
useful at this stage to comment on the reliability of the calculations
required to check (51). If E(t) is known accurately (either because the
plant model G is known or because identification experiments have been
undertaken to estimate Y(t) reliably) then WA(t) {(and hence Ni{WA)) is
computed easily and accurately. If however, the available data E(t)
contains noise, so will WA(t) and some care most be taken as unthinking
calculation of the total variation leads (in theory) to infinite values.

In general it is probably best to filter noise from the step data before

undertaking these calculations. The only situation where this can be
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avoided has been discussed inno.te (v) following proposition 2 i.e.
the situation where the signal to noise ratio is good enocugh to allow
visual smoothing of the data.

Performance Assessment: The general case

In general it is unfortunately true that stability and transient
performance of the approximating scheme does not necessarily imply acceptable
transient performance of the implemented scheme. During the design of K for
GA' it is assumed that the input and output vectors u, and YA respectively
in response to a given demand r satisfy performance specifications. It is
clearly of value therefore to be able to estimate the corresponding inputs
and outputs u and y respectively of the real feedback scheme to check that
performance deterioration due to the approximation will still lead to
acceptable dynamic characteristics. This is particularly obvious 1if the
plant model is unknown or subject to uncertainty but such considerations are
also of value if the plant model is known provided that the estimates are
easily obtained. The following result characterizes the potential deteriora-

tion in input transient magnitudes and is proved in Appendix 9.

Theorem 5: Suppose that the conditions of theorem 4 hold and that

(a) u(o)(t) is the response from zero initial conditions of a freely
chosen 2x% stable, proper convolution system H2 to the step G(t) =8,
tz2 o

(b) T (t) is the {x1 vector computed from the convolution

t
z(t) =~-( ] w (e-t")H_ (£")dt")p , t>o (52)
o “ H2

where HH is the impulse response matrix of H

2
(c) uA(t} is the input response from zero initial conditions of the

2!

approximating feedback scheme to the demand signal r(t) with

SOINNY'S

u () uA(t) +rlt) 22> o (53)
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and
(d)
t
El( )
: P -1Pp 1
e(t)= br N W) W W) sup |[ul )(t')—u(o)(t')H (54)
. % R t A : P
(£) o<t'<t
)
Then the input response of the real feedback scheme from zero initial
conditions to the demand r(t) satisfies the bound
o, (® -uj(l)(t)liej(w , 1<3js<?, txo (55)

The graphical interpretation of (55) is simply that the input uj(t)
(

lies in the region between the curves u i)(t) + sj(t). All the calculations
involved in the estimation of Ej(t) are also numerically well-conditioned if
the signal to noise ratio in E is large. More precisely, WA{t) is then well-
defined and given a choice of H2(see below) u{o) is obtained by simulation
and ¢ (t) by numerical convolution. The signal él%t) is then trivially com-
puted and e (t) follows in a straightforward manner. Many of these calcu-
lations can be further simplified. For example, noting that Ni(WA) j_ﬁz(wA)
and hence that ||Ni(WA)||m §_|]N2(WA)I|m‘, t > o, the following result

identifies one 'situation when the inversions necessary for the evaluation

of € can be avoided:

Corollary 5.1: Under the conditions of theorem 5, suppose also that

P ) P
||NW(WA)|Im < 1 and define Al(t} = ||Nt(WA}|Im. Then
AL (E)
|u. () - usl)(t)| E—I_:_%—TE5 max ||(U(l)(t') - u(o)(t')]|
3 4 17 o<t'<t .
1<j<® (56)

(1)

Proof: Write (55) as [uj(t) - uj (t)l E_[[g(t)||m and take norms in

equation (54).
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The choice of H, and B can also lead to considerable simplification

although usually at the expense of increased conservatism in the bounds

. o 5, . F .
Ej(t). Noting that u( ) = H2u is the first guess at u(t) in a successive

approximation scheme (see Appendix 9) the following choices immediately

suggest themselves:

(1) The choice of H2 = 0 leads to £(t) = O and u(l)(t) = uA(t)

without the need for numerical calculation of these quantities.

(2) The choice of H2 and B so that u(o)(t} = H28 is constant and

'representative' of the magnitude of uA(t) leads to the easily

computed form

(o)

z(t) = Ww(t) u (E) (57)
-1
(3) The choice of H2 = (I’Q + KFGA) KH where H 1s a stable proper
o o
convolution system will lead to u(o)(t) = uA(t) whenever the

demand r(t) is the response of Ho from zero initial conditions

to the step input #(t) = B, £ > o.
(Note: As uA is our best available estimate of u, the choice (3) is likely
to be least conservative).

Although input estimates are useful to avoid excessive input magnitudes,
output estimates are also important. In general, however, such estimates do
not fall easily from the theory due to a technical problem(ls) associated
with non-commutation of multivariable convoltuion operators that can preclude
the use of the theory for the assessment of controllers containing integral

action. This is not a problem in the scalar case (see section (3.4)) but

the best general result for multivariable systems appears to be the following:

Corollary 5.2: With the conditions of theorem 5, suppose also that G is

stable. Then

||y(t) - y(l)(t)llp i’Ni(Y) e{t) + NE(E} sup ||u *
ost'<t (58)

1 . .
where y{ )(t) is the response of GA from zero initial conditions to u tEr, =
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This result is proved in Appendix 10. It is expected to be somewhat conservative
as it is deduced from (55) using norm inequalities. A more accurate estimate

; ; (15) 5o .

is available when K is itself stable but the result cannot always cope

with the important practical need to include integral action. It is there-

fore excluded for brevity.

Finally we note another simplification of the estimate (34) by reduci?g

the number of inversions required (see Appendix 11 for a proof):

Corollary 5.3: If the conditions of theorem 5 hold, the bound (55) holds

P
with e(t) replaced by the estimate €u{t) obtained as in (55) with Nt(WA)

P,u

replaced by Nt (WA) defined by

N
N W o N W
fu (tJ(A) u (t)(A)
L1 182
Ntwy & '
t A 2 - (59)
N (W_) N (W_)
T
“21( ) “u(t) AJ
where, for each pair of indices (i,j), Uij is some function satisfying

p..(t) » t for all t > o.
17 - =

The simplification made possible by this result can be illustrated by
: P,u P
t) = + o f L2 N’ =N £ L 5 d
choosing ”ij{ ) or all t > o when s (wg co(WA} or a > o an
only one matrix inversion is required. Other choices include the choice

u,.(t) =t,, for t < t < t,., where t,, k > o, are the stationary
1] ijk = ==

ijk ijk-1 — ik’
points of (WA(t))ij' This choice only requires estimates of the value and
position of stationary points of signals. This could be of particular

importance if the signal has some noise content.

Stability and Performance Assessment for Single-input/Single-output Systems

Although both theorems 4 and 5 apply to the scalar case, it is possible

to obtain better results on output performance as follows (see Appendix 12):
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Theorem 6: Suppose that m = § = 1, that the controller K stabilizes the

model GA and that the response WA(t} of the system (1 + KFG )_lKF from zero

A

initial conditions to the open-loop modelling error E(t) has been computed.
Then the controller K will stabilise the real plant G if
(a) the composite system GKF is controllable and cbservable and
(b) the following inequality holds
N W) < 1 (60)

Under these conditions, let y(o)(t) be the response of a stable, proper

unit
from zero initial conditions to a/step demand signal

convolution system Hl

r(t). Suppose also that the response n(t) of the system (1 + KFGA)ulK(l—FHl)
to the error E(t) has been obtained by simulation and that

y Mt oy o+ (61)
where yA(t) is the response from zero initial conditions of the approximating i
feedback system to the step demand r(t). Then the output response y(t) of

the implemented feedback scheme from zero initial conditions to the step

demand r(t) satisfies the bound

N (w_)
(t)] < e(t) 8 'I%%ﬁfiﬁf3 max Iy(l)(t) - y(O)(t){
t' A’ o<t'<t

g~ '

(62)

Finally, (62) holds with e(t) replace by €' (t) = (W,) where u(t) is

e

any function satisfying p(t) > t, t > o.

The interpretation of the result is similar to that of theorem 5, all
calculations being simple simulations of low-order systems and graphical
analysis of their responses. The system Hl is specified by the designer to
increase the simplicity of the calculations or to increase the accuracy of

the predictions by reducing e(t). Three choices suggest themselves:

(1) Hl = 0 yields y{o)(t) = 0 and simplifies the calculation of n

and when F = 1 reduces simulation requirements as WA = n.
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-1 ; -
(2) Hl = F " (when F has a proper, stable inverse) yields n(t) = O

and hence y(l)(t) = yA(t) with one simulation avoided.

_ =, , (o) .
(3) Hl = (1 + GAKF) GAK yields vy (E) £ YA(t)'

(Note: the choice (3) is likely to be least conservative as y(o) is the

first guess in a successive approximation scheme to y).

Illustrative Example

Consider the scalar example of section 2.6 with the specified modellGA
and designed controller K. Applying theorem 6, the response WA(t) was
computed to be as in Fig. 7. Graphical analysis of this response leads to
the conclusion that Nw(WA) = 0.62 < 1 hence verifying the stability predic-
tions obtained in section 2.6 provided that GK is both controllable and
cbservable. The corresponding performance of the real and approximating
feedback schemes to unit step demands has already been seen in Fig. 5. We
can verify that the bounds on performance deterioration predicted by (62)
anticipate these errors by choosing Hl = (1 + GAKF)_lGAK and computing n
to be as shown in Fig. 8. The corresponding bounds y(l)i € together with
y and ¥ are illustrated in Fig. 9.

Conclusions

Withrthe assumption that the contreol designer has access to a reliable
estimate Y(t) of the step response matrix of a linear system G, the paper has
provided systematic techniques for the design of feedback controllers based
on a simplified plant model GA and comparison of Y (t) with its own step
response matrix YA(t) in the time domain. Although other approaches are
possible (Theorem 1), the paper has concentrated on the simplest case where
plant modelling errors are measured by a single constant quantity Ni{E)
deduced from graphical analysis of the modelling error E = Y - YA. This
data can be used in a frequency domain stability criterion (Theorem 2) that

produces the guarantee that the control system designed on the basis of the

approximate model will also stabilize the real plant despite the known
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modelling errors. At no stage of the design is it necessary to use or

even to know the real plant model G i.e. the techniques can be used directly
on data from a plant step test provided that either the signal to noise
ratio is large or the noise is filtered from the response. In the scalar
case and the case where diagonal plant models are used, the techniques
generates (theorem 3) a stability criterion based upon inverse Nyquist plots
that is very reminiscent of the Gershgorin circle based criterion of the |
inverse Nyquist array(lelg).

The direct use of time-domain data E(t) also leads to a simple simulation-
based method (Theorem 4) for assessing stability that avoids the need for
complex frequency domaincalculations. This may be of particular value in the
multivariable case where manipulation of matrices with complex elements could
be a numerical problem. The important bonus from this type of analysis is
that, under well-defined conditions, the degradation in input and output
transient performance (Theorems 5 and 6) can also be bounded without the need
to use or have available'a detailed plant model.

The techniques described are very similar in spirit to the techniques of
robust control(6’7), In terms of robus? stability analyses (where conservatism
in the modelling of modelling errors can be a problem) the constant measure
of modelling error NZ(E) used here is conservative. However, thereis no
problem here as the assumption that the data Y is available enables the
designer to choose his own compromise between design simplicity based on a
highly simplified model (accepting the uncertainty associated with the large
error) and the design complexity associated with a more accurate model (with
the reduced uncertainty in closed-loop predictions). He simply has to choose a
model GA that is accurate enough to ensure that the conservatism implicit in
the criteria is not so large as to make them inapplicable. The example

included indicates that highly successful designs are easily achieved even

in the presence of substantial modelling errors.
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Finally, we note that the work described here is in the same spirit as
; (22 23 28 2l
that of Davison ), Koivo( ) and Owens( e ). However, as in ﬁstrom(l),
stability is guaranteed over a ¢omputablegain range due to the inclusion of
a model in the process. Also the functional analytic treatment made possible
. (14,15) . . !

by the model carries over to consideration of discrete plant and also
to inclusion of measurement nonlinearities. These will be reported

separately. {
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Appendices

Proof of Proposition 2

Local maxima and minima of f correspond to points where g changes

sign. Write therefore

T
laj + [ [|9tv)] at
o]

* E
k k T
=lal + § | lgt) |at + lg(t)| at
= *
k=1 tk—l tk
*
K % T
=lal + § | [ g(t) at| + |f  g(t) at| (63)
= t
k=1 it £y
and note that f(o+) = d and
R
[ g(t)dt = £(B) - £(a) (64)
o
for any B > a > O.
Proof of Theorem 4
=y i F (9-11)
We regard the stability problem as an input-output stability problem
i m th , ; G e
in Lw{o,+m) (the m cartesian product of Lm{o,+W)). Assuming zero initial
¢ o : (8) ; (11)
conditions we follow the techniques of the authors and Harris et al
and regard the feedback system of Fig. 1(a) as the input equation
u = Kr - KFG u (65)
written in the equivalent form
= (I + KFG )_l Kr - (I + KFG )‘lKF (G-G_)u (66)
v A A A

2
in Lg(o,+w). This equation has the form u = Wm(u) where W_ maps Lm(o,+W)

[ee]
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into itself whenever r & ﬂf(o,+w). Note that the system is input-output
stable if, and only if, equation (66) has a unigue solution u.EiIi(0,+m)
whenever I'Eziq:(o,+m). A sufficient condition for this is that W is a
P-contraction (lemma 3) i.e. r(||(I + KFGA)—lKF(G—GA)IIP) < 1. The result

follows from lemma 4 which indicates that

|](x + KFGA)_lKF(G—G = Nz(WA) (67)

215

: : ol ;
where WA is the step response matrix of (I + KFGA) KF(G - GA) and noting

that
W, (t) =i_l{(12 % K{s)F(s)GA(S))_lK(S)F(s} (G(s) - GA(S))é }
{-1 -1 ;
=4 (1, + K(5)F(s)G, (s)) K(s)F(s){E(t)}}
-1
= ((I +KFGA) KF E) (t) (68)
where we have used the observation that?i{E(t)} = s_l(G(s) - GA{S)).

Proof of Theorem 5

Invokingcausality, we can regard (66) as an equation u = Wt(u) in

'3 s
Ia(o, t). Note that the conditions of theorem 4 ensure that Wt is a P-
. . ., P P (o) i
contraction with 'P-matrix Nt(WA) i_Nm(WA). Let u be the first guess
; : ; ; (k+1) (k)
in the successive approximation scheme u = wt(u ) and note from

lemma 3 that

(1) p -1 P (1) (o)
s I - N (W - 69
[u = ], < (@, - N W) N (W) []a u (69)
with
1) =1 =1 N (o)
u = (I + KFGA) K. & (1 + KFGA) KF (G GA)U
= + 70)
. 4 (
where u, = (T + KFGA)_ Kr is clearly the input response of the approximating

feedback system to the demand r and



- 35 =

I

z (t) —ifl{(zl + K(s)F(s)GA(s))_lK(s)F(s)(G(s)—GA(s))Hzcs)s—lB}

—ii{i{%gu}fgtm}s (71)

which is simply (52). Relation (55) follows directly from (69) from the

definitions of the norm in yw(o,t) and noting that (69) is simply

[oa ]| < et , €20 (72)

10. Proof of Corollary 5.2

Continuing with the argument in Appendix 9, write y = G u and

y(l) = GA u(l) and

1 1
W, = Hew-6, uPl,

1
vy - vy P @] < || o=y L

(1) (1)
[leta - u ™[, + [te = 6u ™" ][,

| A

| A

il
P

1
el || Juu 1@l a1

< Ni(Y) e(t) + N (E) sup ||u(l) (t')HP (73)
o<t'<t

by using (72) and lemma 4 to write |[G|], = Ni(y) and || - 6 |], = Ni(E).

11. Proof of Corollary 5.3

By monotonicit (t) > t (£t » o) implies NP(W )>NP'IJ (W) > NP(W )
m
& & ¥r BygtBl 2 L E o' a g 22 %A

for t > o. DNoting that

o0

P -1 P P k
(1, - N_(W)) "N _(W,) = ) (N (W)
k=1
v P,u k P,u -1 P,u
j_kzl W)t = (1 - N (W) N (w,) (74)

the result follows trivially from (54) and (55).

12. Proof of Theorem 6

Assuming zero initial conditions, write the input-output relations

y = GK r - GKF y (75)



— 36 -

in the form

B -1 =]
y—(I+GAmw %§r+(1+1@%9 Kmﬁiﬂr—1W) (76)

(8,11)

by the standard loop transformation and using commutation of scalar

convolution operators. Using an argument used in Appendix 8 and elsewhere(g'll),
lemma 3 yields stability in the input-output sense if the contraction condi-

=1
tion ||(I + KFGA) KF(G—GA)|| < 1 holds. The relation (67) immediately |

requires that Nm(WA) < 1. Note also that this condition also implies that

a contraction is obtained on any interval [O,t] with contraction constant

wW_).
Nt( A)
Let y(o) be the first guess in the successive approximation scheme and
note from lemma 3 that, on [p,t] ; (76) yields
N (W
(1) Y (1) _ (o) ;
||Y“Y || l—N(W)Hy - Y H (77)
t A
(o) ~ . . (1) _ _ =
where y = le, r is a unit step and y = yA+ n where Yy = (I + GAKF)

GAK r is the unit step response of the approximating feedback scheme and

Lt
n(t) = ((I +KFG,) "K(I - FH ) (G - G,)x) (t)

((1 + KFGA)—IK (I - FH))E) (t) (78)

as (G - GA)r = E by definition. Equation (62) follows from (76) by the

definition of the norm in Lw(o,t}.

The final observation of the theorem follows in a similar manner to the

proof of Corollary 5.3.



(a)

(b)

Fig. 1 (a) Real and

(b) Approxmating Feedback Systems
SHEFFIELD UNIV.
APPLIED SCIENCE

LIBRARY



N (B)= a v b+ cxd

f‘:-{—w

Fiﬁ A



Confidence circle

Fig. 3 Confidence band and Confidence circle
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