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ABSTRAGT

A structure detection test which distinguishes between linear

and nonlinear dynamic effects in the system response, and model

validity checks which indicate deficiencies in estimated nonlinear

models are derived.



INTRODUCTION

Structure detection and model validity tests are a fundamental part
of most system identification procedures. Whereas structure detection
involves the détermination of the form of model which will most appropriately
fit the data model validity checks are designed to indicate the inadequacy
of the fitted model. Most studies relating to these procedures assume that
the system under investigation is linear. Structure detection then reduces
to the problem of determining the model order and time delay of the system '2’3.
Estimates of the parameters in the model can then be determined and a linear
covariance analysis of the residuals can be applied to test the adeguacy of
the fitted model. This procedure is iterative and a number of models may
be fitted and analysed before the final model is selected. All these tests
however, depend critically on the assumption of linearity. If the process
can be taken off line this assumption can easily be verified by performing
a series of step tests over the amplitude range of operation. When the data
is prerecorded and additional experimentation is precluded or when the
analysis relates to the system resiguals, tests for linearity become much
more involved,

Very few authors have investigated this problem. West4 considered
nonlinear signal distortion correlation by studying static nonlinear charac-
teristics. By splitting the output from the nonlinear element into two
portions one proportional to the input signal and the other a distortion
noise West showed that there is no correlation between the input and
distortion signals whenever the input belongs to the separable class of
random process. Douce5 proved that the same property occurs for a specific
class of nonlinear dynamic systems. The nonlinear distortion can however,
be detected by cross-correlating the residual with a test signal obtained
by passing the system input through a specified nonlinearity and Douce

developed an identification procedure based on this result. Subba Rao and



Gabr6 investigated the use of bispectral density functions for testing for
linearity and Rabjman7 introduced dispersion functions to measure the degree
of nonlinearity of systems.

In the present study higher order correlation functions are introduced
as simple to compute measures of nonlinearity. The techniques are shown to
avoid the complicated computations involved in determining bispectral den-
sities or dispersion functions and apply to a wider class of inputs than
separable processes. The inadequacy of linear covariance technigues for
structure detection and model validity tests is demonstrated in the next
section which includes a problem statement together with some illustrative
examples. Linear and nonlinear detection is investigated in section 4 and
a simple correlation test is derived. These results are extended to include
tests on model adeguacy in Sectien 2. Confidence intervals are derived

in Section ©and simulated examples are included to illustrate the algorithms.

PROBLEM STATEMENT

The problems of structure detection and model validity testing although
similar in some respects are quite different. Structure detection in the
present context will be defined as a method of detecting nonlinearity and
of distinguishing this from linear effects and additive noise distortion.
Model validity testing however involves detecting terms in the residuals
which 1f ignored will cause bias in the parameter estimates. There iz ne
need in this latter case to distinguish between linear, nonlinear or cor-
related noise effects since any one of these can induce bias into the
estimates. Unfortunately the traditional linear covariance tests which
ére now a fundamental part of linear system identification can easily be
shown to be inadequate for both of the above problemsa’g. This is best
illustrated by a simple example:-

Assume that in estimating the parameters of a system various terms in the

model were inadvertantly omitted and these appear in the residuals £ (k) as



o
gEk) = cu(k-1l)e (k-1) + e(k) (1)

where e(k) is white Gaussian noise and e(k) and u(k) are independent zero
mean. It is easily shown that computing the normalised autocorrelation
function of the residuals and the normalised cross—correlation function

between the system input u(k) and the residuals vield

) = §(T)
¢E€W) I

¢ (1) =o¥% 1 (2)
ug

According to the linear analysis therefore the residuals contain no further
information and appear white. Inspection of equation (1) clearly shows this
is false and £(k) will undoubtedly introduce severe bias into the parameter

+9

estimates This is a very disturbing situation which clearly demonstrates

that linear covariance technigues do not in general detect predictable
nonlinear effectslo’ll.

Returning to the structure detection problem. In any identifaction
procedure the first stage of the analysis ought to invelve some simple cal-
culations on the input/output data which indicate if the relationship between
input and output is linear or nonlinearlg. In other words will it be worth-
while trying to fit a nonlinear model?

Subba Rao and Gabr6 suggested a solution to this problem using higher
order spectra and defining

. IS(ﬁi'w-)l2
i3 d (3)

S (w)8 (w.)S (wi/y,)
w o r o] o w J

X

where S {ui'wj) is the bispectral density and S (wi) the power spectral
&3] 4)
density of the time series. They proved that § (wi,mj) = Ol&wmi'mj implies
1w
that the process is linear or the third order ioment oOF the driving input

is zero My = G, whereas if xij is a constant the process is linear and My # 0.

There are two disadvantages to this approach. Firstly, the requirement to



estimate spectral densities introduces problems of windowing and averaging.
Secondly the method can fail when applied to system identification problems.
This latter problem arises because in time series analysis there is no
measured input, the output is assumed to be generated by passing a ficticious
input with defined properties through a model. 1In system identification
there are three signals: input, output and noise, and generally the input
and noise are assumed to be independent. It is this latter property that
defeats Subba- Rao's test when applied to the identification problem. The

sequence

z(k) = a i (k-1) + e (k]

for example, where the input u(k) and noise e(k) are independent zero mean
processes with symmetric distributions, remains undetected by the test. It
is important to emphasise that these comments are not criticisms of Subba
Rao's test which was derived for, and works well for time series. The
comments do indicate the differences between the two problems of identifica-
tion and time series analysis and the need to develop new tests tailored to
; ; g , 8;9,12
the system identification problem “

An alternative method of testing for linearity was developed by

7 ; . . o ; . .
Rabjman using dispersion functions. Defining the cross-dispersion function

(éu(tl't2) - E u(t2)[{Ez(tf{%(tl)|u(t2)]

2 .
- Ez(tl) [2¢c)]}] (4)

which can be computed from

i

0 (t,,t.)

o Vg By {w{ {m Z(tl)p(z(tl)[u(t2)xdz(tlJ

2
-/ z2(tplz(t)))d 2(t) Vplult,))d ult,) (5)

—C0

if the necessary densities are known. The definition of the auto-dispersion



function euu(trtz) follows in an cbvious manner. Based on these definitions

Rabjman introduced the degree of nonlinearity vzu(tl,t2) as the least mean

square deflection of the regression curve E[z(tl)l u(t?f] from a certain

straight line

min E { & [z(t ) |utt )j
[ u(tz)[ z(tl) 1 2

£
vzu( l'tZ)

a,b
2 2
- (a + b ult,))} 117 ¢ (t,) (6)

which reduces toc

2

y o= ~ ot
vzu{t ot n Zu(tq,tz) ¢ (& t2)
where ﬂzu(tl;tz) = jfgﬂii}ftz}
\/ qz(t)

igs the normalised cross-dispersion function and ¢zu{tl,t2) is the normalised
cross correlation function. This approach is even more complicated than
Subba~ Rac's method since in all practical cases it would be necessary to
estimate the conditional density functions in order to compute the dispersion
functions.

The present study is an attempt to develop simple measures of noalinearity

) . 19,12 o o 3
using correlation methods™ '~ 7. It will be assumed that the system undex

4

) . . . . . 3 ok
investigation is analytic and can be represented by a Volterra series

e n
= . N ) - ® 3 ‘7
z (t) E coee [ B (T sty et ) Ii’ uft-t,)dr; + e(t) (7)

—

1z
Using the operator calculus developed by Brilliant and Geovge eguaticn

(7) can be expressed as

z(6) = § B [u®] +e(e) = Bfu(e)] +elw)
n=1l )

o
L

- Z Hn(un(t» + eit) {



where the square brackets indicate that H operates on u(t) and the parentheses
depicts the actual relationship. It is important to emphasise that the con-
tinuous time Volterra series model is chosen as a convenient representation
for a wide class of nonlinear systems. The fact that all the results are
derived for this model does not constrain the applicability of the results
to Volterra models only. The final results can be applied to all analytic
nonlinear systems whatever form of model is used to characterise the input/
output map.

It will be assumed throughout that all random signals are ergodic,
so that ensenble averages may be replaced by time averages over one sample
function.

INPUT SENSITIVITY

To illustrate this phenomena consider a second order Volterra model

with an input u(t) + b, u(t) = 0

z(t)

N [u(t)+b]+H2'[_u('t)+ b] + e(t)
2 2
= Hl(u(t)+b) + H2(u (t) + Zbu(t) + b)) + e (t)

Removing the ocutput mean yields

z'(t) = Hl(U(t)) + H2{u2(t) + Zbu(t) - u2(tn + e'(t) (9)

where the superscript ' is used throughout to indicate a zero mean process.

Inspection of equation @ shows that any model relating z?t) and u(t) will

be input sensitive. That is it will be dependent on oi = uz(t)and b and
will only yield the correct predicted output for inputs with exactly these
statistics. The degree of input sensitivity depends on the model used to
represent the system and the identification algorithm. This problem does
not arise in linear systems analysis where mean levels of input and output

are almost always removed to improve the signal resolution.



Input variance sensitivity can be avoided by measuring the average
output zb(t} of the system with zero input u(t) = 0

;;7;5 = Hl[hﬂ % H2£b] t s # Hn[b] + e(t) to yield the ianput/output
description

z}__’)(t) = z{t) - z.b(t) = Hl(u(t)) + H {uz(t) + 2bu(t)) + ... +e'{t) (1O)

2

The dependence of the fitted model on the variance of the input has there-
fore been removed but the model will only be valid for inputs around the

operating point b.

Inspection of equations (9) and (10) shows that éb(£7_= z(t) LFf the
system is linear and this can be considered as a very simple test for

nonlinearity.

LINEAR AND NONLINEAR DETECTION

The problem of linear and nonlinear detection can be simply defined
as :- is it possible to determine if it is worth trying to fit a nonlinear
model to the data?

The solution to this involves the measurement of higher order corre-

lation functicns of z(t)lo’lzﬂ

. are
Assumeé that the input u(t) and noise e(t)/independent zero mean processes

with symmetric probability density functions such that all odd order moments
are zero. All even order movements of ul(t) are assumed to exist

Consider the computation of ¢Z,z,jT) where z'" (t) is the system response
(with mean level removed) to an input u(t) + b.

By definition
- 2
¢ 2(T) = E[z' (t+r) (2° (£)) (11)

1
=)

z'(t+1) = [h () (ult ~ 7 + 1)+b)dr,

1

+ [fby (e rn)) (ult = 1) +1)4b) (u(t-1,41)4b) dr, d T,

... .. 4 oeltr) - z(t4r) (12)



interchanging variables in {12)

z' (ttr) = [hl(t—Tl+T)(u(Tl)>dTl
+ ffhz(t~[l+T, =Ty *1) (ulr)ulr,)

“+ bu(Tl) + Du(T2) dTl drz

+T)H}TL)U({hSdT_ dr

- jfhz(t—Tl + -1 5 7 5

2

F oien. Fe'(t + 1) {13}

which applying the notation of eguation (8) with obviocus extensions can be

expressed as

z' (t+1) = Hz(u(t)} + H;(uzit)) + 2b H:(u(t))~H; (u(e) %yt +

i +a'(t + T) (14)

Consequently, equation 11 becomes

| 2
02 = B[l ) + B @° + 2bu - u%)

- % .
+ Ha(u3 + Sbuﬁ + 3b2u = 3bu”y o+ ... e“(t)]l

T 2 2 T, 3 Y 2
[ﬂ}(u) + H;(u + 2bu ~ u ) + HﬂiuJ + 2bu

v 2 ‘ 2 = _—
+ 3b u - 3bu )k L., @ e’{t+1)j} {153

- 2 3 2 2
= E{[(HlHl)(u )+ 2(HH ) + 2bu” - w w’)

4 3 2 2 2 3

+ (HE) (0 + 3bu” + 3Ty - bu’ w4 Fett (e

. T2 2 T 3 B .. g3 "
LHi(u) H Hé(u + 2Bd = W) 4 Hq(u) ¢ 3bu” + 3b u=3bu o, Loket (b))

{16}

o
|k
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The evaluation of equation (16) is detailed in Appendix I where it is shown

that

9 (1) =0 ¥ . (17)

iff the process is linear (i.e. H.,H. .... H = 0). Whenever ¢ ?(T) # 0
2773 n pigt®

therefore this indicates that the system under test is nonlinear.

Note that the test distinguishes between linear additive noise corrup-
tion of the measurements and distortion due to nonlinear efforts.

The test is dependent on the assumption that the third order moment of
the input is zero. This can normally be assured in system identification
by selecting an input which has a symmetric probability density function such
as a sine wave, gaussian signal, uniformly distributed process, ternary
pseudorandom sequence etc.,etc. The assumption can be readily verified

. 3

by computing E.ﬁu(t)} J.

The effect of adding a mean level or d.c. shift b to the input ensures
that all terms which reflect the nonlinearity of the system contribute to
[ 2(T). If b were set to zero for example the third term in the expansiocn
gt
(Appendix I) would be zero and ¢ 2(TJ would not detect odd order non-

i

linearities.

If z' (t) can be mweasured an analogous result to equation (17) can be

b
derived for ¢ fr).
" g
bb
Notice that ¢ »{r) cannot detect the residual sequences of equation
Z'Z'L
(1) whenever u(k) and e(k) are independent and ple) is symmetric. This does

not undermine the test since in structure detection we assume that the noise
terms can only be nonlinear if the process itself is nonlinear. In other
words if terms such as u(k-1lle(k-1l) + e(n) exist in the system ocutput there
must alsc be nonlinear texms in wu({-) and y{¢) which will be detected by

) 2¢r). The test does therefore yield the correct information.

The situation is however, quite different when considering model vali-

zZ Z



dation. If a model has been fitted to the input and output the linear
and nonlinear terms in the input and output may have all been included in
the model leaving only the sequence £ (k), equation 1, as residual. Tests
which detect this type of distortion must therefore be developed for model
validation and these are considered in the next section.

MODEL VALTDITY TESTS

Model validity tests are usually defined to detecf information in the
residuals which if neglected will introduce bias in the parameter estimates.
It is not necessary in this context to distinguish between correlated noise,
linear or nonlinear dynamics as in the previous section,since if any cne of
these is present in the residuals biased estimates will result,

If the system under test is linear the residuals should be unpredictable
from all past inputs and outputs. When the system is nonlinear the residuals
should be unpredictable from all linear and nonlinear combinations of past
inputs and outputs. This latter requirement could well involve an enormous
amount of data processing and the objective in the present study is to reduce
this to just a few easy to implement tests which convey all the required
information.

The éssumptions stated in section 4 will be carried over to the present
analysis. During model validation testing we have very little control over
the signals, the input and the residuals, these are prespecified either by
the experiment or the model. Under such circumstances we must derive tests
which work under the worst possible combinations of signal properties and
will assume therefore that u{e) and e(=) are independent zerc mean processes,

all odd order moments are zero, e(s) is white and u(s) mayvbe white.

This information will be available from the structure detection test

¢ (t) described in the previous section. Suppose that the true model of
zlzl
the system is known to be LY T

; ) , ‘ ) 13
Consider the situation when the system under test is known to be linear
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z(t) = G(u(t)) + L(el(t)) (18)
where G and L are linear operators. A model is fitted to the input/output

data to yield an estimate
z(t) = G(u(t)) + L(&(t)) (19)

where the residuals are defined by

a A A
e(t) = L "{(G-G) (u(t)) + L(e(t))!} (20)

~

If the process model is correct G = G but the noise model is incorrect

L#L

~

el =% “Thle ()} (21)

and although the residuals e(t) will be autocorrelated

b (1) # &(1)

e'e

they will not be correlated with the input

% = ¥
¢ue,(T) 0 T

Alternatively, if the noise model is correct L = L and the process model is
biased G # G

a(t) = 27 (6-8) (u(e))} + e(t) (22)

and the residuals are both autocorrelated ¢é'é'(1} # §(1) and correlated with

the input ¢ué{T) # 0. If both process and noise model estimates are correct

then ¢é| r(T) = Ciﬁ.(‘[), ¢ué|(T) = O-vL Ta

e
Consequently, if the system is linear ¢ 2{T) = 0% 1 and if
A
¢ué{T) # 0 this indicates that the estimate of the process model is deficient.
Once the process model has been improved to yield ¢ué(T) = 0 any correlation
in the residuals ¢é,é,(1) # 8(1) indicates that the noise model is incorrect.

It is possible using these simple correlations therefore to distinguish

between deficiencies in the process and noise models.
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for example, which is very common in parameter estimation for nonlinear

systems and occurs whenever noise enters internally or for certain
; ’ ; . L 8;9;11
parameterisations when the noise is purely additive at the output,

is extremely difficult to detect.

It appears to be impractical therefore to develcp a simple procedure
which distinguishes between discrepancies in the process and noise models.
In fact three tests are required to detect all the terms in equation (24)

as detailed below.
The autocorrelation of the residuals étF{,(T} is the primary test.

An expression for ¢ , (1) is derived in Appendix 2 where it is shown that

£'E

the test fails under two conditions:-
(i) The test incorrectly indicates that the residuals are

unpredictable from past inputs and outputs if either

o :)}

£(k) = u(k-n) + e(k) or (25
2
(

s~
B
(23]
~—

£E(k) = u(k-m)e (k-n) + e(k) ¥ n,m
whenever.. u(+) and e(- } are independent white noise sequences.

(ii) Similarly the test incorrectly fails to detect all terms of the

foxrm
E(k) = ul(k-m)e(k-n) + e(k) (27)
o n,m; @dd q and arbitrary input u(k).
These deficiencies in ¢ (1) can be corrected by computing two additional

gg’

correlations. The terms in (i) are detected by computing ¢uE{T) which for
the residuals in eguations (25),{26) is easily shown to yield
(1) = ¢ _ (14n) # O

uu

for equation (25), and

¢ug'{T) = ¢ee(o)¢uu(T+m) # 0

for equation (26). One test which correctly detects the cross product term
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in equation (27) is

e (™) = 2[E' (k)E* (k-1-t)u(k-1-1)] ¥ > o (28)

¢
Notice that ¢'ﬁ§T) only detects the cross-product terms in equation (27)
and should ideally be zero.

There may well be higher order terms with the same properties as
equation (26) and (27). For example the residuals in equation (27) would
have the same property if uq(b-m) were replaced by u(t—ml}.u(t—m2) .....
u(t~mq), for all g odd etc.

To summarise in the general case when it is known that the system
under test is nonlinear (¢ ,2(T) # O with input u{t) + b and p{u) symmetric)

£z
the residuals will be unpredictable from all past inputs and outputs iff

bergi (1) = 8(0) (29)
dugr (1) =0 M- g (30)
g fo) = 0N 1 (31)

When the system is nonlinear it is very difficult to distinguish between
bias in the process model or bias in the noise model ss in the linear case
equation (18). The cross-correlation ¢uF,(T) for example detects only odd
u

terms in G [u{t)] (all even terms make no contribution) and can have a

5 5 . ue ) v
value for certain cross-product terms in the noise model G E&ft),e(t;;,
If, therefore any of the conditions equation (29) through (31) are violated

all that can be said is that the model is deficient in some way.

6. COMPUTATION ASPECTS

All the tests derived above are based on correlation functions which

for sampled input and output signals are calculated according to the formulae

N‘}: —
L (%) - %) (y(t+k)
t=1

v b (@) 9 ()

~

¢Xy(k) =

y)

=l

A
-1 igbxy(k) <1
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In reality confidence intervals plotted on the graphs indicate if the
correlation between variables is significant or not. If N is large the
standard deviation of the correlation estimate is 1//§;' the 95% confidence
liﬁits are therefore approximately * 1.96/VN

SIMULATION RESULTS

The algorithms described above have been tested by simulating various
linear and nonlinear systems. A sine wave input has been used throughout
for the structure detection tests. This satisfies the conditions of symmetric
density functions, is much easier to generate than white noise etc., and
yvields good results. Alternative inputs can be chosen providing they satisfy
the conditions specified in section 4. A first order linear system with

pulse transfer function

-1
0.4z
y(k) = =——=— u(k)
1-©.8z2
z(k) = y(k) +n (k) (33)
was simulated where ulk) = u'(k) + b, b = 0.2, and]q(k) was a Gaussian white

sequence N(0,0.1). The mean levels 7 = 0.40, zb = 0.41 and the structure

detection test ¢ 2(T) illustrated in Fig. 1 clearly indicate that the
z'a"
system is linear. The estimated model

z(k) = 0.7871 =z(k-1) + 0.4123 ulk-1) (34)

was fitted using a recursive least squares algorithm and inspection of

¢, (1) and ¢

ut g,g,('r) illustrated in Fig. 2 where £ (k) are the residuals

indicate that the estimates are biased. Since ¢ 2(T) = 0 ¥ 1 this bias
z'z!

must be induced by additive linear noise. 2Applying an extended least

squares algorithm yields the estimated model
z(k) = 0.8020z(k-1) + 0.4008 u(k-1l) - 0.8319 n(k-1) + n(k) (35)

and as expected the correlation functions ¢u£'(T} and ¢£‘E'(T) were reduced
to be within the 95% confidence intervals.

8,9
An implicit nonlinear system defined by a first order NARMAX model '



yi{k) = 0.5y(k-1) + 0.3y(k-1)u(k-1) + 0.2 u(k~-1)
2 2
+ 0.6 (k~1) + 0.05 y°(k~1) (36)
z(k) = y(k) + n(k) (37)

was simulated with b = 0.2, and n(k) a discrete white noise seguence
distributed as N(0,0.1). The class of systems which can be represented
by nonlinear difference equations or NARMAX models has been studied by
considering the observability of nonlinear systemse’g, Substituting (37)
into (36) yields

z (k) 0.5g{k~1) + 0.2u(k-1) + 0.3z(k-1ljui{k-1) + O,6n2(kwl)

+ 0.05 zz(k—l)
+ {n(k) - 0.5 n(k~-1) - 0.3n(k=L)u(k-1) - 0.1z(k-1) n(k~1)

+ o,o5n2(k—1)} (38)

which clearly shows that the noise enters the model multiplicatively.
Standard parameter estimation algorithms derived for linear systems will
therefore yvield biased estimates and modified procedures have to be

8,9
derived 7.

The mean levels for equation (38), Zb = 0,147 and z = 1.235 indicate

that the process is nonlinear and this is confirmed by inspection of

¢ (1) and ¢ (1) illustrated in Fig. 3. It has been found that
2 2 g
z!zl %Z'b
o) 2(T) usually pYovides a much clearer indication of nonlinear effects
zgz'b
if they exist compared to ¢ ~ (1) and we would therefore recommend
z'z’z
that ¢ 2(T) is implemented whenever z' is available.
lel D
b"b

To demonstrate the effectiveness of the model validity
tests derived in section 5 assume that the term 0.3 u(k-1) n(k-=1) in equation
(38) is not included in the estimated model. Parameter estimation using a

o

modified extended least squares algorithm then yields
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N

’;

S
i

0.5266z (k~1) + 0.1961 u(k-1) + 0.3116z(k-1) u(k-1)
5 .
+ 0.5702 u (k-1) + 0.04032 22(k~l)

{E(k) - 0.5393 E(k-1) - 0.07403 =z (k-1) &(k-1)

.”.

+ 0.3407 gz(kul)} (39)

As expected ¢ (1) illustrated in Fig. 4 indicates that the model (39)

't 1
is biased because a cross-product term has been omitted. Notice that the
traditional linear covariance tests ¢_E E(T) and ¢u£'(T) both fail to detect
that a term is missing from the model.

Similarly if the texm 0.3 z(k-1) u(k-1l) in equation (38) is omitted
fromlthe model , modified extended least squares yields

z (k) 0.3269 z(k-1) + 0.3628 u(k-1) + 0.9874 uz(k—l)

+ 0.131822(k—l)
+ {€(k) - 0.1179¢& (k-1) + 0.2985 u(k-1) E(k-1)
- ©.08305 z(k-1)&E(k-1) - 00279352(kwl)} (40Q)
which is biased as indicated by the model validity tests illustrated in
Fig. 5 . 1Including all the terms in the model yields the final model

z (k) 0.5377 zl{k~1) + 0.192 w(k-1) + Q.3258z(k-1) ulk~-1)

i

+ 0.551922(k—l} + 0,03541z2(k_1)
+ {E(k) - 0.6145% (k-1) - 0.4403 u{k-1) E(k-1)

+ 0.02091 =z(k-1) £{k-1) + 0.2506 gz(k-l)} (41)

CONCLUSIONS
Structure detection and model validation methods have been investigated
for a broad class of nonlinear systewms. It has been demonstrated that if it
is possible to inject a non zero mean input which has a symmetric probability
density function the correlation test ¢ 2(T) indicates prior to parameter
z'z"
estimation if it is worth fitting a nonlinear model to the data.

The use of traditional linear covariance techniques for model validation

have been shown to be inappropriate when the system under test is nonlinear
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and additional methods which detect all terms in the residuals which are
predictable from all linear and nonlinear combinations of past inputs and

outputs have been developed.

Although there may be alternative structure detection and model validity
tests which could be derived hopefully the techniques develeoped in the present
paper are amongst the simplest to compute and interpret.
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Appendix 1

Evaluation of ¢ 2(T}

Consider the evaluation of each term in the expression for ¢ ?(T)
g
equation (16) assuming that the probability density function of the input

signal u(t) is symmetric such that all odd moments are zero and all even

moments exist:-

; o _ 13 <
(1) E[@mE) @IE W] = B[(HH) ()] =0 (42)

.. 2L ., 2 2.
(ii) E[@H) @), (° + 2bu - u)]
=EE¥H1H1H5(U4 + 2bu3 - u2 uzfl # 0 (43)

2 3 Z
(iii) E[}Hlﬂl)(u )H;(u b 3 + 3 T )]

3 2 2
= B[ HlHlH3 (0> + 3bu” + 3% - 3bu” w)] £ o (44)
3 g 71
(iv) el ) (@ + 260" - u uyE )]

g 4 5 a2 2
= B[HHE) (@ + 260" - u” uD)] £ o0 (45)
Similarly it can be shown that all the remaining terms are non Zero and
contribute to the final expression ¢ (1) except the terms invcolving the
£

lel

noise process ‘gt) which all tend to zero

B [mE) @Y% (t+ )] =0

3 2 2
E [(2H132}(u + 2bu” - wu) &' {t + 1) =0 {46)

- 2 , el
E [e Je'(t +1)] =
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Appendix 2

Derivation of ¢_, , (1)

£ E

An expression for ¢ T), the autocorrelation of the residuals

grer

defined in equation (24).

g(t) =6 [um] + ¢*Tut),e(v)] + °le(t)] (24)

is computed below assuming all mean levels are zero and utilizing the
assumptions defined in section 5.
By definition

o, (0 =BG Tu)] + ¢ [u),e)] + ¢ [err])

(6" Tute + 1] + 6" [u(t+r) ,e(t+n)]

+ 6 [e(t+n)]) ) (47)
- lPuu(T) ¥ LPl}.(ue)(ﬂf) i LlJue(T)
* w(ue)u(T) * li!(ue)(ue)(‘r) i lij(ue)e(T)

+

+ v (1) (48)

e
weu(T) lye(ue) ece

where the ¥'s are polynomial correlation functions with guu(f) defined as

y (1) =E {Gu[u(t)]Gu[u(t+T)]}

uu

and fhe other terms defined in an analogous manner. Since it is important
to consider the worst case and detect every isolated term in equation (24)
which could possibly exist all terms in equation (48) which are not poly-
nomial autocorrelation functions will be neglected in the analysis given
below. Equation (48) therefore reduces to

¢ =y (0 + e[ [ue)]e(t+t) + 6" [u(t+r)Je(t)

gogr ()
+ e(t)e(t+1)]}

+ fy ! E[(Gue[ﬁ(t),e(tjje(t+r)

(ue) (ue)

+

ue ~ _
¢ [uttsn) e(trn]e(t) + e(tlete + D]} +y (1) (49)



= BN s

= {y (1) * g (1))

ue
Y ge) (uey E[ (6" [u(t) ,e(t)] e(t+r)

+

G [ult+r) e (tri]e (e)] + boe (M} +y () (50)

since u(t) and e(t) are independent. Notice that the residuals by definition
always include an additive prediction error term e(k) and this induces the
additional terms in (49) and (50).

Consider each Y term and its associated prediction error component in

equation (50) in turn. It follows that

I

a o -
E{G [u(t)] ¢ [ult+r)]} + dpq (1)

u ur, 2 u_uft 4 u _urt 4
= + F o e + — 5
E{GlGl (u™) GlG3 (u’) G2 G2 {(u’) + 3 ¢ee(r) (51
and assuming that all even moments of u exist all terms GE, G;, Gg contribute
to wuu(f) and will therefore be detected except for the case when G2,G3,G4....
Gﬁ = O and u(.) is white. In this latter case
= + =
¢g,g,(T) N ¢uu(T) a2¢ee(T) Bé (T) (52)

and the test fails. As noted in section 5 this failure is detected by

¢u£| (T)'

Consider the next term in equation (50)

i ue
“(ue) (ue) " E[(¢ [u(t),e(t)]e(t+r)

+ g°° [u(t+T), e(t+111 e(ti] * ¢e (1)

Expanding this out exactly as in eguation (51) shows that ¢ T) detects

g

all terms except

g(t) = u(t—m)ez(t—n) + e(t) (53)



= 01 =
whenever u(t) is white and
£(t) = ul(t- me(t-n) + e(t) (54)
AJ‘ n,m odd g and arbitrary input u.) The autocorrelation of the residuals

(%‘f ,(T) with £ (t) defined as in equations (53) and (54) incorrectly indi-

cates that the residuals are unpredictable from past inputs and outputs.

This problem is easily rectified using the tests ¢ (1) outlined

L€‘,(T) and

feren

in Section 5.
Finally expanding ?ee(T) in equation (50) shows that all terms are detected.
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