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1. Introduction

Closed-loop control system design are frequently based on the
use of a simplified model either because the available model is
regarded as being too complex for design work or because an accurate
plant model is not available. In fact, approximate models of
engineering plant are a fact of life as, although a detailed linear
model may be a good approximation to observed plant dynamics, it
never matches the plant exactly.

An approximate model can be of arbitrary dynamic complexity.
But, generally speaking, it is desirable that the model is of low
order and simple structure with the consequent benefits of reduced
computational requirement and the possibility of achieving simple
design to form the basis for further refinement and understanding.

Reference [1] gives both frequency domain and time domain design
method using approximate model. These techniques require only a
knowledge of a plant's open-loop response Y(t) from any source. A
sufficient condition is given in [1] for ensuring that a controller
designed on the basis of the approximate model GA will also stabilize
the real plant G. The statement of this condition is as following
(ref. Fig.l).

If K stabilizes the model GA’ it will also stabilize the real

plant G if
(a) the composite system GKF is both controllable and

observable and

B) & 2 sup yla) ¢ 1 e ()
°  gep

where y(s) is any convenient real valued function satisfying



¥() > v(|[(T+R(SF ()G, () T R(s)F(s) | LA @)

for all SE&D

and A(s) is any available matrix-valued function satisfying

A(s) > ”G(S)'GA(S)!lp for all S&D e (3)

In formulas (2) and (3), D is the usual Nyquist 'infinite' semi-
circle in closed right-half complex plame and the notation I -[lp is

defined as

|41 l
lall = A T vl (4)

The spectral radius y(M) of an %x% matrix M with eigenvalues ml,m2...mg
is
y(M) = max [mi| s v« K50
L2 ey,
[l] also gives a simplest possible choice of A, i.e. a frequency-

independent bound:
k* *
sup(ECOY) | + § [BCRI-E( ) [+[E(-E(, D))

s = NP =
T>0 k=1

.. (6)
where t, are time instant in which the local maxima or minima of
E(t) are achieved,

* . -
k 1s the largest integer k such that tk<T,
E(t) is the error function of open-loop response,

E(t) = Y(t) - YA(t) awm U T)

and YA(t) is the unit step response of approximate model GA'



In this report, we illustrate the application of these design
techniques, and, in particular, methods for the choice of the
approximate model GA' Also a less conservative, frequency dependent
form of A is derived and hence a new necessary condition for including
integral action in controller is given. This condition is easier
to satisfy than the similar conditions given by [l]. Meanwhile,
by comparing the design results for two kinds of plant model, we
will illustrate cases where the design techniques are easy to use and
cases where problems can occur. Finally, the robustness of the

design will be discussed.

2. Real plant and performance specification

Suppose that a multivariable plant has an "unknown" transfer

function matrix (TFM) as:

o T s
¢ (w—ilire M e (8)

Lxm

A lot of plants (for example, distillation column with hydraulic
time delay) can be denoted by such a TFM. The values-of gij (open-
loop gain), Tij (time constant) and Tij (time delay) may be very
different for different plant. But in point of view of using
approximate model to design a controller, we devide them into two
kinds as following:

(1) Plant is of less open-loop interactions (say, <60%) but of
rather large time delay. As an example, we consider a real plant

which has TFM



119.3 _-18.6s ~62.3 —14.6s
812.85+1 904s+1
6 () - ... (9)
55.3  -1l4s ~109,7 =17.58
766, 3s+1 7155+l ©

where the largest time delay is of about 157 value of time constant
(in the same element), and the open-loop interaction is about 50%Z.
(2) Plant is of more open-loop interactions, but with small

time delay. For example:

{

1193 -8 %s -124.6 =2.92s
812.85+1 904s+1 °©
Gy(s) = ...(10)
110.7 _ _-22.8s -109.7 _-3.5s
T66.35+1 7158+1

In other words, in Gz(s), the open-loop interactions are twice of those
in Gl(s) but the time delays are %-of those in Gl(s) (element by
element).

Even though (9) and (10) are still approximate model relative to
practice, we regard them as "real plant'" in this paper.

We wish to design forward path controller K using a simple
approximate model to guarantee that the real feed-back system (scheme
of Fig.1l(a))

(1) is stable,

(2) its response speed increases (say, at least 3 times) with
respect to that of the open-loop,

(3) has small steady-state errors (e.g. less than 10%) in response
to step demand,

(4) has acceptable interactions (e.g. less than 20%),

(5) is a robust design in sense that the plant G(s) changes over

a period of time to the plant G(s), stability will be retained provided

that the change G-G is small enough.



It is well known that the complexity of controller effects the
cost of the plant. In the following sections, attention is focussed
on the design of a proportional or proportional plus integral
controller (with unity negative-feed-back) for an unknown plant.

As mentioned above, the open-loop response are assumed given
from plant trials or model simulations. In fact, if the TFM is known
as form of (8), the 'step response matrix' can be directly written

as 1

Vg )

Y(t) = Y(gij(l -e )H(t—Tij)) e v s LLL)

Lxm
where H(t—rij) is the unit-step function with time delay.
Y(t) is the only knowledge we assume about the plant.

In this paper, we confine our attention to two kinds of approximate
model: a pseudo-diagonal model and first order model [3].

Throughout this paper we assume that G(s) is both controllable

and observable and G(o) (or Y(«)) is nonsingular.

3. Proportional Control

3.1 Pseudo-diagonal model

When the open-loop interactions are small enough and can be
neglected during the controller design (measured by gij(i%j)/gii),
we can use diagonal model directly [1]. But when the open-loop
interactions are not small enough, the design using diagonal model
is necessarily too conservative because the error function matrix
is of large value, In this case, the approximate model can be

chosen as

} P .. (12)

G, = diag{ l+aiS



i.e. the dynamics of the plant are represented by a diagonal matrix,

and the interactions are represented by a static interaction

matrix. The o, should be near the average value of Tij’ i =1,m.
P, in general, can be chosen as G(o) or Y(«) (i.e. the steady-

state value matrix of open-loop response) to make the steady-state

errors E(w) are zero but it can be chosen by other means if desired.

In our example Gl(s), choose o, = o, = 800 and P = Gl(o), then

15 %
ol 0 119.3  —62.3
G _ 1+800s - :
& . . (13)
0 T 55.3 -109.7

(Marked MD1)
The open-loop response errors are shown in Fig.2 and 3, and we get

pr(E) by direct calculation:

5.36 6.33
Nmp(E) =
14.56  11.09

]

Choose the controller K p_ldiag{kj}, where kj are scalar constants.

For simplicity, take kl = k2, then controller is of form
4 [k 0
K = p voo (14)
0 k

The closed-loop TFM of approximate model feed-back system (assum F = I)
is

o £ | puans 1

(I, * 178005 L2 1+800s 12

-1
Hc(s) (I+GAK) GAK

k

800s+1+k 12 e

So, for any k>-1 system (Fig.lb) is stable.



The closed~loop response of approximate systems (Fig.lb) is

Rjk 1;k i
v, = T (-e ) ... (16)
J
where Rj is the magnitude of step demand. From (16) it is very clear

that steady-state error is T%E (for unit step demand) and the speed
of response is as much as (l+k) times of that of open-loop response.
We next check condition (1) to decide the largest gain k that
can be used. Obviously, for robustness of the controller, the
maximum spectral radius should be less than unity and the smaller
the spectral radius vy is, the more robust the design will be.  But
on the other hand, the higher the value of vy, (and hence the higher
the gain), the faster the response speed. For simplicity, we will

choose our design to ensure that y < 0.8, i.e. (by choosing

_ -1
v(s) = (|| (1 +KkFG,) "KF|| RIO)
A -1
A= sup vy(|| (1,+#KFG,) "KF|| A(s)) < 0.8 cea (17)
¢] L A P -
SED
Noting that
! -1 .. k -1 _ 800s+1
(I+KkG,) = = (I +p "diagl 557} ) = gopgeiek 22
. 800s+1 _
so for any k>0 lim gpiap I, = I,
S0
A= sup v(|| (I+KGA)_1KH A)
© SED P
-1 P _ -1 P
= y(|[xp 7 5 (B)) = ky(|lp 7| o (E))

«ve(18)



The largest gain k can be decided by

5 0.8 } 0.8

Ty p.Nmp(E)) 119.3 -62.3)"} 5.36 6.33
Y 55.3 -109.7 o (14.5¢ 11.09

A

I
B
w
o))

Choose k = 2.3, then the controller can be found

k 0 119.3  -62.3)71 (2.3 o 0.02617 ~-0.01485

0 k 55+3 =109.7 0 2.3 0.0132 -0.02845

~
I
kel
I

The real plant closed-loop response (scheme Fig.la) are shown in Fig.4
and 5. The max interaction is less than 20% but the steady-state
errors 1is rather big (about 30%). The design is therefore unacceptable
and we then redesign by improving the model to reduce Nmp(E) or
including integral action in the controller. We consider the first

possibility in section 3.2 and the second in part 4.

3.2 First order model

The first order model is of form [ZJ

_1 _
GA (s) = AO s + A1

where AO and Al are real constant matrices. The method of estimating

them depends upon whether or not the real plant TFM is known. If it

is then Ao and A, can be deduced directly from G(s) by using the

1
formulas:

=] . .
A = lim SG(s) (neglecting t..)

o} |

S0
... (19)
=1 .

Al = lim G(s)

S=0



-1 =] i
In other words, AO and Al represent the initial rate and
steady-state values respectively of the real plant in response to

unit step inputs. If the real plant TFM is unknown but the open-

loop response matrix Y(t) is given, we can choose A1 1 as Y(=) and

A 1 as bk (by neglecting time delay t.,. as well) respectively.
o) dt £=0 1]

In this way, the plant Gl(s) can be shown to generate

119.3 62.3 1
- —_— 8.79 -3.95
AO—l _ | 812.8 504 | A -
553 109.7
TTE 15 4.:1.28 8.37
119.3 =h2; 3 0.01137 =-0.00646
=
55.3 -109.7 0.00573 -0.01237
giving the first order approximate model (MF1)
8.79 -3.95 0.01137 -0.00646) \ *
GA (s) = s +
1 4.:128 —8:37 0.00573 -0.01237
)

Using this model, the response errors are shown in Fig.6 and 7 and

Nmp(E) can be obtained as

5429 181
N P(E) =
15.11 5.28

Following a first order design technique described by Owens [3],

choose
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where k is the required closed-loop poles in each loop.
The closed-loop TFM for the approximate system (Fig.lb) is then
k Lo =1

HC(S) = '—'E:k {I o= E AO Al} ...(21)

and closed-loop step response matrix is

i"lﬁc(s) % = fg - g Fh {r, - k'lAO'“lAl} .. (22)

So, for any k>0, system 1(b) is stable. From (22) the steady-
state error and degree of interactions for system Fig.l(b) can also
be found.

Then choosing a value of k, we can check the validity of
condition (1) at a selection of frequency points covering the bandwidth
of interest. If AD>1, we could then reduce k in an attempt to reduce
H (I+KFGA)—1KF|| . and hence )\D. Repeat this procedure until )\Ofl
(in our design, A050.8, for robustness of design). In this way,
we find k = 0.006 is a suitable value, and the spectral radius are
shown in Fig.8 as a function of frequency.

The closed-loop response of the real plant are shown in Fig.9 and
10. By drawing a tangent in the initial point of closed-loop response
we can see that the speed of closed-loop response is much faster than
those of the open-loop (Closed-loop time constant is about 150sec,
while the open-~loop time constants are in range of 715-904 sec).
The closed-loop interactions are less than 207 and the steady-state
errors are about 20%. The design is robust as well because the
maximum spectral radius is 0.7. Overall, the design is much better

than that in Section 3.1 and we can say, from the viewpoint of controller
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design, a first order model is better than pseudo-diagonal model

to approach the plant Gl(s).

An important point we want to mention here is that, al though
using formula (19) can give a very good approximate model in many
cases, sometimes the model chosen may be unstable. For example,

in the case of G2(s), we obtain

119.3 _124.6
& =T = lim SG.(s) = 812.3 904
o 2
S-reo
110.7 _109.7
766.3 715
and
v 119.3 -124.6
Al = lim G2(S) =
50 110.7 -109.7

That is the approximate model is

. 1
G. (s) = EA s+A ] = X
A L 383.85°40.62285+0.00142

-56.31s+0.1690 52.858-0.1765

L —55.43s+0.1568 58.84s5-0.1554

which is clearly unstable.

In this case, we have to choose AO and Al by other means or choose
another form of model. One way of choosing Ao and Al is as follows
(others are seen in Section 4.2 of this paper): in a frequency range

of interest, calculate G2_1(s) (neglecting the time delays Tij), and



- 12 =

then take the general average value of their real part (element by

element) as A , and take the rate of increase of their imaginary

1
part (element by element) as AO. In other words,
-1,. : ;
because G2 (iw) is to be represented by A01m+A1
o) Real (Gz—l(iw)) should be represented by Al
and Imag (Gz_l(iw)) should be represented by Aw.

In this way, we find

57.97 -=52.16 0.1654 -0.1640
A = and A =
54.59 -55.68 0.1608 =-0.1681

yields the model

1 55.68s+0.1681 -52.16s5-0.1640

2 380.3552+1.614s+0.00143 54.59s+0.1608 -57.97s-0.1654

which is stable with step response errors as shown in Fig.ll and 12.
(This model is marked by MF2). From there Nmp(E) can be found to be
2 93 10.89

N S(E) =
5.8 6

In the similar manner to the above, we can predict that the
largest k can be used is k = 0.0037 and the corresponding closed-loop
response of the real plant is illustrated in Fig.13.

The controller makes the system response rate increase by about
3 times (closed-loop time constant is about 270 sec while the open-
loop time constants are in range of 715-904 sec).  But the steady-

state error is too big (60%) and hence the design is unacceptable.
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Comparing Fig.13 with Fig.9 and 10, we can get an impression
that the controller for plant Gl(s) (less interaction but relative
large time delay) is easy to design using an approximate model,
and Gz(s) (small time delay but large interaction) is difficult.
The same things can be seen in next part (see Section 4.3.2).

To summarize the three controllers designed above, the common
defect is that the steady-state error exceeds the performance
specification. This is because those controllers are 'low gain'
type. In other words, this is because that the theory used is of
'low gain' type guaranteeing stability for all controllers of low
enough gain [1].

To offset the steady-state error, the integral action should be

included in controller. This is considered in the next section.

4. Proportional Plus Integral Control

4.1 Necessary condition

Reference [lJ indicates that the possibility of including integral
action is related to the magnitude of the modelling error and the

steady-state performance of the model GA' When K includes integral

action, lim K = « then
s-+0

lim |[(I+KGAF)_1

_ ]
Lin | - lle, @l

So the necessary condition for including integral action is that [1]

vClle, @I WP @) <1 . (23)

Even though condition (23) can allow large model errors in most cases,

problems can occur if GA_l(o) is badly conditioned (i.e. has a large
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spread of eigenvalues and skew eigenvectors), condition (23) can be
a very difficult condition to satisfy. For example, in plant Gz(s)

we have

119.3 -124.6
G,(0) = G,(0) =
o : 110.7 -109.7
and suppose that choose approximate model to make
1 1.2

nPE) -
2 2w

Although the elements of pr(E) are much less than the elements of

GA(O), condition (23) is not satisfied. To deduce this, note that

-0.1554 0.1765

-1
GA(O) =
-0.1568 0.1690

and hence

v ( HGA(o)'lH prP(E)) 1.18 > 1

In such a case, we must modify the theory in condition (1) if
integral action is required.
Noting

lim E(t) = E_

t-roo
we obtain

lim (E(£)-E ) = O
tow
and, as E(t) is exponentially bounded, so

o]

[ llE(e) - E_|| 5 dt < 4o ... (24)
0
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On the other hand

; E
dE®=E) = 2 ©s)-e, () - =
= [ (E(t)-F_)e tar
o
so that
[s“l . ”G(S)_GA(S)_EmIIP < | HE(t)—Em” pdt s Res>0
° o (25)
or equivalently
lets)-¢, ) [| < |lE_]l p * sl JIE@-E_[| de =2 ()
© ... (26)
It follows that “G(s)—GA(s)|[ is also bounded as follows
Hc(s)ncA(s)pr < min(a_(s), N_P(E)) i)

and hence we can replace A = Nmp(E) by A = min(AO(s), Nmp(E)) in (2).
The necessary condition for including integral terms in controller

is then

¥( HGAnl(o)flpa(o)) <1 ... (28)

or equivalently

-1
v(llte, (o>l|p- [E_| ») <1 e e (29)

If we choose GA_I(D) = G—l(o), then ]IEmf]p = Q. The condition (29)
is then always satisfied, i.e. proportional plus integral controllers
can always be used. For the convenience of use, rewrite the condition

(2) as
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v(s) = v( ||(12+K(5)F(s)GA(s))‘lK(s)F(s) I a2 ... (30)
and A(s) = min(Ao(s), pr(E)) (element by element)
where Ao(s) = ||Em||p + |s| f HE(t)—Em||pdt

o

That is the condition used in the following sections.

4.2 Pseudo-diagonal model

In the similar manner to Section 3.1, the approximate model for

either Gl(s) or Gz(s) can be chosen as

l+a.s a
GA(S) = 1 G(o) ... (31D)
1
2 l+uzs

When open-loop response is known only, replace G(o) by Y(=) in (31).

The difference between (3L) and (12) is that in (31) the static

interaction matrix have to be chosen as G(o) such that HEwHp = 0 and
hence (29) is always satisfied.
For plant Gl(s), take a; = 850 a, = 750, so
TI%EBE 0 119.3 -62.3
GAl(s) = . - (MD2)
0 177505 55.3 ~=109.7
The response errors are shown in Fig.l4 and 15. By calculating we
get
7.22 3.72
v P@E) =

15.4 6. 73
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and

o0

0.296 0.436

Imp(E) = I |E-E_]| dt = x 10”
o P 0.729 0.226
Suppose the controller K is of form
. Cj %
K = G(o) diag kj + ry _ ...(31D)
The closed-loop TFM for GA is (assume F = I)
.
l 2
%4 o5 © kl*“s?l“ 0 1+is
H (s) = {I+G,K} "G, K = [T+ 1 1
c A A 1 c2
0 0 k., +— 0
1+a,s 2 s
2 )
c
1
x c
2
9 kg
( k1s+c1
5 0
= a8 +(l+k1)s+cl
e s (32)
k23+c2
& )
a,s +(1+k2)s+c2
or
k.s+c.
H (s) = diag J

a.s +(l+k.)s+c.
J J J

So, for any kj>-l, cj>0, approximate system Fig.l(b) is stable-and

non-interacting.
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The closed-loop unit step response of approximate system is

k. d. 1 b.-a.-d. =(a.-b.)t b.+a.-d. -(a.+b.)t
Y (t) = 2 Lo (S AP B N S M T - A
A. a. 2. 2 3%, bi-a, 2b. b.+a.
1 lfa. -b B I T ] 1]
1 ]
1.2 wv333)
1+kj
where aj = T
]
2
/(1+kj) —4cj
bj = s . (34)
]
‘]
d = " g
k.
4 J

Now, we choose values of kj and Cj’ and check the wvalidity of
condition (1) at a selection of frequency range covering the bandwidth

of interest. When kl =k, =2.8 and ¢, = ¢, = 0.002 the spectral

2 1 2
radius of (30) is plotted against w in Fig.16. The largest value is
about 0.8. These values of k and ¢ are therefore largest gain we

can use to retain the required robustness of design.

The closed-loop responses of the real system (scheme Fig.l(a))
are illustrated in Fig.17 and 18. The steady-state errors are of
course zero because integral action are included. The maximum inter-
action is less than 20%Z. From Fig.17 and 18, we can say that the
speed of response is good as, by plotting a tangent in initial point
of response (neglecting time delay), we can find that the 'equivalent
closed-loop time constant' of the real system which is about %—of
that of the open-loop time constant.

So the controller designed above is good enough. The success
of the design is also indicated by the similar stability and overall

dynamic characteristics and identical steady-states of the real and

approximating feedback schemes.
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4.3 First order model

There are several ways to choose a first order approximate model.
Two of them are as described in Section 3.2. However, we now give

two other methods to choose a first order model.

4.3.1 Multiplication factor method

1 1

ensure that “EwHp = 0 and hence integral action can always be

The method is as follows: Choose A, = G_l(o) or A, = Y_l(m) to

included.

Then choose

where o, and o, are constants.

1 2
It follows that
als 0 -1
+ I) A
0 0,5 l
2°

~ 1
Gy = (AOS+A1)

-1 1
o, s+l 0 —
= A 1 k = ) l+als
1 0 a.s+l 0] 1
2 1+a,8
2
... (35)

Although it is similar to (30), we here regard it as first order
model and hence use the first order design method described by [3].

For plant GI(S)’ we take

a, = 770 (near the average of Tll and T21)
a, = 800 (near the average of T,, and T22)
and hence
770 0)(119.3 -62.3)7" 8.750 ~—4.974)
A = z =
o)

0 800 55.3 -109.7 4,584 -9.896



...20_

The response errors are shown in Fig.l9 and 20, and from there we
get
7.23  6.38 0.72 0.74 4

Nmp(E) = and pr(E) = x 10
15.06 11.04 0.63 0.70

Suppose that the controller is of first order form (ref. [3])

K(s) = {k+c+ks—C}AO—A1 .. (36)

The closed-loop TFM for the approximate system (Fig.la) is

1 -1
rome s, g ) {keI+s ((k+e)I-A  "A)} -

Hc(s) 1

So the approximate system is stable if and only if k>0 and c>0.

The validity of condition (1) is checked by the same way as that
described in Section 4.2. When k = 0.004, ¢ = 0.0003, the spectral
radius of (30) is plotted against w in Fig.21. The largest value

is approch 0.83. So k = 0.004 and ¢ = 0.0003 are the largest gains
that can be used to satisfy the robustness requirement. The closed-
loop response of the real system (scheme Fig.la) are shown in Fig.22
and Fig.23. The steady-state errors are zero and interactions are
less than 207%. Because O<c<<k, we can still use k to measure the
speed of response. So the speed is more than 3 times of that of
open—loop (closed-loop time constant is 6T%62-= 250 sec, and the open-
loop time constants are in range 715 - 904 sec). The design is

successful as all of the performance specification is achieved.

SHEFFIELD UMY
lail" th
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For comparison, we choose G, (s) as MF1 (ref. section 3.2) and

A

design a proportional plus integral controller, The spectral radius
and closed-loop response of real systems are shown in Fig.24, 25 and
26. The suitable gains are k = 0.006, ¢ = 0.0002. The main
difference is that the speed of responses of Fig.25 and 26 is quicker
than those in Fig.22 and 23. Interactions and steady-state errors
in two designs are about the same. From this viewpoint, we can say

MFl is a more successful model than MF3 to approximate Gl(s).

4,3.2 Iterative model choice

Sometimes difficulties might occur when we use the methods
described above to choose a first order model (either because the
model is unstable or because the response errors are too big). So
another method (even though it is inconvenient) is given as follows:
Choose Al as G(o)_1 or Y(m)_l, then choose a number of A.O and
calculate for checking if its response errors E(t) are small enough.
Repeat this procedure we might find a better model than those

described by (19) and (35).

For example, to real plant GZ(S) choose

119.3 -124.6) !
Al =
L1 .7 -109.7
and get AO by iterative choice as
-50 52
A = (marked MF4)
. -55 50

The response errors are shown in Fig.27 and 28. Compared with their

steady-state values the errors are very small. We can also obtain
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5.51  4.62 0.53 0.55
NP@ = and 1.P(m) = x 10
9.66 11.41 0.47 1.2

Compared with the error matrices obtained before, these values are

not big. So this model can also approach the real plant.

For the purpose of comparing two kinds of real plant, the controller
is designed using MF4 by the similar means with section 4.3.1. The
spectral radius and closed-loop response are illustrated in Fig.29 and
30. The largest gain that can be used to satisfy the required
robustness is k = 0.0037, ¢ = 0.0001.

From Fig.30, we can see, although the model error is not big, the
closed-loop response of realksystem is very bad. The main problem
is that the interaction is too big (more than 80%'). Even though
we make a great effort (for example, choose controller K is of more

general form

k.c,
K = diagi{k. + c., + J JbA - A
N ] ] o 1
or choose other first order models) the situation is little improved.

5. Summary and Discussion

1. 1In this paper, several methods for choosing approximate
models are given. Those models can closely represent the real plant
which is assumed to be of form (6). Corresponding to these models,
some simple form of controllers are given. Using these models and
controller forms, the stability and performance of the approximate

systems are easily decided. We give table (1) to summarize them.
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2. 1In section 4.1 of this paper, a more general measure of
model/plant mismatch A is derived (ref. formula 27). Consequently
a less gonservative necessary condition for including integral
action is obtained. This is an important addition to the results
of [1]. It means that the integral action can easily be used,
particularly if |[Em,lp = 0, the integral action can always be
included in the controller.

3. The paper has considered two examples. One of them is of
~large time delay but less open-loop. interactions (Gl). The other
is of more open-loop interactions but with small time delay (Gz).

The results of the design indicates that in the first case no control
difficulties exist but in the second case some problems occur,

(ref. section 3.2 and 4.3.2). This appears to be due to the bad-
condition of steady-state matrix GZ(O)' (The eigenvectors of Gz(o)
are more skew than those of Gl(oj).

4. The designs are robust in the sense that if plant change to
a "new plant" G with step response g, stability of scheme Fig.1(a)
will be retained provided (§~Y) is small enough;

Suppose the error matrix (i—YA) for the "new plant" is é and
their norm matrix is Nmp(ﬁ), then the criterion of stability is simply

A o= sup (] (z+ke) K| NP@E) <1 ... (38)
o SeD A p e

Assume Nmp(E) < n.Nmp(E) where n 1s a scalar constant, then

vl e ) N PE) < nevC e ) TR NP @)

So the largest value of n to satisfy (38) can be found by
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no_ k ... (39)

sup Y(|I(I+KGA)_1K” Nmp(E))
SED P

In our design, we keep v ( ”(I+KG )_lKH N p(E)) < 0.8, so0
SED A po®

It is clear that stability of "new plant" will be retained if
NmP(E) g L1.25 Nmp(E) (element by element)
or the general form

NPE <5 NP .. (40)
o

This condition is related to the condition (38) of [1] but has a

much simpler form.
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