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DYADIC EXPANSIONS AND MULTIVARIABLE FEEDBACK DESIGN

Consider an m-input/m-output linear, time—invariant system described
by the mxm transfer function matrix G(s) and the design of a unity negative
feedback system of the form indicated in Fig. 1 to produce desired
stability and performance characteristics. The forward path centrol
system has mxm transfer function matrix denoted by K(s).

Frequency domain design techniques for such feedback schemes
(Rosenbrock, 1974; Owens,1978; MacFarlane, 1980; Patel and Munro, 1982),
are,almost without exception, based upon the reduction of the design
process to the analysis of m non-interacting single-input/single;output
systems whose closed-loop stability and performance characteristics are
manipulated to produce the required stability and performance for the
real multivariable plant. For example, the direct and inverse Nycquist
array design techniques use the notion of precompensation to achieve the
system state of diagonal dominance where interaction effects can be
ignored in stability assessment. The characteristic locus design methods
achieve similar objectives by transforming the system transfer function
matrix to exactly diagonal form using similarity transformations. The
use of dyadic expansions in design (Owens, 1975, 1978, J879) has its
origins and physical motivations in the field of nuclear reactor spatial
control design (Owens, 1973a, 1973b) where the identified scalar systems
can be associated with well-defined modes of system behaviour. It does
however apply quite generally and is related to the inverse Nygquist array
and characteristic locus methodologies in that it achieves a reduction
of the design process to m scalar designs using a combination of diagonal
dominance and eguivalence transformation ideas. The simplest situation
where dyadic concepts are of value lies in the consideration of systems

with dvadic transfer function matrices.



Dyadic Systems

A system with mxm transfer function matrix G(s) is dyadic if

(Owens 1978, 1979) it has a dyadic transfer function matrix

gl(s) 0 . .0 (1)
Gls) =2 15 7. S B
0 o gm(s)

expressed as the series connection of the non-interacting system diag

{gj(s)}lijim and the constant matrices Pl'P2' Without loss of generality
(Owens 1979) it can be assumed that the pair (Pl,P2) is permissible in
the sense that both matrices are nonsingular and, writing Pl and P2 in
the form
.
(8,
Py = fogreeno] 4 By = |8, , (2)
B
m
J
there is a permutation & of the integers {1,2,...,m} such that
o, =a_ . B, =6 . 1<j<m (3)
37 %Gy Py TRy =3 =
L(2(3)) = 3 r 123 <m (4)

i.e. the rows (resp. columns) of P_ (resp P.) exist in similar complex

2 1

conjugate pairs. A consequence of this observation is that the scalar

systems {gj(s)}l<j<m may contain complex coefficients but satisfy the

'reality constraint'

gj(s) = 'R(j}(s) ; 1 <3 <m (5)

The block diagram interpretation of a dyadic system is illustrated

in Fig. 2 where it is seen that the transfer function matrix relating



the 'internal inputs' u = P2u to

Pl y is non-interacting. The interaction effects

the'internal outputs'§
in G can be described in terms of the non-dynamic elements Pl and P2
only, the interactions in the plant being the result of the choice of
inputs u and outputs y for system description rather than the 'natural’
choice of input u and output §. Examples of dvadic systems include the

2x2 systems

1l-s 2-g
Gls) = —= 7 | 1
(s+1) 5—— s 1l-s
. L _ -
= It 3 (S+l) (@] ( 1 1
1 2
i 2 o] = = L (6)
i (5+l)2 J -
and
G (s) G, (s)
e - | & 2e) |
l szs) Gl(s) J
) (1 -1} (6, (s) + G, (s) o] [ % %
[l o 0 Gl{s) = Gz(S) {-% % (7)

In both cases the dyadic structure is not obvious by inspection of
elements of G. The dyadic structure of G lies deeper than the mere
numerical structure as illustrated by (7) where G is dyadic independent
of the detailed dynamics in Gl and G2. The structure of dyadic systems
can be reflected by equivalent modal or invariance definitions of
dyadic transfer function matrices given in Owens (1978) which goes some
way to explaining why dyadic systems frequently occur in systems with a

degree of dynamic symmetry and in systems with simple first and second

order dynamic form (Owens 1978).



Control of Dyadic Systems

Controller design for a dyadic system G(s) can proceed (Owens,
1978, 1979) by initially ignoring the causes of interaction Pl and P2
and designing controllers kj(s) for each scalar subsystem gj(s) by
feedback of §j to Gj as illustrated in Fig. 3. The scalar feedback
systems have transfer functions

9. (s)k, (s)
J

= J ;
hy(e) = 7% g ek (5 rIm e

Given these designs, a multivariable controller K(s) for G(s) can be cons-

tructed of the dyadic form

ki(S} 0o . . ?
=i . =T
K(s) = P2 (8] ) Pl (9)
O
6 a O k (s)
m

The effect of this controller on the plant G(s) can be assessed from the

return-difference relation

I+ G(s)K(s)| =
m

=8

(1 + g.(s}k,(s)) (10}
1 ] ]

3

and the closed-loop transfer function matrix identity

8 ()21 +6(s)k(s)) Laisix(a)
C m

i

[ -1
P, | h(s) ] p

Equation (10) indicates that the stability characteristics of the multi-
variable feedback system of Fig. 1 are identical to those of the m scalar
feedback systems of Fig. 3 in the sense that they have identical pcle

distributions i.e. stabilization of the multivariable plant G can be



achieved by separate stabilization of m scalar systems gj(s), L 29 f_mf
Equation (11) indicates that the input-output behaviour of the multi-
variable feedback scheme is closely related to the dynamics of the scalar
feedback systems via the plant matrix Pl' The details of this relaticn-
ship depend crucially on the nature of {gj},{kj} and Pl. It is not, in
general, true that acceptable dynamic characteristics of hl,hz,..A,hm
will guarantee acceptable dynamic characteristics of the multivariable
feedback scheme. 1In general the controls of kj(s)’ X S_j < m, must be
designed to ensure ‘compatible‘’ dynamics for hl'hE""'hm' This is
not necessary if Pl is diagonal as the closed-lcop transfer function
matrix Hc(s) is then diagonal with diagonal elements hl’hQ""’hm'
If, however Pl is not diagonal, the situation is not so well-defined.
In particular, if a closed-lcop system with small interaction effects
is required, it is normally necessary (Owens, 1978, 19739) to design in
such a way that all scalar systems hj have similar step response charac-
teristics.

The resultant design K(s) is obtained from (9) which imposes a few
simple constraints on the choice of the {kj}. More precisely, if X(s)

is to be realizable in the sense that it contains only transfer functions

with real coefficients then it is necessary that

k. = Keoue 1l <3 <m 12
3(5) 9,(3}(5) . £3<m (12)
but this is easily achieved in practice. For example, in the frequently
encountered case when both Pl and P2 are real, then £(j) = j (1 < j < m)

and (12) reduces to the reguirement that each control transfer function
kj(s} must contain only real coefficients.

The control design procedure can be extended (Owens 1973b, 1978) to
relate the scalar designs to the integrity of the final design to sensor

or actuator failures. Also, by consideration of special classes of dyadic



systems representing multivariable generalizations of first and second
order systems (Owens 1978, 198la), it is possible to use dyadic systems
as approximate plant models to simplify the design process.

Dyadic Expansions. of G at a Specific Frequency

Even if the mxm plant transfer function matrix G(s) is not dyadic
in the sense defined above, it is , in general, possible to associate a
dyadic structure {(or dyadic expansion) with G(s) at a specific frequency
s = iw'. More precisely (Owens 1978, 1979) if G(iw') is nonsingular and
M(w') & al-iwne (") (13)
has a complete set of eigenvectors, then there exists a permissible trans-

formation (Pl(w'), Pz(w‘)) and complex scalarsvl. Yyreee oY such that

1
. Y5
Gliw') = Pl(w ) g P2(w ) (14)

"m

In particular Pl(w‘) cal be taken to be an eigenvector matrix of M(w')
with suitable column scaling to ensure properly (3) and Pz(m') taken to
be P;l(w’) G(iw') with suitably scaled rows.

Manipulation of Characteristic Loci at a Specific Frequency

The dyadic expansion of G at s = iw' has an important application
in the construction of controllers X(s) such that the forward path transfer
function Q(s) = G(s)K(s) has desired eigenvalues at s = iw'. This problem
is fundamental to the characteristic locus design methodology (Owens 1978;
MacFarlane, 1980) which bases its design strategies on manipulation of
the eigenstructure of Q by suitable choice of K.

The dyadic structure on the right-hand-side of (14) suggests the

dyadic control system
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m

After a little computation, it can be verified (Owens 1978, 1979) that

the eigenvalues qj(im'), 1 <3 <m of Q(iw"') are then given by
qj(im') = Yj kj{im',w') i 1 <3 <m (16)

and that Pl(w') is an eigenvector matrix of Q(iw').

Suitable choice of compensation networks kj(s,w’}, 1<3<m will
clearly enable the designer to produce desired eigenvalues qj{iw'),
1 <3 <m, for Q(iw') whilst ensuring physical realizability of K(s)
by satisfying the reality constraint (12)

Manipulation of Characteristic Lociover a Frequency Interval

Although manipulation of characteristic loci at a specific frequency
is vitally important, it is probably more important to be capable of
assessing the effect of the proposed controllers on the loci at other
frequencies. With Pl(m') and Pz(m‘) as above a transformed plant H(s,u')
can be defined by the relation (Owens 1978, 1979)

G(s) = Pl(w') His,w") P2(w') (17)
The identity (14) indicates that H is diagonal at s = in' with

H, (Go',w') = v, i 1 <j<m (18)
33 ' Yj =4 =

Noting that the characteristic loci of Q = GK are identical to those of
H diag {kj}, it is natural to use the diagonal terms as rational approxi-

mation to the eigenvalues i.e.



(8) = H, (s,w")k, (s,iw") ; 1 <3 <m (19)
i 33 j e

the approximation being exact at s = iw' due to (16) and (18). It is
exact at all other frequencies only if G is dyadic. If G is not dyadic,
then the errors in the approximation can be quantified using Gershgorins
theorem (Rosenbrock, 1974; owens, 1978; Patel and Munro, 1982) which
revealsthat the eigenvalues qj(s) all lie in the union of m 'Gershgorin

cirecles! Bj(s,m') of centre Hjj(s,m‘) kj(s,m'} and radius

ry(s,0) L |kj(s,m')| b qu(s,m')f » l<j<m (20)

a#]j

The circles have zero radius at s = iw’ and small radius in the vicinity
of s =w',

The behaviour of qj(iw), W > o, can be estimated by plotting
H..(iw,m')kj(iw,w') as a Nyquist diagram in the complex plane and super-
imposing at each frequency a circle of radius rj(iw,w') as illustrated
in Fig. 4. Invoking the working rule of thumb that each circle, in
general, contains an eigenvalue, it follows that qj(iw) lies in Bj{iw,w‘)
and the characteristic locus qj(im), w > o, lies in the Gershgorin band
generated by the union of the Bj(iw,m') as w increases from zero to
infinity. This is illustrated in Fig. 4.

The importance of these ideas in design is realized by using egn. (19)
as a working approximation to the characteristic loci during the design
phase and choosing the compensator kj based on classical analysis of the
scalar transfer function Hjj to produce the required gaiq/bhase portrait
over a frequency range of interest containing w'. The success of the
design can then be checked by superimposing the Gershgorin band on the
Nyquist plot to bound the errors in prediction of the actual characteristic

locus.



Although both the Nyquist plot of Hjjkj and its Gershgorin band depend

on the choice of compensator kj, the fractional prediction error

X |1 (iw,w") |
R
7 (21)

lq. (iw) - H.. (lw,0")k, (iv,w') ]
i i3 j .
|5, . Go,0")k, (iw,0")] —  |H,. (iw,w") ]|

i3 i 33

is bounded by a controller-independent quantity. The likely errors in
prediction can therefore be estimated at the beginning of the design by
the normal 8rv-run' with kj(s,w') =1, 1 <3 <m.

Dyadic Expansion and Diagonal Dominance

The Gershgorin bands provide estimates of the position of the
characteristic loci, and the estimates are very good in the vicinity
of s = iw', but there is no guarantee that they will be useful over the
whole frequency range o < w < + ® if the Gershgorin circles have 'large'
radius. There is however one important special case (Owens 1978, 1979)
whlere - wide Gershgorin bands can be accommodated in stability analysis,
namely the situation when a 'diagonal dominance' condition holds such
that the familiar (-1,0) point of the complex plane does not lie in or
on any Gershgorin band as illustrated in Fig. 5. Under this condition,
it is unnecessary to estimate the position of the characteristic loci
as it can be proved (Owens 1978, 1979) that, if the Nyquist diagram of
Hjjk' encircles the (-1,0) point nj times in a clockwise manner (anti~
clockwise encirclements being counted as negative) then K stabilizes
G if the following Nyguist-like stability condition holds

nO + nl + n2 G T - nm = 0 (24)

where n, is the number of poles of GK in the interior of the Nyquist
contour. 1In effect, the diagonal dominance condition enables stability
predictions to be made on the basis of the m scalar systems Hjj'
1 <3j <m, whilst ignoring the off-diagonal interaction terms in H.

An alternative technique based on inverse Nyquist ideas is given

in Owens (1978,1979) and has strong connections with the inverse Nyquist

array design technique.



- 10 =

The Method of Dyadic Expansion

If the diagonal dominance condition does not hold, design is
undertaken in a piece-wise frequency sense using a controller of the
form

1
K(s) = K(S,wm) {Im + ;—K(wg)} (22)

where K(s,wm) is a dyadic controller for G(s) constructed to produce

the required gain and phase characteristics for the characteristic loci

of G(s) K(s,wm) in the vicinity of an intermediate frequency W of
interest and K(wg) is a proportional dyadic contreoller for s_lG(s)K(s,mm}
ensuring the required gain and phase characteristics of the characteristic
loci of s_lG(s)K(s,mm)K(wR} in the vicinity of a low frequency of interest
wg' The combination of K(s,wm} and K(wl) to form K(s) as in (22) will
produce the required characteristic loci for GK provided that the integral
gains are not too high and that the desired characteristics in the
vicinity of @ and wz are compatible. This can always be checked by

calculation of the exact characteristic loci.

A Unified Design Theory

The use of diagonal dominance and eigenvalue methods in the method
of dyadic expansion suggest that the method of dyadic expansion the
characteristic locus method and the inverse and direct Nyquist array
techniques can be unified into one general design algorithm involving
transformations, pre-and post—compensation, diagonal dominance checks
and eigenvalue manipulation and estimation. This has been demonstrated

in Owens (1981b).

D.H. Owens
The University of Sheffield.
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