
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is the published version of a Proceedings Paper presented at the 6th IEEE
International Symposium on Service-Oriented System Engineering, SOSE
2011

Garraghan, P, Townend, P and Xu, J (2011) Byzantine fault-tolerance in federated cloud
computing. In: Proceedings - 6th IEEE International Symposium on Service-Oriented
System Engineering, SOSE 2011. UNSPECIFIED. IEEE , 280 - 285. ISBN 978-1-4673-
0411-5

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/76291

 1

Abstract — Cloud computing has emerged as popular paradigm
that enables the establishment of large scale, flexible computing
infrastructures that can offer significant cost savings for both
businesses and consumers by allowing compute resources to be
scaled dynamically to deal with current or anticipated usage [1].
This concept has been further strengthened with the emergence
of federated computing Clouds that allow users to scale
applications across multiple domains to meet Quality of Service
targets [2]. However, the challenge of building dependable and
robust Clouds remains a critical research problem that has not
yet been clearly understood [3], and yet is vital for establishing
user confidence in Clouds. This is particularly true when
considering Byzantine faults that are arbitrary in nature. This
paper analyses the application of Byzantine fault-tolerance to
federated Clouds in detail, and presents experimentation
performed to analyse the effectiveness of Byzantine fault-
tolerance in federated Clouds. We have developed a Cloud
framework called FT-FC that allows us to very quickly create
diversity-based Byzantine fault-tolerant systems and apply them
to federated Clouds, and have produced initial results to
demonstrate the feasibility and potential of this approach. We
have furthermore identified a number of research problems and
challenges that need to be addressed in order to progress this
area further. Our current experimental results, although very
initial, are highly encouraging figures, and demonstrate the
effectiveness of the FT-FC framework.

Index Terms— Cloud federation, Cloud computing,
dependability, Byzantine fault-tolerance

I. INTRODUCTION
Cloud computing has emerged as a computing paradigm to

facilitate the establishment of large scale, flexible computing
infrastructures that are available on demand. It provides an
opportunity to dynamically scale-up and scale-down the
infrastructure of an organization in accordance with the
requirements of the users of that infrastructure mitigating the
problems described above. However, as usage of compute and
storage Clouds grow, there are increasingly limits on how
much resource scaling a single Cloud can provide [4]; a
proposed solution to this problem is to federate multiple
Clouds together, in order to extend the scalability of Cloud
systems [2]. As Celesti et al. [5] argue, it is unclear what
exactly is meant by a federation in a Cloud context. There is
emerging literature that proposes the idea of a federation,
under the guise of different names that are frequently used
interchangeably by different authors [2][6][7][8]. These papers
describe very similar concepts using different terminology.
We have outlined two main principles that they share.

• Orchestration of multiple Clouds that are under different
organisations and administration domains. The key
concept of Cloud federation is that all the participating
Clouds are independent entities that are not controlled by a
central entity that has administrative control over all the
Clouds within the federation. This idea of Cloud federation
is different to that to that of multiple Clouds controlled by
a centralised administrative domain such as Amazon EC2,
which is separated into different Availability zones that all
conform to the developmental practices and jurisdiction of
a centralised entity [9].

• The enablement of portability and exchange of
information. Cloud federation enables the exchange of
computational or storage resources that result in increased
capacity of a Cloud application. A practical example of this
concept would be Cloud bursting [27], which is when a
single Cloud is unable to provision additional resources at
peak time, and acquires additional resources through the
leverage of an additional independent Cloud to meet
consumers quality of Service (QoS) requirements.

For this paper, we choose to lean towards the idea of Cloud
federation that [7] proposes, which advocates client-centric
protocols to orchestrate multiple Clouds. This model has been
predicted to reflect most enterprises over the next few years
looking to utilise hybrid Cloud infrastructure [10]. Cachin et
al. also propose that client-centric Cloud federation will
continue to evolve to contain more sophisticated services
involving communication across different Cloud services,
which introduces new challenges such as the provisioning of
complex services reliably “across a federated network of
possible disparate data centers” being a difficult and unsolved
problem [8].

A previously unexplored aspect of federating multiple
Clouds is the increased potential for using fault-tolerant
techniques to increase the dependability of applications spread
across them, particularly with regard to Byzantine fault-
tolerance. This paper analyses this topic in detail, and actual
experimentation has been performed to test the effectiveness
of Byzantine fault-tolerance in federated Clouds.

II. BYZANTINE FAULTS IN CLOUD COMPUTING
Many of the new challenges faced by the Cloud computing

community can be related to the concepts of dependability and
security. Writing in [11], Randell defines dependability as

Byzantine Fault-Tolerance in Federated Cloud Computing

Peter Garraghan, Paul Townend, Jie Xu

{scpmg, p.m.townend, j.xu} @ leeds.ac.uk

School of Computing, University of Leeds, LS2 9JT, UK

Proceedings of The 6th IEEE International Symposium on Service Oriented System Engineering (SOSE 2011)

978-1-4673-0412-2/11/$26.00 ©2011 IEEE 280

Hong
Stamp

 2

“that property of a computer system such that reliance can
justifiably be placed on the service it delivers. The service
delivered by a system is its behaviour as it is perceived by its
users.” It is important to state that this definition of
dependability is not simply a synonym for reliability; rather,
reliability is just one attribute of the overall concept.

Dependability in Clouds is a key concern, as there are
potentially great economic consequences for any failures [12];
additionally, these failures are increasingly common due to the
large scale of many Clouds [13]. For example, in 2009,
Amazon’s EC2 Cloud launched over 50,000 instances per day
[14]. As of 2011, the Amazon Cloud contains more than 449
billion objects and processes up to 290,000 requests per
second at peak time [15] with these figures predicted to
continue increasing.

Byzantine faults (such as sending inconsistent values to
requests [16]) are malicious arbitrary faults that do not fail
gracefully. These faults can be caused from malicious attacks,
operator errors, or software errors [17]. In Cloud, there is
increased concern over virtual machine security, from
potential compromise of credentials to access a virtual
machine (VM), and issues relating to Cloud multi-tenancy
which can result in malicious attacks [18]. An example
scenario would be for an attacker to instill arbitrary
(Byzantine) behavior into a compromised VM, and then
commence a DOS attack affecting the other replicas and
services on the same Cloud. Cloud services must be designed
under the assumption that Clouds experience frequent and
unpredictable failures [13], some of which will not fail
gracefully, as seen in recent outages [19].

 It is therefore highly desirable to design a system that can
reduce the likelihood of Byzantine faults affecting the overall
dependability of applications running in Clouds; one method
of achieving this is through Byzantine fault-tolerance (BFT).
BFT is a well-established topic in the field of fault tolerant
research, and is the application of the Byzantine general's
problem within a system, wherein a system can still achieve
consensus and tolerate at most a third of its components
behaving in an arbitrary manner [20]. BFT is typically
achieved through the use of diversity; multiple applications
(either copies or different designs) are executed, and their
results sent to an adjudication system which can use a variety
of algorithms, typically application specific, to decide upon a
correct result. An example of such a scheme is shown in figure
1, which shows an N-Version Design system capable of
handling Byzantine faults.

Current thinking, such as Birman et al.[13], has been that
Byzantine fault-tolerance may not be a critical research
agenda in single Clouds systems, citing the following reasons:

• An unsuitable threat model. Applying Byzantine fault-
tolerance on a single Cloud to achieve consensus could
potentially couple the behaviour of multiple nodes,
threatening the dependability of the entire Cloud system,
termed ‘fear of synchronisation’. Providers instead choose

fault prevention and detection, preferring to protect and
isolate the critical Cloud component from the outside
world instead of using BFT [21].

Figure 1. An n-version design system

• Failure independence. Byzantine fault-tolerance works
under the assumption that there is strong failure
independence between nodes within the system [16]. For
stronger failure independence, the Cloud would have to be
designed and developed by different teams, deploy
different architectures as well as technologies and
geographical locations. Building and maintaining Cloud
scale infrastructure diversity BFT would be expensive.
Single Clouds still experience a single point of failure on a
network, especially if the Cloud provider is not
geographically diverse [7].

• Byzantine fault-tolerance requires larger replica cost,
compared to that of other fault-tolerant schemes, which
will affect the availability of a single Cloud.

However, this situation changes when considering a
federated Cloud model. Indeed, there are a number of benefits
in applying BFT in federated Clouds which nullify many of
the problems of applying BFT to single Clouds:

• Cloud federation offers unprecedented levels of failure
independence at no additional cost to a single Cloud
provider or Cloud consumer. This is due to different
Clouds within a federation utilising different hardware,
virtualisation technology [22], geographical locations,
development teams, development architectures, power
supplies and so on.

• The threats to federated Cloud are more suitable than
that of a single Cloud. Critical components of a Cloud
application are now potentially accessible from anywhere
as opposed to a node running deep within a protected
environment within an inner Cloud infrastructure.

• Byzantine fault-tolerance can improve the integrity of
data and computation as well as offer a way to mask
potential inconsistencies in Clouds [7].

 For these reasons, there is great potential in applying BFT
techniques to federated Clouds; until now, there has been
limited literature on this subject, and little experimental work
has been performed to assess the feasibility of this conjecture.

281

 3

III. CURRENT BFT WORK IN CLOUD
 At present time, there is limited literature regarding
Byzantine fault-tolerance in Cloud computing systems.
Birman et al.[13] discuss the applicability of BFT and
consensus in Cloud computing, as well as outlining ideas and
research opportunities for researchers. [21] is a similar paper
to that of Birman et al., arguing a stronger case for the
applicability of BFT in federated Cloud, as well as a paradigm
shift of reliability work in federated Clouds and outlining
future research ideas. Zhang et al. [16] developed a BFT
framework for voluntary Cloud computing infrastructure.
Voluntary Clouds are unlike Clouds that are well-provisioned
and managed by a large (typically enterprise) groups such as
Amazon, Microsoft, Taskforce etc. [23], and instead are akin
to Clouds composed of user contributed computing resources
[33]; Our work aims to also encompass well-provisioned and
well-managed Cloud infrastructures. Guearroiu et al. [22]
provides a high level reevaluation of BFT protocols in various
Cloud deployments by measuring performance, however the
paper does not approach the work from a formal dependability
perspective, nor does it contain an experiment framework.

IV. IMPLEMENTATION AND EXPERIMENTATION
In order to explore the feasibility of Byzantine fault-

tolerance in federated Cloud, we have implemented a
framework called “Fault-Tolerant - Federated Cloud” (FT-
FC). It includes several features to facilitate and encourage the
use of Byzantine fault-tolerance in federated Cloud
applications. These features are as follows:

• An automatic job scheduling tool that allows Cloud
application jobs to be automatically submitted to multiple
heterogeneous Clouds, running either Xen or KVM
hypervisors.

• A messaging system based on the SSH protocol (i.e. ssh
and scp) that allows communications between a Cloud
and FT-FC to be performed securely.

• A fault-tolerant adjudication system that can send and
receive communications from multiple Clouds in order to
achieve consensus on returned results from Clouds which
could potentially fail.

 FT-FC allows the creation of many different forms of
redundant fault-tolerant algorithms; through the use of the
framework, we have performed initial work to assess the
feasibility and effectiveness of incorporating BFT into
federated Cloud applications.

We have used FT-FC to perform a series of experiments
that involve submitting real Cloud jobs into a federated Cloud.
The Cloud application chosen is based on the MoSeS e-Social
Science project [24], and consists of a program that generates
a virtual representation of a population and then performs
various analyses on that population. It returns a series of
aggregate values based on those analyses back to the user.
The MoSeS application was instrumented in order to allow us
to inject a variety of Byzantine faults into its processing

(specifically, value, omission and late timing faults), and FT-
FC framework code was added to allow the application to
communicate results back to the adjudication system. This
application was installed on four separate virtual machines
evenly spread across the two Clouds.

The two Cloud systems we federated together are also real
world systems; iVIC and the University of Leeds Test Cloud.
iVIC is a virtual Cloud computing environment which allows
an organisation to manage, configure and deploy large
heterogeneous virtualised computing resources [32]. iVIC uses
the KVM hypervisor and Fedora OS virtual machine images.
The University of Leeds Test Cloud is a computing
environment that uses the Debian OS and the Xen hypervisor.

The effectiveness of BFT is based on the premise of failure
independence [16]; one of the ways to achieve this is through
diversity [25]. The diversity mechanism selected for this
system is an N-Copy system; N-Copy is similar to N-version
design systems (as shown in figure 1) but instead of design
diversity, implements data diversity [26] whereby multiple
copies of the same application are given slightly different
input data. The decision to use N-Copy design in this
experiment is a result of the inadequate time frame required
for designing separate heterogeneous services programmed in
different languages and structures, as well as employing
different developers to design and implement such systems
was felt to be out of scope for these initial experiments.
Although we are aware of the increase in dependency of
failure in an N-Copy system, the purpose of our experiments
in this paper is primarily to explore the feasibility of offering
BFT in a federated cloud context; we find N-Copy
Programming thus acceptable for this paper's scope.

The adjudicator performs acceptance testing by averaging
the results of the returned values from the services. If the
adjudicator detects that one or more of the channels violates
the user specification by being outside of acceptable
boundaries as a result of failure of a service such as sending an
incorrect value or a result arriving too early or too late, it
disregards the result and flags the service as failed.

Adjudication is successful when there are at least 2n + 1
services that do not violate either time or value domains, else
it is flagged as a failed adjudication. The reason being that 2n
+ 1 requires fewer replicas it messages from channels are
signed (we know who sent the message), therefore increasing
the availability of the Cloud. If a consensus is not reached then
the adjudication marks the adjudication stage as failed. The
reason for this is because it is more damaging to allow
violations of a system specification from both a security and
dependability perspective as opposed to accepting no results at
all; this case is true especially in mission-critical applications
and infrastructure.

Experiments were performed with two different
deployments. Entire Cloud infrastructures with a varying
chance of failing and Clouds with a probability of failure
propagation to other services on the same Cloud. The

282

 4

percentage of failure for each service in the experiments were
set at 10%, 5% and 1%.

For the first deployment, the above percentages were set
and applied to all services on an individual Cloud at varying
levels(for example, services in iVIC have a 10% chance of
failing, while Test Cloud services have a 5% chance of
failing). The second deployment contained failure percentages
the same as the second experiment, but also included a 10%
chance of failure propagation to a service residing on the same
Cloud infrastructure. In this experiment we assume that the
job submission systems and the adjudicator are fault free. We
also assume that the failure independence between services
residing across heterogeneous Cloud environments is stronger
than that of services within the same Cloud.

Three different types of failure were modeled and injected
into each of the services for the experiments: value faults,
omission faults, and late timing faults. Omission faults cause
the data submitted from the service to never arrive at the
adjudicator, violating the maximum adjudicator time
boundary. Timing faults cause the data submitted from the
service to arrive at the adjudicator outside of the specified
time domain. This varies from the omission fault in that the
adjudicator acknowledges that the data from the service
actually arrives in the adjudication phase. Value faults
returned to the adjudicator lie outside the valid value
boundaries.

The experiment was run for all three fault types 2500 times,
at all three failure rates respectively (10%, 5%, 1%). These
failure rates values represent the annual failure rate of Amazon
EBS snapshots amplified by a factor of 10.(Annual failure rate
of EBSs lie between 0.1% and 0.5%) [27]; the reason for this
is the necessary time required to run the experiments at these
values and return accurate results in the given time frame. The
experiments are visualised in figure 2; the experiment
functions in the order as follows:

 1) Job Submission: The system automatically submits jobs
to individual Clouds from the local domain.

 2) Job allocation: Jobs are submitted to N-Copy services in
both Clouds.

 3) Service execution: Each virtual machine containing the
replica service executes and processes the e-science
application. At this stage faults are injected into the service.

 4) Results sent: Each service submits its results as
structured data to the adjudicator, which resides back in the
local domain.

 5) Adjudication: The adjudicator decides whether the
returned results are acceptable in the given time and/or value
domains to remain dependable.

 6) Adjudication result: Result is either cast as a success or
failure; either result is recorded in a database in the local
domain.

 The framework records the result of the adjudication
process as well as information such as the total job submission
time, success state of the adjudicator, the reason for failing (if
any) and the individual flagging of detected failures.

V. RESULTS AND EVALUATION
Table 1 shows the comparison of the rate of adjudication

success in experiment 1 and 2. The second column 'Failure %
iVIC, Test Cloud' contains two numerical values. For
example, 10-5 represents the services in the iVIC Cloud
having a failure rate of 10%, and 5% for Test Cloud. The
reason for this table is to contrast the effectiveness of the N-
Copy scheme selected in the presence of failure propagation
and with no failure propagation. A diagram of table 1 is shown
in Figure 3; which shows that our selected N-Copy scheme in
a federated Cloud experiences a lower adjudication success in
the presence of failure propagation than that of a federated
Cloud without failure propagation. The scheme shows that it
can achieve successful adjudication rate above 99.7% in the

Figure 2. The experiment system created with the FT-FC Framework

283

 5

presence of fault injections with Clouds failure rates of iVIC
equal to 5% and Test Cloud failure 1%, as well as in the
presence of failure propagation. It is expected that the
adjudication success rates in experiment 2 would be lower of
that in experiment 1, as failure propagation decreases the
independence of components that reside within the same
infrastructure.

Table 1. Experiment 2: Differing failure rate Clouds with
failure propagation

 The success of adjudication would have been lower if all
services with the potential to propagate faults resided on a
single Cloud as opposed to a federated Cloud environment. In
terms of our experiment set up, the reason for this
phenomenon is because the failure independence between
services on iVIC and Test Cloud is stronger than that of
services residing on an individual Cloud. In the event of a
service failing, instead of a propagation occurring from one
service to another and only once, services residing on the same
Cloud infrastructure could for example have the capability to
propagate to one of three services. This problem is also
amplified when considering secondary or tertiary failure
propagation after the initial failure.

The experimental results, while preliminary, help us validate
an issue concerning Cloud consensus described earlier in
section II about the dangers of coupling system behavior and
the increased probability of failure propagation within a single
Cloud infrastructure, and how this problem might be better
tolerated in a federated Cloud environment. This is something
of great interest to us, which we hope to study in detail in later
work.

VI. FUTURE WORK
 This initial work opens up a wide variety of research areas
and challenges for future work; we have identified several
promising areas, and list these as follows:

• A more accurate real world Cloud faults and system
model. Our set up of faults and failure propagation in the
experiments are relatively simplistic, with faults injected
into the application layer of the Cloud, as well as a fixed
rate of propagation. Research into the realistic
classification of faults found on Cloud and the modeling of
Cloud failure propagation is urgently needed. This would
also give future work a more precise answer into what a
Byzantine fault on a Cloud might occur and its effects,
allowing us to inject more complex and real world faults.
There has been some initial work in injecting faults into
the virtualisation layer of Clouds [28]; however the paper
does not encompass Byzantine faults.

• Cloud characteristics that will affect BFT. There are a
number of characteristics that have not been considered in
the scope of this paper. Cloud dynamicity in the form of
scalability (this may affect the performance of a BFT
scheme) and virtual machine migration (this may increase
the probability of failure propagation between Clouds,
which will affect the failure of independence and therefore
the strength of BFT), the use of eventual consistency [29]
in Clouds (not all applications can operate using eventual
consistency) and critical Cloud components (for example,
an investigation into how Cloud components used in a N-
Design scheme could be given different weightings in an
adjudication algorithm).

• Further experimentation using current BFT protocols in
federated Cloud, as well as looking closer at the nature of
coupling and decoupling Clouds. We believe that the
experiments ran are decent preliminary work into how
federated Cloud might be able to address the problems of
coupling nodes in Cloud systems.

 As mentioned in previous sections, one of the problems of
Clouds is that of the massively scalable and contain large size
of redundant components. As a Cloud system scales up, so
does the frequency of failures on a Cloud platform.
Therefore, Clouds should be designed under the assumption
that they will experience frequent and potentially
unpredictable failures; this requires services to tolerate and
recover from failures autonomously as well as have fast
recovery procedures [30]. Recovery Oriented Computing
[31] works under the premise of reducing mean time to
recovery, and a large and scalable form of this might be of
benefit to this line of research.

Our experiment involves four virtual machines on two small
Cloud infrastructures; future work and subsequent findings
would be greatly improved with the inclusion of test data and
experimentation from larger Clouds.

Fault
Type

Failure %
iVIC, Test
Cloud

Experiment
1
adjudicate
success %

Experiment
2
adjudicate
success %

Abj.
difference
%

Value 10-5 95.68 94.2 1.57
5-1 99.76 98.8 0.97

Time 10-5 96.4 94.1 2.44
5-1 99.44 98.6 0.85

Omission 10-5 96.6 92.6 4.31
5-1 99.48 98 1.51

Figure 3. Experiment efficiency comparison 284

 6

VII. CONCLUSION
 Building dependable Clouds is a challenging research area,
but the prospect of increasing numbers of federated Cloud
environments offers significant potential to apply Byzantine
fault-tolerance – a topic that has been hitherto considered
unfeasible in traditional single Cloud systems. This paper
presents that the application of BFT to federated Clouds has
been analysed in detail, and that actual experimentation has
been performed to test the effectiveness of Byzantine fault-
tolerance in federated Clouds. We have developed a
framework called FT-FC that allows us to very quickly create
diversity-based Byzantine fault-tolerant systems and apply
them to federated Clouds, and have produced initial results to
demonstrate the feasibility and potential of this approach. We
have furthermore identified a number of research problems
and challenges that need to be addressed in order to progress
this area further. Our current experimental results are very
initial and need to be developed further, but show highly
encouraging figures, and demonstrate the effectiveness of the
FT-FC framework at its current stage of maturity.

ACKNOWLEDGEMENTS
 We would like to thank James Hardy from the University of
Derby for technical assistance in installing iVIC.

REFERENCES
[1] Above the Clouds: A Berkeley View of Cloud Computing" by

Michael Armbrust et al. Technical Report EECS-2009-28,
EECS Department, University of California, Berkeley

[2] Buyya, R.Ranjan, R.N.Calheiros ‘InterCloud: Utility-oriented
federation of cloud computing environments for scaling of
application services.’ Proceedings of the 10th International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2010), Busan, South Korea. Springer:
Germany, 21–23 May 2010; 328–336

[3] Z.Zheng, T. Zhou, M.Lyu, I.King ‘FTCloud: A Component
Ranking Framework for Fault-tolerant Cloud Applications’
2010. IEEE 21st International Symposium on Software
Reliability Engineering, Nov. 2010, pp 398-407

[4] B. Rochwerger et al. ‘The reservoir model and architecture for
open federated cloud computing, in: Internet and Enterprise
scale Data Centers’, IBM Journal of Research and Development
53 (4) (2009) 4:1_4:11 (special issue).

[5] A. Celesti, et al. ‘Three-phase Cross-cloud Federation Model:
The Cloud SSO Authentication‘ Published on Proceedings of
The 2nd IEEE International Conference on Advances in Future
Internet (AFIN 2010), Venice, Italy July 2010

[6] Jemal Abawajy, "Determining Service Trustworthiness in
Intercloud Computing Environments," ispan, pp.784-788, 2009
10th International Symposium on Pervasive Systems,
Algorithms, and Networks, 2009

[7] C. Cachin, R. Haas, and M. Vukoli´c. Dependable storage in the
Intercloud. Research Report RZ 3783, IBM Research, Aug.
2010

[8] B .Rochwerger, et al., ‘Reservoir - When One Cloud Is Not
Enough,’ Computer, vol.44, no.3, pp.44-51, 2011.

[9] Jeff Barr, Attila Narin, and Jinesh Varia, ‘Building Fault-
tolerant Applications on AWS’, October 2011

[10] Pankaj Goyal 'Enterprise Usability of Cloud Computing
Environments: Issues and Challenges 2010' 19th IEEE
International Workshops on Enabling Technologies
Infrastructures for Collaborative Enterprises (2010) Pages: 54-
59

[11] B. Randell et al., “Dependability – Its Attributes – Impairments
and Means”, in Predictably Dependable Computing Systems,
Springer-Verlag, 1995

[12] S.Shankland 'Amazon suffers U.S. outage on Friday'
http://news.cnet.com/8301-10784_3-9962010-7.html

[13] K. Birman, G.Chockler, R. van Renesse ‘Toward a cloud
computing research agenda.’ SIGACT News, 40, 2, 68-80, 2009

[14] Amazon Usage Estimates -
http://blog.rightscale.com/2009/10/05/amazon-usage-estimates/

[15] http://aws.typepad.com/aws/2011/07/amazon-s3-more-than-449-
billion-objects.html

[16] Y. Zhang, Z. Zheng, M.R. Lyu BFTCloud: A Byzantine Fault-
tolerance Framework for Voluntary-Resource Cloud, 2011 IEEE
4th International Conference on Cloud Computing

[17] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and
proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,
2002.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. ‘Hey,
you, get off of my cloud: exploring imation leakage in third-
party compute clouds. CCS ’09: Proceedings of the 16th ACM
Conferon Computer and Communications Security, pp 199–212,
New York, NY, USA, 2009. ACM.

[19] Amazon outage - http://aws.amazon.com/message/65648/
[20] Leslie Lamport , Robert Shostak , Marshall Pease, The

Byzantine Generals Problem, ACM Transactions on
Programming Languages and Systems (TOPLAS), v.4 n.3,
p.382-401, July 1982

[21] Vukolić, M.: The byzantine empire in the intercloud. SIGACT
News 41, 105–111 (2010)

[22] R. Guerraoui and M. Yabandeh. Independent faults in the cloud.
In LADIS '10: Proceedings of the 4th ACM SIGOPS/SIGACT
Workshop on Large-Scale Distributed Systems and Middleware,
pages 12--16, 2010

[23] L. Tang, J. Dong, Y. Zhao, and L. Zhang, “Enterprise Cloud
Service Architecture,” in Proc. of CLOUD’10, 2010, pp. 27–34

[24] M. Birkin, P. Townend, A. Turner, B. Wu, J. Arshad, J. Xu,
“MoSeS: A Grid-enabled spatial decision support system”, in
Social Science Computing Review, in press. DOI:
10.1177/089443930933229, 2009

[25] A. Avizienis, "The N-version approach to fault-tolerance
software", IEEE Trans. Software Eng., vol. SE-11, pp.1491 -
1501 , 1985.

[26] Paul E. Ammann , John C. Knight, Data Diversity: An Approach
to Software Fault-tolerance, IEEE Transactions on Computers,
v.37 n.4, p.418-425, April 1988

[27] Srijith K. Nair, Sakshi Porwal, et al. "Towards Secure Cloud
Bursting, Brokerage and Aggregation," ecows, pp.189-196,
2010 Eighth IEEE European Conference on Web Services, 2010

[28] C. Pham, D. Chen, Z. Kalbarczyk, R. K. Iyer CloudVal: A
framework for validation of virtualization environment in cloud
infrastructure 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN) (June 2011), pg. 189-
196

[29] W. Vogels ‘Eventually consistent’, Communications of the
ACM, v.52 n.1, January 2009

[30] [J. Hamilton. On designing and deploying Internet-scale
services. In LISA’07: Proceedings of the21st conference on
Large Installation System Administration, pages 1–12, Dallas,
TX, 2007. USENIX Association.

[31] D Patterson. Recovery Oriented Computing. 2009.
http://roc.cs.berkeley.edu.

[32] Liang Zhong, Tianyu Wo, Jianxin Li, and Bo Li,"vSaaS:A
Virtual Software as a Service Architecture for Cloud Computing
Environment", Poster of the 5th IEEE International Conference
on e-Science, 2009.

[33] A. Chandra and J. Weissman, “Nebulas: using distributed
voluntary resources to build clouds,” in Proc. of
HOTCLOUD’09, 2009

285

	published_version_proceedings paper_.pdf
	Published - Byzantine fault tolerance in Federated Cloud Computing.pdf

