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Abstract In this paper the control of linear distributed multipass

processes is considered using the semigroup formulation. A controllability
condition is proved, and requires a certain integral operator to have zero
kernel, Both the optimal linear - quadratic and receding horizon approaches

are ~-udied, and finally a simple example is presented.
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1. Introduction

The idea of processing engineering systems repeatedly, such that
the state (or 'pass profile') on the k operation depends in some way on
the previous states has been around for many years. Examples can be found
in metallurgy; multipass welding and rolling, in chemical reactor control
and longwall coal cutting(l). The theoretical development and control of
such processes is much more recent - properties such as stability and controll-

\Z43) in the finite-dimensional case and the theory

ability have been studied
of existance, uniqueness and stability of infinite-dimensional (i.e. distributed)
nonlinear multipass processes has also appeared in the literature(a). In this
paper we shall be concerned with the controllability, optimal and receding
horizon control in the case of distributed multipass processes. Receding
horizon control has recently been extended to the distributed case(s) and allows
one to introduce nonlinear feedback controls which react more quickly than
the linear optimal control to large errors and more slowly to small errors,
which may be due to noise disturbances.

The paper is composed as follows. We first discuss the notation and
give the basic definitions required in the paper in section 2 and then in
section 3 the equations defining the system are shown to take the form of
an evolution equation on a certain Hilbert space ¥. The operator defining
this system is then shown to generate a sequence of semigroups on appropriate
subspaces of #. The controllability of the system is discussed in the
next section and in section 5 the linear quadratic solution is found, firstly
as a non causal operator and then in terms of a causal representation.
In section 6 we consider the receding horizon control of this system and in

the last section a simple example is given to illustrate the theory.

2, Notations and Definitions

In this paper, we shall consider a differential equation on a Hilbert space.
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The state of each pass will be assumed to belong to a Hilbert space H
and the whole system will be defined on the Hilbert space % which is the
direct sum of a countable number of copies of H, and which will be denoted

, m
by @ H. A finite direct sum of copies of H will be denoted by @ H A .
k=0 k=o m

We shall introduce an operator z& on ¥ and show that Ut has the

properties
. - I \

VNNV S

L =’Ut'js
However, in order to show that

(iii) 1im'Utx = x , for each ueHt

t->o

we must project fk ontoﬁﬁn. The conditions (i),(ii) and (iii) then show
that UT (the projection of "\jt onto ‘%’m) is a semigroup of operators on ﬂ'm.

The space of measurable maps f:[o,T]+-H such that

£ ]2 ds < -
0 H

will be denoted, as usual, by LZ([D,ﬁ];H) , and if X and Y are Hilbert
spaces, the space of bounded linear operators from X to Y is denoted by
L, 0. If XY we write 7, (X).
If L is a linear operator in f(X,Y), then
a
ker L = {xeX : Lx = 0 }
A
Range L £ {yeY :JxeX such that Lx = v},
*
The dual or adjoint operator L of L is defined by
*
<x,L y> x - <Lx,y> y ?
*
for each x€X, yeY. It should be noted that we have identified X with X and
*
Y with Y as usual.
If A is an unbounded operator defined in a Hilbert space X with values
in Y, then we denote the domain of A by )(A).TIf &A) is dense in X, then(6)

we can define the dual of A again by

#
<x,Acy>X = <Ax,y>y~



3. System Equations

Consider the linear distributed multi-pass process with finite memory
of length £ given by the equation

@1 g%k(t) = onk(t) + Alxk,ft) + ... 4 Azxk—ﬁ(t) + Buk(t), k>0

where Xk(t) e H, a Hilbert space, for each k>-%, uk(t)EU a Hilbert space of
controls for k>0, Ai is an (unbounded) operator defined on‘@(Ai)gli for
O<i<f and B aIﬁU,H). For the system (3.1) to be well-defined we must
specify the states x_l(t), s x_g(t) for all te [O,T ], where T is the
pass length, and also the initial values xk(O), k>0.

We would like to replace the system (3.1) by an equation of the form
(3.2) x =Hx +49u + f
which is defined on an appropriate Hilbert space, &. The space #in the
present situation will be
3.3) =@ u,

k=o

i.e. the direct sum of a countable number of copies of H, with inner product

oo

<X’Y>‘}E = kio <Xk’yk> H?

with

X (xo, X .....)Te M

T .
y = (yo, s weeee) € 3
Consider now the operator $t on $t defined by

Frx

I

(A x ,A x_+A
oo’ o

1 lxo’ on AR FA K oy wewe 5 A X, o ez ¥ ARX §

2 171 727 o
e % % e
on2+1 + mAQXI’AOX2+2+ el )

1
.HJTE$&)=e{n®m9L

for xa(xo,x
k=0 {=0

1

In terms of infinite matrices of operators,
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u= (u, u

B diag 1B, B; wswss } e;ﬁ(@u, ®@ H)

where U= @ U .
k=0
Finally, we must account for the states X_1M%_ which will

appear in the forcing term f; namely,
_ T
f = (Alx_l+ ....+A2x_t, A2x +....+A£xl_£, ,...,Alx_l,0,0,...) .
We have therefore replaced the system of eguations (3.1) by a system
of the form (3.2) and we must now determine conditions under which
the operator ¥ defined on & (&) generates a semigroup yt on $t .

Consider,then, the unforced system obtained from (3.1) by setting

u = 0; i.e.
(3.4) dxk(t)
aT = AOXk(t)+Al k_l(t) +....+Aﬂ,xk—ﬁ.(t)

where we interpret xj(t) as zero for negative values of j.

Continuing with the latter convention and assuming that Ao

generates a semigroup T, we can integrate (formally) the

t
equation (3.4) to obtain
2 t
= L
% (£) T %, (0) + T _ (A% (s)ds.

i=l o
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It follows easily by induction that
L i1 [ L ili2
(3.5) xk(t) = Ttxk(o)+ .E_ K2 (t,o)xk_i (0) + .E_ 5 ) K3 (t,o)xk_.
i, =1 1 i =1 i =1
1 1 2
) 2 g i i i
172....7k
+ .. + T X b (t,0)x, _
i,=1 1,.=1 i =1Kk+1 k |
where
Ki(t,s) - Tt'3(= Kf(t,s), with the empty set of suffices)
i 1 i B A 21
]. 2---- k — 1 k"'l
Kk+1 (t,S) _‘r Kk (t,S )Ai TS _Sdsl.
s k 71
Note now that (3.5) was derived purely formally. In order that this

relation is well-defined we shall make the following assumption on each
operator Ai’ l<i<k :

elther A.l is bounded

or ||AiTtl| ggi(t) for some function 8.
t
such that Y =J; gi(sl—s)dsl <= for any t>s>0.
il""i'-l
It is then clear that each K J (t,s) is a bounded operator; for
j :
JEOO TN
and
s s Y Ls wwawdl
172 k 1 k=1
AR (6,9 < zuElthk (t58)] v
1\

(for fixed t50). Consider the operator UL on H defined by the matrix
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{A3dwe oq Aem suotjBUmMINs O ] JO JWwos U2
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T+ =

03 S9OmMpai1 Mol
[ usym £quo 0 = (1-0)- § = T-""""-"T - ueyy ‘1 =9 3J1 82

w
©7 pue T uesm3aq ST T yoea ‘uorssaidxa STY3 UT “3eyl sjoN

r -r
O — ._” Hla-olH.mf._HIV.— O = ._H .Hl--erH..l.Vﬁ
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(t,0)

We now consider the semigroup properties of ﬁk.

Lemma 3

for each >0, t>s>0 and each 1<i

Proof

~
o Each Kk+l
1. w:sdl
1 k
Kk+1 (t+1,8+1)

By induction.

sal

k

i .1
_ 1 k
- Kk+1 (t,S)

—-1""’ik5ﬁ’ k>0.

For k=0, K,(t,s) = T ___

If the result is true for k-1, then

Lemma 3

Lo el

1
Kes1

for ki}

i
k(t+—c,s+T) =

i
1
Mo

w2 If s<t, we

i s W

k _ 1
(t+1,8) = Tth+1

1

*

@l

t+ L: s 4%
T i 1k

s+

have

i 1 i ..
“ugad * By (bR, 2

=1
+ +
(t 58, T)Ai TS _Sds

is translation invariant; i.e.

and the result is trivial.

8. =8=1 ]

k 1

-1
i . Kk (t+T,Sl)Ai T ds

k1 1

W 8

k (t,8) + ...

i A

1 Lw o
k-1 k 1 k
(t,o)K2 (ty8) + Kk+1 (t’O)TT—s’



Proof By induction.
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When k=1, we have

il t+T
K, “(t+1,8) = [ _ . T _  ds
2 " t+t S1 1, 878 1
T E+T
= [ . T _ds + [ . T ds
5 t+t s; 1y 84 5 1 . t+T s; 1 Sy s 1
i i
= T K '(t,8) +K L (£,0) T ‘
t 2 ? 2 § T=S.
If the result is true for k-1, then
o {ER | t+r  1....1
1 k _ 1 k-1
Kk+l (t+1,8) = J Kk (t+T,sl)Ai TS _Sdsl
s k1
T i 3 F
_ f 1. . k—l 1---J.k
%k (t+T’Sl)Ai T —Sdsl * Kea (t’O)TT—s
s k1
T k i o'l s 1,091
ey W | it tke-1
g f A - (t,0)K 3, (1,8, )A, T ds
. -+ -
s  j=1 3 pt 1+l 1774, Tsyms L
il...ik _
+ Kk+1 (t’O)TT—s , by the inductive hypothesis
k+#l di_...1 i,...1
- I ol j k
= .Zl K (t,O)Kk_j+2 (1,8) o

Lemma 3.3

Proof We shall consider the first

g/

LT

seen to equate in just the same way.

k+l

) )

=2 ¢ i

,)

t+t’ (k+l),1

and'ﬁ%?jr, and show that these are equal.

For each t,t>0 we have ’jt'l-'r = rUtUT.

element of the (k+1)th row of both
The other elements can be
Therefore,we have

1 1.
Luww 3 1(t+T,O)



k+l

(3.6)

by lemma 3.2.

matrices, we see that

Also, by straightforward multiplication of the operator

k {k-m+2 i1 ij—l |
G-7) QD ee1y,1 T mEZ( iz i " -0 “; <t’0)) .
3 13....,1j_1 :
k—m+1-1l~....—1j_1=0
m ite.. .1l
5 ) Kf‘ %, 0)
K- L} T
] =2 {11,. » 1 Jr_-l %
m-1-i'-.. —iJ‘,_l=
k+l i i,
#f & % Kjl"" I7Lee,0) \ 1
j=2 11,. ,,1j_1
keip=e..=ip g0
k+1 e
+T % % Kj1 7Lz 0y \.
j=2 E 11,....,1j_1
Ik—ll—....—lj_l=0

We must now show that the expressions on the right hand sides of (3.6) and

(3.7) represent the same operator.

terms of the form
i ....1
K 1

P

(3.8}

t, K

Each of these expressions is a sum of

sy 5
 ERAREI &
1

q-1

It therefore suffices to show that identical terms for fixed p,q occur in

each expression. We shall consider
being similar.

(3.6) contains the terms
1

the terms with p=q=2, the general case

In (3.6) therefore, we must have m=2, j-2+1=2, i.e. j=3.

i

(3.9) I Kzl(t,O)Kz2 Co )
{ 11,12 "]f
k—11—12=0

Hence
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Now, in (3.7) to obtain the terms of the form (3.8) with p=gq=2 we must have
j=2, j'=2, and then we obtain the terms

k il 1!
T T K, {0 » £ B U, 0

9 3 |
m=2 11 % { 11
k-m+1-1_=0 m—l—ii=0

1

i'l'

(t O)K (T 0)

fk-l b 3<

which is the same as (3.9). @I

sh that =J it i =
we have now own Ijt+ . jttL and it is clear that ﬁ;
Note, however, that‘jt is not a bounded operator on 3& and therefore does
not satisfy the appropriate continuity hypothises. This is easily obviated
since we are only interested in a finite number of passes and so we consider
the system (3.1) for k up to some fixed value m. The Hilbert space on which
this system exists is now
il
# =@ =
T k=0

and with an obvious notation (3.2) becomes

. q
(3.10) x =R x+d v+t
m m m
when projected onéﬁn . (To avoid confusion of substripts, we shall use the
same symbol x to denote the projection of xeéfin1§gf It should be clear

from the context to which space x is presumed to belong) It now follows from

m
the above results that@%n (with domain @ { (\ QD(A.)}) generates the
k=0 i=1
strongly continuous semigroup
m
=P P*
‘jt mvtm
where Pm:§b+ﬂﬁ_is the projection. Equation (3.10) can also be written in

the integrated (mild)form
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m t o m t m
(3.11)  x(e) =7 x(o) + fojt_sﬂmu(s)ds o L £ ds
where
x(o) = (xn(o), ....,xm(o))T is the given initial states .

4. Controllability

In this section we shall discuss the controllability of the multipass
process defined by equation (3.1). Following Collins [ 3 ] , we introduce
the definition

|
Definition 4.1 The system (3.1) is approximately controllable in m passes

to a dense subspace

if it can be driven from any initial states x_ vy X

1’ %
of L2([0,7]; H) on them™ pass. (Recall that Hie first pass s numbered X, )

In the finite-dimensional case, where AO,A and B are matrices,

1
Collins(B) gives the sufficient condition that the matrix
n-1
(B, AB, ...., 4] 'B)
has full rank, for approximate controllability in n passes. (Here, of

course, n is the dimension of the state space of each pass profile Xk(t))'
In order to derive conditions for approximate controllability in the
distributed case, we need the following lemmas:
Lemma 4.2 (Curtain & Pritchard (7), Dolecki, Russell (BD:

If FngV,Z), GgIﬂW,Z), where V,W,Z are Hilbert spaces, then the
following conditions are equivalent.

(a) ker (G*) C ker (F%)

(b) Range (G) 2 Range (F) .0

m
Consider the operator G: @& L2(O,T;U)+L2(O,T;H) defined by

i=1
t m~1
= L& . i
G(u) I _Z (Jt_Q’“ A Bu, (s)ds ,  O<t<r,
o 1=0
™2
where u = (uo,ul,"",umq) E'@ L°(0,T;0) and

i=1



- T
y m-1 E il"'lj“l
&/ TR = ) £, (t,0)
tm,1+1, j=2 . . J
113""1LJ'-1 )K
k—1l-...—1j_1 =

. : th . ; .
is the (m,1+l) element of the operator":}t defined in section 3.

To find the dual of G, we have
m-1

< £ L) e By (s, (O
o i=o ’

Lz(o,T;H), Lz(o,T;H)

Bui(s)ds, h(t):>H dt

T t m~1
I< (
$<: o} iX :Q—S

=0 ) m i+l
m~1 T
=7 7 f< u (s) , BE(YE_) h(t)> dtds
i=o o s i+l,m U, U*
mﬁ-

]
~1

1 T
<ui(-) LI, BRE) h(t)dt >L2

; ; 2
i=o i+l,m (o, T3U),L (o, T ;U%) )

where hELZ(O,T;H) , Hence,
2 Mo
G* : L (o,T3H)> & L7(0,T:U)
i=1

(identifying the Hilbert spaces H and U with their duals) is given by
T
(6#0) () =( 1 By ) h(t)dt)
s i+l,m 0<i<m

t m-1
Sinceji;lx(o) and [ ﬁjt—sﬁwﬁgs are fixed functions of t, it follows easily
)

from (3.11) that the system (3.2) is approximately controllable in m passes
if and only if

Range (©) = L%(0,7;H)
and this is true iff

ker G¥ = 0 (the zero of LZ(O,T;H))}
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by Lemma 4.2. Hence we have
Lemma 4.3 The system (3.2) is approximately controllable in m passes iff
the relations

T

(4.2) [BREE_ ) aftydt = 0 herZ(o,vim)
5 s i+l,m

for almost all se[Q,T] and O<i<m-limply that
h(t) = 0 for almost all tE[O,T] ¢ H |
The following corollary is an easy consequence of lemma 4.3.

Corollary 4.4  The system (3.2) is approximately controllable in wm passes

iff the relation
B

E =
/ Bry:__h (t)dt =0, (4.3)
s
m~1 9
for h = (h,h,...,h)e @ L°(0,73H) , and for almost all se[0,1]
im0

implies that

h?z% 0  on [_0,1'] . o

As an example of the application of lemma 4.3, we derive the sufficient
condition (4.1) in the finite demensional case. Suppose, therefore, that

A.0 and Al are matrices and that A2 = ,.. = Az = 0. Then, if (4.1) holds,

we wish to show that (with m=n ) the equations

T
fS B*Ti_sh(t)dt =0 (1)

T
r B*K;(t—s,O)*h(t)dt = 0 (113
S

i

! B*K;l(t—s,o)*h(t)dt =@ B3
s

ITB*Ki"'l(t-s,O)*h(t)dt = 4 (n)
S
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imply that h(t) = 0 a.e. The left-hand sides of these equations are
absolutely continuous and differentiable a.e. , and so, we have, apart from

on a set of measure xero,

T
(4.4) B*h(s) + S B*A*oTt—sh(t)dt =0 from (i) .
s
Now,
1 t—-s
- % = % A% T*
KZ(t $50) 0 Al Ti-s—s ds, 5
o] 1 1 1
and so; (ii) implies that
T L8
T % T% h -
[ ] B*T* Ak T h(t)ds dt =0 .
s o 1 1

Hence, differentiating twice with respect to s, we have
T T t-s
(4.5) B*A%h(s) + J B*A*T* A*h(t)dt+ / f  B#*T* AXARPTH h(t)ds.dt = 0 ,
1 . o t-s 1 s, Lo 1

& 5 1 t—s—s1

Note that (4.4) and (4.5) can be written in the forms

BA (s) + [ k, (t,8)h(t)dt = 0
S

T
B*Afh(s) + [ kz(t,s)h(t)dt =0
S

for some bounded operators kl and k2' In exactly the same way, we can use

(iii)-(n) to show that

i
2
B*A: h(s) + / k3(t,s) h(t)dt = 0
S
n-1 T
B*Af h(s) [ k (t,s)h(t)dt = 0
" n
again, for some bounded kernels k3,...,kn. Hence, we have
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5 S 4 N
([ B* h(s) + j rkl(t,s) h(t)dt = 0
S
A%
(4.6) BHA¥ k,(t,s)
4 *n—l
B<A1 kn(t,S)
L )

for almost all §. However, the matrix [B AIB....A2“1B] is of rank n
and so by picking out a set of linearly independent columns, an elementary
existence and uniqueness argument on (4.6) now implies that
h(s) = 0 a.e. Se [O,T].

5. Optimal Control

We now consider the linear—quadratic problem for the system (3.10),
which we have written in the 'mild' form of (3.11). We shall consider the

regulator problem, since the tracking problem is a simple generalization

of the former. Suppose, then, that we wish to minimise the cost functional
-
(5.1) J(u) = <x(1), G x(1t)> + [ {<x(s),G,x(s)> + <u(s),Ru(s)> 1t ds
Lo 27 i T U
where Gl,GzejkﬂE) and RgZCUh) . If we just require to control the final i

pass then we could choose

o = G = (0] 0
(5.2) G, 0 0 , b 0
0 Fl 0 TZ
where Tl,TzeiKH), or if we wish to control each pass with identity weighting,
then G1 = G2 = I.

However, the equation (3.11)is inhomogeneous and so it is convenient to put
z(t) = x(t) - g(t)

where
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_ m
g(t) = J_ ﬁt_s £ ds

Then, we have

t
(5.3) 2(t) =T7z(0) + fo-“gf_saimum)ds ;

where z(0) x(0), and the cost functional becomes

(5.4) J(u)

<2(1)+g(1), 6, (2(1) +g(1))>

i ;
+ [ {<z2(s)+8(s),G, (2(s)+g(s))> + <u(s),Ru(s)>} ds
o
and we have reduced the inhomogeneous regulator problem to a tracking problem

in a new state z(t). The solution of this problem is well-known (Curtain

and Pritchard(7)) and the optimal control is given by

0 (6) = -K'B%Q (Dz(t) - R % 5_(©)

where Q@ 1is the unique solution of the inner product Riccati equation
m

(5.5) d{o_(h k >+<Q (Oh Fk S+G h,Q Bk >
dt
+{eh kD= <(}m(t)d3mR_l{Bl_7’;@$nt)hm,km> for te[0,]
Qm(T) =6, h ok e D).

and s_ is the unique solution of the differential equation

(5:6) 3 g5 (0,1 = - (s (0), G B R Bxq (O >

h <?2g(t)’hm:>

Sm(T) = —Glg(f).



—
Note that, in the equations (5.5) and (5.6), all inner products are
with respect to ﬁ%f

I1f, moreover, we have'jiGl and ngz map #%lto‘ﬁﬁﬁg) and

E: ¥
(5.7) [llxy e || de < e
(e}

Y hmeﬁﬁ,

T
m*
Jro”boLrﬁUt Gzhm” R

then sm(t) is the unique solution of the equation

5,(8) = -@% -Q_(08 R 855 (£) + G,g(c)
(5.8)

5.,(1) = G8(D)
Recall that

1o

and since Q(%)s Jf (§%“§gg , We may write
% = (Qij)oiiim, 0<j<m

where qij(t) EJC(H,H). Then, if we let h and k be generic elements in
Q

N J)(Ai) , and apply (5.5) with

i=o
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T _ T
= (0,0,...,0,0,...,0) " , k_ = (0,0,...,k,0,...0)
J C
we obtain the (rn+1)2 equations (taking G1 = G2 = %*_ )
m
9
d <Q,.h ,k> + ) <A* Q. . h,k> + Z-:hAQ
dc 1] . @ Ll e J+a 1
(5.9)
M i
= * :
+ <h,k>6, QZO <Q;,BB*Q,; B, k>

. = TI.4..
Q:LJ(T) HﬁlJ .
where, for simplicity, we have assumed that R = I and we interpret

Qﬁ,j = 0 if B>m,

The equations (5.9) represent a coupled set of nonlinear operator equations
which in general would have to be solved numerically and then the solution
Qm(t) would be used to find the evolution operator U(t,s) generated by
] ‘ a " .
% — - *
(Am Qm(T t)ﬁnsi‘$m) (assuming this exists) and then we could write
t
(5.10) s _(t-t) = U(t,O)Glg(T) + [ U(t,S)GZg('\:-—S)Js .
o
The optimal control can then be written as
u (£) = -R1grq_(0)x(t) - R B*Q (D)g(t) - R B*s_(t)
o QO QO m @ ‘
This control is, however, noncausal since the feedback for the ith pass
requires knowledge of future passes i+l,...,M. This difficulty can be

obviated by using the original equation (3.1), from which we have
t

L t
Ttxk(O) + izl '(o Tt - 1Xk .(s)ds + IO Tt—sBuwk(S)dS

I

Xk(t)

2 t m o
= T x (0) + Z JoT_Ax . (s)ds - Z s Tt_SBB*ij(s)xJ-(SJdg
i=1 o j=o o
s B (5)d
-3 (T, BB™ Q) gls)ds - 3 f T, BB s,(5)ds.
© J (s}
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where we have set Qm = (ij)o<k i

Define the operators N gkj EI(LZ ( [:O,T];H)) and EE ELZ( [o,r:] Y H)

and we have set R=I for simplicity.

by
t

(n;y)(t) = g T _A;y(s)ds , l<i<e

t

(ijy)(t) = i By BB*ij(s)y(S)ds 5 ojk,jf m

]

L 5 m t |
= %
_SBB ij(s)g(s)ds jio fo Tt_SBB€§$s)ds

m
B, () =Tx (o) =1 J

T
t
j=o o

Then we can write the controlled system in the form:

m m m 5 Em
oo Mol H om 0 0
m m 5% il
Fie Frr *** Fin 1 $1
m m m
Y mo ' Umcm xm Em

where the matrix of operators (H?j) is defined by

(T*ohe) oy - - Com 4
%10 (I+2),) o N 2
+ TN
_nR’ =1] - =T 0
%o . . . . (I+ ) 0 2 ey~
- 0

where we have assumed that m>L.

If we define inductively
1

k-1 k k k k
u = -u (v ) U )Ofiik—l,ofjﬁk,lﬁkﬁm
ij ij ik  kk kj
and -
k-1 k k k k
s -E - o)
1 i ik kk k
(assuming that (gk )_1 exists for each k) we obtain

kk
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5 0
oo @ Yo EO
9
1 1 |
Ulo ull 0 Xl
m-1 m-1 n
um- 10 e = s = s IJm_ 1m-1 0 Xm_. 1 E m-1
m 0 X \\ B
umo e e & s s 8 = e & & . Umm T m ’ §
1 >m
Now, we have
| m m—-1 m
n T (pmm) (Em L i=o mei )
-1
_ m—-1 m—1 _ m-2 m-1
e ™ Gpet wer? Epey " T M SERSY
_ 1 -1 11
x = ()7 Gy 7 Ry %)
Define
o, 1.-1 1 1
yl(xo) = (ull) (El - UIOXO)
s ol 3l 2 0
yz(xo’xl) = (“22) (Ez 1120}(0 uzlxl)
m -1 m -l m
r"}m(xo’“"’ xm—l) - (Umm) (§m ) iio pmixi).

Consider again the optimal control
= — * - % - R %
u_(t) Bxq (£)x(t) ~ B*q_(t) g(t) CBm s_(t)

(with R =I). Then the kth control (for the kth pass) is

m
g (8) = ~B I Q3 (6) = BFQ, (Da(t) ~8% 8 (1)), -

In order to make this control causal we must write Xp s e X in terms
m

of X peness X o This can be achieved by writing
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X 41 =31k+1(x0,...., xk)
D =‘?k+2(x0,...., X xk+l)

(5.11) - ?}k+2 (xo,....,xk,iik+1 (% seeens X))

(e]

"
I

¥ ey %) 5
=?«m(x0,...., Xk’ykﬂ(xo’ ....,Xk),?‘k_'_2 (Xo""’xk’gk+1)""')"
It should be noted thatilkk is a Volterra operator and so the right hand sides

of these relations require knowledge of X seenes X only on the interval

]:o,t:[.

In order to simplify the solution somewhat, we shall consider the

k

application of receding horizon optimal control in the next section. This

(%)

type of control has been considered in both the finite-dimensional and the
infinike dimensional cases, (Banks(S)), and replaces the linear feedback

law in the classical linear—quadratic problem with a nonlinear feedback law
which responds more quickly to large disturbances but more slowly to small

(possibly noise) perturbations.

6. Receding Horizon Control

In this section we shall assume for simplicity that the initial states
X—l(t)’ s iR x_z(t) are zero for all t; the case of general initial conditions

will be considered in a future paper. From (3.10) it follows that

X = &mx +\Bmu ’

since f=o. It has been shown(5) that if the pair Gﬁﬁ,f%) is approximately
controllable and we let G2 = 0 and G1 = al, with a>= then we obtain the open
loop control

(6.1) we= - & YT T X OStET

where we have optimized over the subinterval [O;ﬂ E [b, T,land, of course,
if jt is a semigroup, then'j_t is defined only on a certain subspace $£(t) of #

(see (5) for details). In (6.1) the invertible operator W(T) is given by
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T .
(6.2) w(t) =/ J_BR ]?B*fs ds ,
0
which can be shown to be defined on #¢ for T>0. In the receding horizon

philosophy, we apply (6.1) as if we were beginning a new optimization over
the time interval T at each time t. In other words, we replace (6.1) by

the feedback control |

(6.3) o = RN W i mx(e) , oeso .

It follows from the definition of tjf that, if we take R = I , then

rfT T BBAT* d IT T BB*K:(-s,0) d IT T BB*(K>(-s,0) +k:l(-5,0)%)q \
g 2 s , " 9 S, s p - 9 , 3 S, ) Syeue

o] (o] o
o T 1 1
W(T) =/ K_.(-s,0)BB*T* ds S K_(-s,0)BB*K_(-s,0)*ds RN
2 -5 7 2 2 »
0o o T
+[ T BB*T* ds
T o) TR -s 11
2 17 W, 2 1 T
- - ATH® - = * =
IO(KZ( s,0)+K3 (-s,0)BB T_Sdsj IO(KZ( s,o)+K3 (-s,0))BB Kz( 5,0) ds |y....
E o
+ [ K (-s,0)BB*T* ds
(8] 2 =

In order to determine the receding horizon control from (6.3) we must invert
the operator matrix W(T). This will be very difficult in general, But we
shall give an example in the next section in which this inversion is fairly
simple. The inversion of W(T) can be constructed inductively using the

following result.
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Lemma 6.1 Suppose that
A - F
k2 F,OF,
F3 F4
k
is a bounded invertible operator defined on é{L (=® H) , where
i=o

F]. Ei(#k_l, #L’k"l) > F2 Ez(H jt{k—l) ] F3 E-N,f Gq(—l’H) H F4 S_t(H,H) s

A -1 A -1
=F-TF_F G. = F, -
and assume that Fl . F4 5 Gl Fa oF, F3 ; 9 4 FB Fl F2

are invertible operators, on their respective domains. Then, we have

~1 -1 -1, -1
T o= e G, E,F,

-1 -1 -1
o F3Fp G

The proof of this result is trivial. O

-G

If we write

WD = 0355 44 m,oc<m

where V&j(T) ed (H,H) , then the control for two passes is given by

(6.4) i = gt [ e o)(w (1) W_, (D) e .

00 (0]

W, (T) W _(T)

0 B 11

10

We can find the inverse of the W matrix by using lemma 6.1 (assuming the
conditions hold) and then we can apply the lemma again to find the control for

three passes by partitioning the W matrix in the form

W (T Wy (D ; W2 (T
Tt W@ ptE T

WZO(T) w21(T) PW_ (D)



= Dk =
Since we have already inverted the matrix in the top left hand corner the
inverse for the case of j passes now follows by induction. This iteration
method should be effective when each operator Wij(T) takes a particularly
simple form.

It remains only to note that, for receding horizon control, we make
the feedback control nonlinear by choosing the interval of optimization T te
depend on the current state x(t). However, we again have a noncausal i
solution as in Section 5, and so we must first put the control in a causal
form. This can be done as before by defining n; as in section 5, and ij

and EZ are now defined by

t
(g (0 = 1 T BB (W) ; (1) y(s)ds ,
m _
g () = T.x (o) ,

where we have used the same notation ¢ and £ for convenience (and again R=I).
The expression (5.11) therefore allowsus to express the values of the states
] th g
xk+l,...,xm in terms of the states xi,...,xk on the k pass.
The control (6.4) is therefore the receding horizon control when x(t)
is expressed in causal from as above. We are now in a position to let T vary

so that the control reacts quickly to large rrors and more slowly to small

A . . th
perturbations. For example, a parricular choice of T for the k  pass

could be
Tk = min { 1 i T"t%.
k
7. Examgle

In this simple example, we shall consider a one dimensional heating

process. We shall denote the state of the kth pass by zk(t,x) and let
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Abz(t,x) = §

ox

where we assume the process takes place on the unit interval [b,l].
We suppose that 2=1 and B=I, in which case the system equation becomes

02 (6,0 = oz (t,%) + AR (6,30 +u (t,%) |

— k
ot 5
9x
Ai will frequently be some sort of bounded integral operator. However, in
order to obtain an explicit solution we shall take A, = I. More general

1

operators A, could be considered at the expense of more complicated manipulation.

1
The system is clearly controllable in any number of passes and we shall take
m= 1 (i.e. two passes).

Now AO has a complete set of orthonormal eigenfunctions

¢n(x) = V2 sin nmx , n>1

and it will be convenient to obtain the solution in terms of these functions.
Consider first the equations (5.9). If we represent each operator in terms
of the basis {¢n} and write

B:c = (0P , 0<i,j<l
for the matrix of Qij in this basis, then from (5.9), we obtain the equations

~pg _ 2.2 2. .pg qp
QOO ™ (p7+a7) Qyy Q10 + Qi *+ 8

Pq
- E ka qu " E ka qu
& 00 00 &
k=1 k=1
§ 3.8 3 k k ® ok k
01 . oL ® %, “oi

pq _ 2,2 2. pq _ ® pk kq
G = T @ D Gy v kzl %o %1 * E N,

; Pd,y - APdrny - pq m
with QOO(T) Qll(f) qu, QO (1) = 1<p,q<=.

(t,x) 5, D@A) ={EEL2[0,1]:zx,zx£EL2[o,1],z(t,o) =%(t,1) =
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Note that we have taken Gl = G2 =71, R=1I, and, of course, since Ql(t) is
self-adjoint, we have ng = Qgg. Since the Riccati equation has a unique
solution, it follows that
QPg(t) =0 t e Lo-ﬂ 0<ij<l p#4q
lJ = 3 2 3 e e 3 3
and the diagonal terms satisfy the equations

PP _ 5 2 2 PP PP _ (nPPy2 PP, 2
Qoo 2m P Qoo ¥ 2QlO * (Qoo) * (QIO)

PP _ 5 2 2 pp PP _ PP PP PP PP
Qo ~ 2P Q@ * Yy = Qg Qo * %o Y
QPP _ , 2 2 pp = (PP 2 PPy 2
11 2y P Qll ! (Qlo) + (Qll) -
: _ [ APP PP
Hence, if @p =[Q, Yo , we have
pP PP
Qo %1
5 2.0 1 0) = o° 0 (1) =1
e -—-|mp @ -0 [mp ¥ - ’ )
P P p 0 1
0O =p 1 T p

p 1 "
and so writing 8 =Y X with X (1) =Y (1) =1 we have
8% " Tpp P ) p ’

LE Eﬂp denotes the matrix of this equation, then

(Xp(t) _ exp{EP(t—T)} ( I ) .
Yp(t) I
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The exponential can be evaluated explicitly by diagonalizing Eﬂp , which
has the eigenvalues iVW4p2+lii . We shall not carry this out in detail here,
since we intend only to illustrate the theory.
All that remains to do now is to evaluate the causal representation
of the feedback control. For simplicity, we shall assume that x_l(t) = 0.

In this case, we have

g (£) = T x, (0) ‘ |

and we require only to write xl(t) in terms of xo(t) for use on the first pass.

Now,
t

(g () = J T _Q,(8)y(s)ds
(o]

and so to invert I + ¢ , we must solve the equation

11
(I+ Cll)y = h .
In terms of the pth coordinate functions yp(t) = <y(t),¢> ,
hp(t) = <h(t),¢> , this becomes
E
P T s PP
(t) + |/ e P (s) (s) ds = h (t
T ) Q7 ¥ p( )
or
t
(t) +/ m (s) y (s) ds = h _(t)
yP & P yP P
where
_PZFZS PP
mp(s) = e Qll(s) §

This equation has the solution
t

y () = (6) = 7 b (e m (&) ST m (ede}
(0]

t



We also have

(u % )(6) = (g, x )(t) = (n;x ) (E)

| t
i T Qlo(s) XO(S)dS -/ Tt_sxo(s)ds

]

t—-s

o)
Hence, the pth component of E:‘Uﬂ —-(Piexo)(h)gs

- t _ 22,
n () £ ™ oy s T TS (PP (e))xP(s)as
.0

where F

x; (6) =<x; (6), ¢ > .

5 - 1
we have
¢ (- m (t,)dr }

(7.2) xD(t) = n () = J n (s)m (s) e sTp 17 %1 ¥ ds

and we have written xl(t) in terms of xo(t) for use on the first pass.

Let us consider now the receding horizon control for the system

(71). An elementary computation shows that the W matrix has the form
W(T) = WOO(T) WOI(T)
wlo(T) wll(T)

where, in terms of their basis representations,

2 -
WOO(T) = diag ( 1 (e2p ir —1)} 8 diag {up(T)} , say

2
2p2w
2 2ﬂ2 2 2.2 A
Wol(T) = diag (1 (e P -1) - T g TT) L {diag v (T)}
7 % 2 2 P
b4p 2p°m
2 2 2.2 2 2
W, (D) = diag 1 P TT 3y 21 P TT) . o PTT, (1)
"6 6 T4k 22 P
4p 2pm 2p°w

diag {WP(T)}

By lemma 6.1 the inverse of W(T) is given by the diagonal matrices

]
Il

W ) _ (T
(T)

diag{ E;(T) (up(T) - wulp(T)Vi(T))_l}

e

o= — -1
diag{ vp(T) up(T)vp(T)wp (T) }
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-1
W 4

— A 2 =1 =]
T) = diag{ w (T) = (w (T) - v_ (T)u_(T)) '} ,
(T) E P 2 P P (
for T > o , since we know that W(T) is invertible for T > o.

The causal controller for fixed T > o is now given by (7.2) using the

same reasoning as before, except that now we have

2 2
-p s

n () = ¢ W HPP(

110 M

and

i t ~n2ﬂ2(t— ) .
p ) =e > TP £ 5 e 87 (1-w. )PP (s))xP (s) ds.
P 1 ° 10 o

we can then choose, for example

TD = min { i 3 F o
= @Il

on the first pass, and

T, = min{ 1 , 43 —t%
1 7 7]
IR ~

on the second pass.

8. Conclusions

The controllability, optimal control and receding horizon control of
a distributed multipass process has been studied in this paper and a general
controllability result has been obtained. The optimal control problem,
when solved using the semigroup approach is seen to lead to a noncausal
solution. However, this solution can be replaced by an equivalent causal
one as shown in section 5. The Riccati equation for the general multipass
process is a complex set of coupled operator equations which, in general, is

likely to require an approximate numerical solution.
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If the system matrices é*;'ﬂ’ Bm form an approximately controllable
pair, then we have seen that the receding horizon principle may be extended
to linear multipass processes. Again a causal (nonlinear) feedback control
law can be obtained, which will react more quickly than the linear quadratic
solution to large disturbances, but more slowly to small pertubations.
Finally, we have given a very simple example which was chosen to
illustrate the theory in such a way that an explicit solution could be
obtained. Of course, more general systems would require numerical solutions,
which would not bring out the important aspects of the theory in such a clear
way. In more realistic systems, it is likely that B may be unbounded
(boundary control) and possibly time dependent - this would be the case, for
example, in multipass welding. This type of problem will be considered
in a future paper.
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