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Abstract — Cloud computing has emerged as popular paradigm 
that enables the establishment of large scale, flexible computing 
infrastructures that can offer significant cost savings for both 
businesses and consumers by allowing compute resources to be 
scaled dynamically to deal with current or anticipated usage [1]. 
This concept has been further strengthened with the emergence 
of federated computing Clouds that allow users to scale 
applications across multiple domains to meet Quality of Service 
targets [2]. However, the challenge of building dependable and 
robust Clouds remains a critical research problem that has not 
yet been clearly understood [3], and yet is vital for establishing 
user confidence in Clouds. This is particularly true when 
considering Byzantine faults that are arbitrary in nature. This 
paper analyses the application of Byzantine fault-tolerance to 
federated Clouds in detail, and presents experimentation 
performed to analyse the effectiveness of Byzantine fault-
tolerance in federated Clouds. We have developed a Cloud 
framework called FT-FC that allows us to very quickly create 
diversity-based Byzantine fault-tolerant systems and apply them 
to federated Clouds, and have produced initial results to 
demonstrate the feasibility and potential of this approach. We 
have furthermore identified a number of research problems and 
challenges that need to be addressed in order to progress this 
area further. Our current experimental results, although very 
initial, are highly encouraging figures, and demonstrate the 
effectiveness of the FT-FC framework. 
 
Index Terms— Cloud federation, Cloud computing, 
dependability, Byzantine fault-tolerance 

I. INTRODUCTION 
Cloud computing has emerged as a computing paradigm to 

facilitate the establishment of large scale, flexible computing 
infrastructures that are available on demand. It provides an 
opportunity to dynamically scale-up and scale-down the 
infrastructure of an organization in accordance with the 
requirements of the users of that infrastructure mitigating the 
problems described above. However, as usage of compute and 
storage Clouds grow, there are increasingly limits on how 
much resource scaling a single Cloud can provide [4]; a 
proposed solution to this problem is to federate multiple 
Clouds together, in order to extend the scalability of Cloud 
systems [2]. As Celesti et al. [5] argue, it is unclear what 
exactly is meant by a federation in a Cloud context. There is 
emerging literature that proposes the idea of a federation, 
under the guise of different names that are frequently used 
interchangeably by different authors [2][6][7][8]. These papers 
describe very similar concepts using different terminology. 
We have outlined two main principles that they share. 

• Orchestration of multiple Clouds that are under different 
organisations and administration domains.  The key 
concept of Cloud federation is that all the participating 
Clouds are independent entities that are not controlled by a 
central entity that has administrative control over all the 
Clouds within the federation. This idea of Cloud federation 
is different to that to that of multiple Clouds controlled by 
a centralised administrative domain such as Amazon EC2, 
which is separated into different Availability zones that all 
conform to the developmental practices and jurisdiction of 
a centralised entity [9]. 

• The enablement of portability and exchange of 
information. Cloud federation enables the exchange of 
computational or storage resources that result in increased 
capacity of a Cloud application. A practical example of this 
concept would be Cloud bursting [27], which is when a 
single Cloud is unable to provision additional resources at 
peak time, and acquires additional resources through the 
leverage of an additional independent Cloud to meet 
consumers quality of Service (QoS) requirements. 

For this paper, we choose to lean towards the idea of Cloud 
federation that [7] proposes, which advocates client-centric 
protocols to orchestrate multiple Clouds. This model has been 
predicted to reflect most enterprises over the next few years 
looking to utilise hybrid Cloud infrastructure [10]. Cachin et 
al. also propose that client-centric Cloud federation will 
continue to evolve to contain more sophisticated services 
involving communication across different Cloud services, 
which introduces new challenges such as the provisioning of 
complex services reliably “across a federated network of 
possible disparate data centers” being a difficult and unsolved 
problem [8]. 

A previously unexplored aspect of federating multiple 
Clouds is the increased potential for using fault-tolerant 
techniques to increase the dependability of applications spread 
across them, particularly with regard to Byzantine fault-
tolerance. This paper analyses this topic in detail, and actual 
experimentation has been performed to test the effectiveness 
of Byzantine fault-tolerance in federated Clouds. 

II. BYZANTINE FAULTS IN CLOUD COMPUTING 
Many of the new challenges faced by the Cloud computing 

community can be related to the concepts of dependability and 
security. Writing in [11], Randell defines dependability as 
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“that property of a computer system such that reliance can 
justifiably be placed on the service it delivers. The service 
delivered by a system is its behaviour as it is perceived by its 
users.” It is important to state that this definition of 
dependability is not simply a synonym for reliability; rather, 
reliability is just one attribute of the overall concept.  

Dependability in Clouds is a key concern, as there are 
potentially great economic consequences for any failures [12]; 
additionally, these failures are increasingly common due to the 
large scale of many Clouds [13]. For example, in 2009, 
Amazon’s EC2 Cloud launched over 50,000 instances per day 
[14]. As of 2011, the Amazon Cloud contains more than 449 
billion objects and processes up to 290,000 requests per 
second at peak time [15] with these figures predicted to 
continue increasing.  

Byzantine faults (such as sending inconsistent values to 
requests [16]) are malicious arbitrary faults that do not fail 
gracefully. These faults can be caused from malicious attacks, 
operator errors, or software errors [17]. In Cloud, there is 
increased concern over virtual machine security, from 
potential compromise of credentials to access a virtual 
machine (VM), and issues relating to Cloud multi-tenancy 
which can result in malicious attacks [18]. An example 
scenario would be for an attacker to instill arbitrary 
(Byzantine) behavior into a compromised VM, and then 
commence a DOS attack affecting the other replicas and 
services on the same Cloud. Cloud services must be designed 
under the assumption that Clouds experience frequent and 
unpredictable failures [13], some of which will not fail 
gracefully, as seen in recent outages [19].  

 It is therefore highly desirable to design a system that can 
reduce the likelihood of Byzantine faults affecting the overall 
dependability of applications running in Clouds; one method 
of achieving this is through Byzantine fault-tolerance (BFT). 
BFT is a well-established topic in the field of fault tolerant 
research, and is the application of the Byzantine general's 
problem within a system, wherein a system can still achieve 
consensus and tolerate at most a third of its components 
behaving in an arbitrary manner [20]. BFT is typically 
achieved through the use of diversity; multiple applications 
(either copies or different designs) are executed, and their 
results sent to an adjudication system which can use a variety 
of algorithms, typically application specific, to decide upon a 
correct result. An example of such a scheme is shown in figure 
1, which shows an N-Version Design system capable of 
handling Byzantine faults.  

Current thinking, such as Birman et al.[13], has been that 
Byzantine fault-tolerance may not be a critical research 
agenda in single Clouds systems, citing the following reasons: 

• An unsuitable threat model. Applying Byzantine fault-
tolerance on a single Cloud to achieve consensus could 
potentially couple the behaviour of multiple nodes, 
threatening the dependability of the entire Cloud system, 
termed ‘fear of synchronisation’. Providers instead choose 

fault prevention and detection, preferring to protect and 
isolate the critical Cloud component from the outside 
world instead of using BFT [21]. 

Figure 1. An n-version design system 

• Failure independence. Byzantine fault-tolerance works 
under the assumption that there is strong failure 
independence between nodes within the system [16].  For 
stronger failure independence, the Cloud would have to be 
designed and developed by different teams, deploy 
different architectures as well as technologies and 
geographical locations. Building and maintaining Cloud 
scale infrastructure diversity BFT would be expensive. 
Single Clouds still experience a single point of failure on a 
network, especially if the Cloud provider is not 
geographically diverse [7].  

• Byzantine fault-tolerance requires larger replica cost, 
compared to that of other fault-tolerant schemes, which 
will affect the availability of a single Cloud. 

However, this situation changes when considering a 
federated Cloud model. Indeed, there are a number of benefits 
in applying BFT in federated Clouds which nullify many of 
the problems of applying BFT to single Clouds:  

• Cloud federation offers unprecedented levels of failure 
independence at no additional cost to a single Cloud 
provider or Cloud consumer. This is due to different 
Clouds within a federation utilising different hardware, 
virtualisation technology [22], geographical locations, 
development teams, development architectures, power 
supplies and so on.  

• The threats to federated Cloud are more suitable than 
that of a single Cloud. Critical components of a Cloud 
application are now potentially accessible from anywhere 
as opposed to a node running deep within a protected 
environment within an inner Cloud infrastructure.  

• Byzantine fault-tolerance can improve the integrity of 
data and computation as well as offer a way to mask 
potential inconsistencies in Clouds [7]. 

 For these reasons, there is great potential in applying BFT 
techniques to federated Clouds; until now, there has been 
limited literature on this subject, and little experimental work 
has been performed to assess the feasibility of this conjecture. 
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III. CURRENT BFT WORK IN CLOUD 
 At present time, there is limited literature regarding 
Byzantine fault-tolerance in Cloud computing systems. 
Birman et al.[13] discuss the applicability of BFT and 
consensus in Cloud computing, as well as outlining ideas and 
research opportunities for researchers. [21] is a similar paper 
to that of Birman et al., arguing a stronger case for the 
applicability of BFT in federated Cloud, as well as a paradigm 
shift of reliability work in federated Clouds and outlining 
future research ideas. Zhang et al. [16] developed a BFT 
framework for voluntary Cloud computing infrastructure. 
Voluntary Clouds are unlike Clouds that are well-provisioned 
and managed by a large (typically enterprise) groups such as 
Amazon, Microsoft, Taskforce etc. [23],  and instead are akin 
to Clouds composed of user contributed computing resources 
[33]; Our work aims to also encompass well-provisioned and 
well-managed Cloud infrastructures. Guearroiu et al. [22]  
provides a high level reevaluation of BFT protocols in various 
Cloud deployments by measuring performance, however the 
paper does not approach the work from a formal dependability 
perspective, nor does it contain an experiment framework.  

IV. IMPLEMENTATION AND EXPERIMENTATION 
In order to explore the feasibility of Byzantine fault-

tolerance in federated Cloud, we have implemented a 
framework called “Fault-Tolerant - Federated Cloud” (FT-
FC). It includes several features to facilitate and encourage the 
use of Byzantine fault-tolerance in federated Cloud 
applications. These features are as follows: 

• An automatic job scheduling tool that allows Cloud 
application jobs to be automatically submitted to multiple 
heterogeneous Clouds, running either Xen or KVM 
hypervisors. 

• A messaging system based on the SSH protocol (i.e. ssh 
and scp) that allows communications between a Cloud 
and FT-FC to be performed securely. 

• A fault-tolerant adjudication system that can send and 
receive communications from multiple Clouds in order to 
achieve consensus on returned results from Clouds which 
could potentially fail. 

 FT-FC allows the creation of many different forms of 
redundant fault-tolerant algorithms; through the use of the 
framework, we have performed initial work to assess the 
feasibility and effectiveness of incorporating BFT into 
federated Cloud applications. 

We have used FT-FC to perform a series of experiments 
that involve submitting real Cloud jobs into a federated Cloud. 
The Cloud application chosen is based on the MoSeS e-Social 
Science project [24], and consists of a program that generates 
a virtual representation of a population and then performs 
various analyses on that population. It returns a series of 
aggregate values based on those analyses back to the user.  
The MoSeS application was instrumented in order to allow us 
to inject a variety of Byzantine faults into its processing 

(specifically, value, omission and late timing faults), and FT-
FC framework code was added to allow the application to 
communicate results back to the adjudication system. This 
application was installed on four separate virtual machines 
evenly spread across the two Clouds. 

The two Cloud systems we federated together are also real 
world systems; iVIC and the University of Leeds Test Cloud. 
iVIC is a virtual Cloud computing environment which allows 
an organisation to manage, configure and deploy large 
heterogeneous virtualised computing resources [32]. iVIC uses 
the KVM hypervisor and  Fedora OS virtual machine images. 
The University of Leeds Test Cloud is a computing 
environment that uses the Debian OS and the Xen hypervisor.  

The effectiveness of BFT is based on the premise of failure 
independence [16]; one of the ways to achieve this is through 
diversity [25]. The diversity mechanism selected for this 
system is an N-Copy system; N-Copy is similar to N-version 
design systems (as shown in figure 1) but instead of design 
diversity, implements data diversity [26] whereby multiple 
copies of the same application are given slightly different 
input data. The decision to use N-Copy design in this 
experiment is a result of the inadequate time frame required 
for designing separate heterogeneous services programmed in 
different languages and structures, as well as employing 
different developers to design and implement such systems 
was felt to be out of scope for these initial experiments. 
Although we are aware of the increase in dependency of 
failure in an N-Copy system, the purpose of our experiments 
in this paper is primarily to explore the feasibility of offering 
BFT in a federated cloud context; we find N-Copy 
Programming thus acceptable for this paper's scope. 

The adjudicator performs acceptance testing by averaging 
the results of the returned values from the services. If the 
adjudicator detects that one or more of the channels violates 
the user specification by being outside of acceptable 
boundaries as a result of failure of a service such as sending an 
incorrect value or a result arriving too early or too late, it 
disregards the result and flags the service as failed.   

Adjudication is successful when there are at least 2n + 1 
services that do not violate either time or value domains, else 
it is flagged as a failed adjudication. The reason being that 2n 
+ 1 requires fewer replicas it messages from channels are 
signed (we know who sent the message), therefore increasing 
the availability of the Cloud. If a consensus is not reached then 
the adjudication marks the adjudication stage as failed. The 
reason for this is because it is more damaging to allow 
violations of a system specification from both a security and 
dependability perspective as opposed to accepting no results at 
all; this case is true especially in mission-critical applications 
and infrastructure. 

Experiments were performed with two different 
deployments. Entire Cloud infrastructures with a varying 
chance of failing and Clouds with a probability of failure 
propagation to other services on the same Cloud. The 

282



 4

percentage of failure for each service in the experiments were 
set at 10%, 5% and 1%. 

For the first deployment, the above percentages were set 
and applied to all services on an individual Cloud at varying 
levels(for example, services in iVIC have a 10% chance of 
failing, while Test Cloud services have a 5% chance of 
failing). The second deployment contained failure percentages 
the same as the second experiment, but also included a 10% 
chance of failure propagation to a service residing on the same 
Cloud infrastructure. In this experiment we assume that the 
job submission systems and the adjudicator are fault free. We 
also assume that the failure independence between services 
residing across heterogeneous Cloud environments is stronger 
than that of services within the same Cloud. 

Three different types of failure were modeled and injected 
into each of the services for the experiments: value faults, 
omission faults, and late timing faults.  Omission faults cause 
the data submitted from the service to never arrive at the 
adjudicator, violating the maximum adjudicator time 
boundary. Timing faults cause the data submitted from the 
service to arrive at the adjudicator outside of the specified 
time domain. This varies from the omission fault in that the 
adjudicator acknowledges that the data from the service 
actually arrives in the adjudication phase. Value faults 
returned to the adjudicator lie outside the valid value 
boundaries. 

The experiment was run for all three fault types 2500 times, 
at all three failure rates respectively (10%, 5%, 1%). These 
failure rates values represent the annual failure rate of Amazon 
EBS snapshots amplified by a factor of 10.(Annual failure rate 
of EBSs lie between 0.1% and 0.5%) [27];  the reason for this 
is the necessary time required to run the experiments at these 
values and return accurate results in the given time frame. The 
experiments are visualised in figure 2; the experiment 
functions in the order as follows: 

 

 1)  Job Submission: The system automatically submits jobs 
to individual Clouds from the local domain. 

 2)  Job allocation: Jobs are submitted to N-Copy services in 
both Clouds.  

 3) Service execution: Each virtual machine containing the 
replica service executes and processes the e-science 
application. At this stage faults are injected into the service. 

 4) Results sent:  Each service submits its results as 
structured data to the adjudicator, which resides back in the 
local domain. 

 5) Adjudication: The adjudicator decides whether the 
returned results are acceptable in the given time and/or value 
domains to remain dependable. 

 6) Adjudication result: Result is either cast as a success or 
failure; either result is recorded in a database in the local 
domain. 

 The framework records the result of the adjudication 
process as well as information such as the total job submission 
time, success state of the adjudicator, the reason for failing (if 
any) and the individual flagging of detected failures. 

V. RESULTS AND EVALUATION 
Table 1 shows the comparison of the rate of adjudication 

success in experiment 1 and 2. The second column 'Failure % 
iVIC, Test Cloud' contains two numerical values. For 
example, 10-5 represents the services in the iVIC Cloud 
having a failure rate of 10%, and 5% for Test Cloud. The 
reason for this table is to contrast the effectiveness of the N-
Copy scheme selected in the presence of failure propagation 
and with no failure propagation. A diagram of table 1 is shown 
in Figure 3; which shows that our selected N-Copy scheme in 
a federated Cloud experiences a lower adjudication success in 
the presence of failure propagation than that of a federated 
Cloud without failure propagation. The scheme shows that it 
can achieve successful adjudication rate above 99.7% in the 

 

 
Figure 2. The experiment system created with the FT-FC Framework 
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presence of fault injections with Clouds failure rates of iVIC 
equal to 5% and Test Cloud failure 1%, as well as in the 
presence of failure propagation. It is expected that the 
adjudication success rates in experiment 2 would be lower of 
that in experiment 1, as failure propagation decreases the 
independence of components that reside within the same 
infrastructure. 

Table 1. Experiment 2: Differing failure rate Clouds with 
failure propagation 

 The success of adjudication would have been lower if all 
services with the potential to propagate faults resided on a 
single Cloud as opposed to a federated Cloud environment. In 
terms of our experiment set up, the reason for this 
phenomenon is because the failure independence between 
services on iVIC and Test Cloud is stronger than that of 
services residing on an individual Cloud. In the event of a 
service failing, instead of a propagation occurring from one 
service to another and only once, services residing on the same 
Cloud infrastructure could for example have the capability to 
propagate to one of three services. This problem is also 
amplified when considering secondary or tertiary failure 
propagation after the initial failure.  

The experimental results, while preliminary, help us validate 
an issue concerning Cloud consensus described earlier in 
section II about the dangers of coupling system behavior and 
the increased probability of failure propagation within a single 
Cloud infrastructure, and how this problem might be better 
tolerated in a federated Cloud environment. This is something 
of great interest to us, which we hope to study in detail in later 
work.  

VI. FUTURE WORK 
 This initial work opens up a wide variety of research areas 
and challenges for future work; we have identified several 
promising areas, and list these as follows: 

• A more accurate real world Cloud faults and system 
model. Our set up of faults and failure propagation in the 
experiments are relatively simplistic, with faults injected 
into the application layer of the Cloud, as well as a fixed 
rate of propagation. Research into the realistic 
classification of faults found on Cloud and the modeling of 
Cloud failure propagation is urgently needed. This would 
also give future work a more precise answer into what a 
Byzantine fault on a Cloud might occur and its effects, 
allowing us to inject more complex and real world faults. 
There has been some initial work in injecting faults into 
the virtualisation layer of Clouds [28]; however the paper 
does not encompass Byzantine faults.   

• Cloud characteristics that will affect BFT. There are a 
number of characteristics that have not been considered in 
the scope of this paper. Cloud dynamicity in the form of 
scalability (this may affect the performance of a BFT 
scheme) and virtual machine migration (this may increase 
the probability of failure propagation between Clouds, 
which will affect the failure of independence and therefore 
the strength of BFT), the use of eventual consistency [29] 
in Clouds (not all applications can operate using eventual 
consistency) and critical Cloud components (for example, 
an investigation into how Cloud components used in a N-
Design scheme could be given different weightings in an 
adjudication algorithm). 

• Further experimentation using current BFT protocols in 
federated Cloud, as well as looking closer at the nature of 
coupling and decoupling Clouds. We believe that the 
experiments ran are decent preliminary work into how 
federated Cloud might be able to address the problems of 
coupling nodes in Cloud systems. 

 As mentioned in previous sections, one of the problems of 
Clouds is that of the massively scalable and contain large size 
of redundant components. As a Cloud system scales up, so 
does the frequency of failures on a Cloud platform. 
Therefore, Clouds should be designed under the assumption 
that they will experience frequent and potentially 
unpredictable failures; this requires services to tolerate and 
recover from failures autonomously as well as have fast 
recovery procedures [30]. Recovery Oriented Computing 
[31] works under the premise of reducing mean time to 
recovery, and a large and scalable form of this might be of 
benefit to this line of research.  

Our experiment involves four virtual machines on two small 
Cloud infrastructures; future work and subsequent findings 
would be greatly improved with the inclusion of test data and 
experimentation from larger Clouds.  

 

Fault 
Type 

Failure % 
iVIC, Test 
Cloud 

Experiment 
1 
adjudicate 
success % 

Experiment 
2 
adjudicate 
success % 

Abj. 
difference 
% 

Value 10-5 95.68 94.2 1.57 
5-1 99.76 98.8 0.97 

Time 10-5 96.4 94.1 2.44 
5-1 99.44 98.6 0.85 

Omission 10-5 96.6 92.6 4.31 
5-1 99.48 98 1.51 

 
Figure 3. Experiment efficiency comparison 284



 6

VII. CONCLUSION 
  Building dependable Clouds is a challenging research area, 
but the prospect of increasing numbers of federated Cloud 
environments offers significant potential to apply Byzantine 
fault-tolerance – a topic that has been hitherto considered 
unfeasible in traditional single Cloud systems. This paper 
presents that the application of BFT to federated Clouds has 
been analysed in detail, and that actual experimentation has 
been performed to test the effectiveness of Byzantine fault-
tolerance in federated Clouds. We have developed a 
framework called FT-FC that allows us to very quickly create 
diversity-based Byzantine fault-tolerant systems and apply 
them to federated Clouds, and have produced initial results to 
demonstrate the feasibility and potential of this approach. We 
have furthermore identified a number of research problems 
and challenges that need to be addressed in order to progress 
this area further. Our current experimental results are very 
initial and need to be developed further, but show highly 
encouraging figures, and demonstrate the effectiveness of the 
FT-FC framework at its current stage of maturity.  
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