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_Abstract
The conjugate strong duality theorem is extended by removing
certain convexity assumptions with specific reference to the case

where f=g. A practical optimization method is also presented.
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1. Introduction

This paper is concerned with problems of optimality conditons and
the solution of the extreme difference of conjugate functions . These
problems are connected with conjugate dual optimization , but here
we also consider the possibility that f=g , in which case the primal
problem

h = sup(f(x) - g(x))
has the trivial solution h=0.

The theory of conjugate functions was introduced by Fenchel (1)
as early as 1949 , and developed in (2). Since then , there has been

further intensive activity in the areas of theoretical development,
applications and interpretations of existing ideas ; see for example
(3)-(7). Apart from its value in nonlinear programming , the theory
is interesting in its own right and has applications to the theory
of inequalities and to the structure of convex sets.

In this paper we apply some basic properties of conjugate functions
to the optimality problem of the extreme difference of such functions.
We first review the basic definitions and state a fundamental theorem
of this theory

Recall that a function f defined on a convex set XEZEn (n-dimensional

Euclidean space) is convex if

£(Aa,+ (1-N)x,) £ lf(x2)+(1-3\)f(x1)

for any xq,x,€X and any A€[0,1] . Concavity of f is defined

similarly.

We shall use the standard notations
B(xo,r)=£x€1%1: ”X—Xon<r}
g(xo,r)={x61%1: HX—XOﬂSr}
s(x%,r)= 98 = {x €E, :lx-x"|=r},

and denote the convex hull of a set Y!EEn by H(Y). If f is a convex



function defined on a convex set XE]%V a subgradient of f at xe X

is a vector ie;En such that

F(x)< £(y)+(x-y)'% , for all ye X.
The set of all subgradients of f at x is denoted by
?f(x).
If f(x) is a convex function on a set X, then we shall denote by

f1{x;y) = lim f(xthy)-f(x)
h=0+ h

the (upper) directional derivative of f in the direction y. Note
that
Friaiy) = supiETy: Cear(x)t .

Suppose , then, that X and Y are nonempty subsets of En,and let

f,g:Eﬁbel. Then we define the conjugate functions

T (u) = sup§ £(x)txu : xex?} (1.1)
g (u) = inf {g(x)+xTu : x€Y 3} (1.2)
and the corresponding sets
U = Juc E,: T (u)<+ew? (1.3)
3
V=yJueE : g (u)>-o0? (1.4)

It can be shown(q"b) that

(1).
(2). The conjugate weak duality theorem

I

-—

¢ %
f (u) is convex over U, g (u) is concave over V.

sup§f(x)-g(x) :xexn¥ ¥ < inf§F (u)-g (u):uelny} (1.5)
holds , and we have
(3). The conjugate strong duality theorem.
This states that if f is concave , g is convex , intXnintY ¢ ¢
and inf on the right is actually attained.
If the assumption of the conjugate strong duality theorem
is not completely satisfied , there may be a duality gap; for

example, in the case where f=g, and f is not affine , then it



cannot be convex and concave at the same time and so (1.6) may not
hold (since the right hand side may not be zero).
The main interest in this paper is in the case where f=g and
when X and Y have empty interiors ,e.g. X,YS:Zn(the space of n-
tuples of integers). Then intXnintY:ﬁ.

2. Optimality Conditions for the Extreme Difference of Conjugate

Functions ‘
We consider the following problem (which we refer to as the
problem of the extreme difference of conjugate functions):
Minimize §%(u)—§*(u) = € (u)
subject to uelnV
and suppose that the sets X and Y over which the primal functions
f and g are defined are compact . Note that , if f and g are

continuous , then U=V=En s 50 that there is no constraint on u.

Although the compactness assumption is quite strong , it is necessary

for the proofs to follow.With this assumption , the sets
X(u)= {y: y maximizes f(x)+xTu over X}— (2.1)
X(u)= {y: y minimizes g(x)+xTu over Y‘} (2. 2%
are compact . If f and g are also continuous, it can be shown@y)

thah

11

% - HTwW"] (2.3)
HLg(uO)] (2.4)

In order to develop the optimality condition , the following

ra-f-h- (u

1l

3
2g (u’)

lemma is needed.
Lemma 2.1 (Fundamental Inequalities)

Let X be a nonempty compact set in E_ erX and ueEn. Then,

sup {{x—xo)Tu:xeX} 2|\u|linf‘{-llx—x0n:x €dx 3 (2.5)

infi(x-xO)Tu:x€X§£-“u“inf{ﬂx—xOH:xeﬂBX} . (2.6)

(Recall that X denotes the boundary Xa(E_-X) of X.)

Proof It is obvious that



o oy o
sup{(x-xO)Tu : XES(XO,T)} = lullr
inf{(x-xO)Tu : XeSCXO,r)} =-|lul[r.

Let r:infinx-xou: x€9X¢. Then, S(XO,T)E.X and so
supiﬁx—xO)Tu : Xﬁ?X}'ésup{(x—xO)Tu : xeS(xO,r)}
=llufr
=|W“inf{ux—xoﬂ: x€RX ¢
inf{(x—xO)Tu : x€X%} Sinfi(x—xg)Tu : XeS(xO,r)}
=—Hu”inf§“x—xOH: xeaX ¢ . Q
Since a convex function achieves s maximum over a compact convex
set at an extreme point , and a concave function achieves a minimum
over a compact convex set at an extreme point(g’lo), we have
supg(x-xO)Tu : xeH[X] ¢.

inf{(x-xO)Tu : x€H[X] 1} .

sup{(x-XO)Tu : xc X3t

inf{(x—xO)Tu : x€X¥
We therefore have

Corollary 2.1 Let X be a nonempty compact set in En and let utEEn

If‘xﬁEH[X] » then we have
sup{(x—xO)Tu : xeX}QHullinf{”x—xoli: X€BH[X]} (2.7)
inf{fx—xO)Tu : X EX}S—“uuinfgnx—XOH: XQQH[X]} (2.8)

Theorem 2.1 (Optimality Conditions)

Let X and Y be nonempty compact sets in En s and let f,g:Eﬁ—>El
be continuous ,~?%(u) and E%(u) be defined by (1.1) and (1.2)
Then uo is a solution of the problem
minimize E%(u)—g%(u): €(u), ueﬁEn
if and only if
H[g(uo)]n H[g(uo)] i ¢.

Proof . Sufficiency: Since H[f(uo)]n H[g(uo)] s ¢ s+ there exists

XO€H£X(qu]ﬂ H[E(uo)] . Then, for any u€ekE , the definition (1.1)

implies that



_5_

?%(u):sup {f(x)erTu : X€ X}

=supff(x)+xTuO+(x-xO)T(u—uO) ::cEX}+xOT(u-uO)
Zsupgf(x)+xTuO+(x XD)T(u—uO):xéi(uo)}+xOT(u-uO),
since-f(uO)SX. Since f(x)+xTuO is constant on E(uo) , we have
sup{f(x)+XTuO+(x-XO)T(u-uO)H{Eixuo)}
=f*(uo)+sup£(x-xO)T(u-uO) %X (u))}

and bycorollary 2.1, since XOEH[E 0 ] » We have
sup{(x—xO)T(u—uO) : xeX ( §>Hu u ]|1nf{||x x ][ x(—‘_'aH[X )]%
Therefore ,we obtain
u)zlf*(uo) + XOT (= e ) +lu-u Hlﬂf{}k— xe?H[i(uO)]g-.
Similarly,

g (u) < g (uO) + XOT(u-uO) —Hu-uOHinf{Hx-xOH: x{?H[X(uO)]} ,

and so
(W-g (W2 T (u0)-g (u )lu-u’li (inf Six-x" 1l xeon[x (u0)]}

+inf{Hx-x IE XE%H[K(UO)]%)
=% _ ¥, 0
2f (u')-g (u).
N 0
Since this is true for all uEEn » W 1is an optimal point.

Necessity:Suppose H(ﬁ(uo)]nH[g(uo)]=p. Then, since H[X(uo)] and
H[g(uoi] are compact (i.e. closed and bounded), the strong
separation theorem(g) implies that there exists a nonzero vector p
and ©>0 such that

1nf{p x : xe€dg (u) ..E+sup§p x : x€df (u )} .(usunﬂ (13)£1PH).

Now the continuity of f and g imply , by an elementary argument,

N .=t ' (40
that the (upper) directional derivatives f (u ;p) , (u”;p) of

V)
S

f and g% at uO in the direction p exist and so we have

__g__)H (Wsp)ze T (u%p)
Therefore , p is a descent direction of E.=E*~g% at uo y SO0 uo ig
not a minimum point of €. (Note again by continuity of f and g

and the compactness of X and Y that U=V=En, so uO is not a boundary

woink.)
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3.80lution of the Extreme Difference Problem

The extreme difference problem ,
with the minimization of €(u).
is a solution to the problem if

AT (u”)]0 B[ x (u°

= 1fx(u®)]- a[x°

that uo

i.e. 0 EH(UO)

If this condition does not hold ,
a descent direction and so we would like

steepest descent

as we have seen ,

0
Given a point u |,

is concerned

theorem 2.1 shows

1+,

=§x-y: XQH[X(U ] yEH-

{
to find the direction of

Definition 3.1 A vector d is called a direction of steepest descent

of £ at u if
g*'(u;a)

g¢' (usd) = £*'(uzd) -

Theorem 3.1

min(F?
lal<1

I HER

then we have seen that there exists

#1 (uzd) - g*'(u;d)).

Let X be a nonempty compact set in E_ and suppose that f,g:Eﬁ->E1
are continuous ; then the direction of steepest descent d of ¢ at
u is given by
a=\ 0 if p=0
-p if pit0
Ll
where p=min ||pl|.
pel [u]
Proof. First note that
Re(u) = B[X(u)] - H[X(u)] (3.2)

For , if ge?f“ 'geﬁg*(u) , then

—

(u) +E' (u'-u)

?*(ur)z'f%
g*(u')< g*(u)

Thus,
e(u)z €(u) + (E-1 (u'-u)

for all u'eE
n

and so
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To prove the reverse inclusion , suppose that ?ge%s(u) « Bt
g#HEX(u)]— H[K(u)] (=H(u)). Then , since H(u) is compact and
convex , the strong separation theorem implies that there exists
a vector d and © >0 such that

a'% >¢,

a'g! £0, for allyer[u].
Hence , |

¢'(usd)>¢ ,

and _
i'<U;d) = %' (uzd) - g%l(u;d)

= sup {deg- 3 E_G‘B'f*(u)} —inf{dT:s‘:‘gegse(u)}
sup {dT‘g’: ‘;EH(u)}

I

IA

0,

To prove the theorem ,note that if d is the direction of steepest
descent then

¢'(usd) = min €'(u3;d) = min sup dTp

a1 lall<l peog(u) -
. 1 i
> sup min d"p = sup -|ip}
p€¢ (u)dl<1 pPEQE(u) |
= -[iol

by (3.2). Hence , all we have to do is to show that there exists a
direction d such that
¢ (usd) = -[5ll 3
d will then be the direction of steepest descent . If 5=O , then
' (u;0)=0=-|pll , so d=0 . If p $ 0 , put d =-p/lp|l . Then ,
g (uzd) = sup{ETp : pede(u)?

|

\

1

\

|

which i1s a contradiction.

2 =7 - | \

=+ supf-I5I° + 375 - p) : peQe(w)} \

o Il
= -lpll +_ 2 sup$ (5 - p) p€Oe(w)} .
51l
Since p is the shortest vector in @€(u) , and @¢(u) is closed and

convex , then p (p - p)<0 , for all pe@%(u). Hence ¢'(u;d)=-\pll .o



The minimization of €(u) for u €E_can now be obtained by
applying theorem 3.1 which leads to the algorithm shown in fig.3.1,
and described by the following steps:

(1). Choose ue€ E -
(2). Solve the problems:

¥ (u) max{:f(x)+xTu:x€.X}

g¥(u) = min{ig(x)+xTu:x€ZY} l
and find X(u) and X(u).
(3). Solve the subproblem:
minimize {ipll subject to pE.H[E(ui]- H[f(u)]
If |pll=0 stop; there is no descent direction , and u is an optimal
solution.
Otherwise ||p|[>0 and put d=p/i|p|.

(4). Solve the following subproblems:

(a). minimize A = F*(u) - (£(x)+x u)
dT(x—E )
0

subject to dT(x-;O)>O, x € XnY

(b). minimize 12: g¥(u) - (g(x)+xTu)

dT(x-EO)

subject to d' (x-x,)< 0, x¢€XnY

where
dTEO = max{de:xE;f(uf§
deO = min{de:xe_g(u)}.
et 3=min(11,]2), u=utid

(5). Go to step (1).

Remark. It can be shown that the value of A obtained in (4) guarantees
a decrease in € (u) in the direction d. It should be noted that such

a A does not necessarily minimize €(utdd). We are therefore using

a steepest descent method with inexact line search
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Lo Examgle(112
Consider the following problem
minimize €(u) = F*(u) - £*(u) , ue€ E, {hwl )
where
F#(u) = max{;f(x)+xTu:xl,x2:O,l,2 or 3}-
(4s2)
£#(u) = min-{f(x)+xTu:xl,x2:O,l,2 or 3*}

and f(x) (x=(xl,x2)T) is given as a two-dimensional array in tablei.l

(i.e. the sets X,Y introduced above are equal and discrete subsets

of El).
Table 4.1
3 -6 -3 0 -4
2 -11 -10 -2 -4
1 -8 -10 -5 -4
0 -6 -10 -7 =12
0 1 2 3
Note that

(1). 2,¢=$0,1,2.3% -

(2). £ will be regarded as a continuous function-of X, Wwhose
values at the points xl,x2:0,1,2,3 are specified.

(3). f=g , and it is clear from table 4.1 that f is not affine.
Hence f could not be convex and concave at the same time
and so the conditions of the conjugate strong duality theorem

do not hold

We shall solve the problem (4.1) by the descent procedure
starting with uoz(O,O)T . The sets H[f(uO)J and H[g(uo)] are found
from (4.2) , and it is clear that

, )={2,9"%, 2%={,0T%.
Since H[f(uo)lnH[;(uo)] =¢ , it follows from theorem 2.1 that uO
is not an optimal solution of the problem (4.1) . Thus , as we have
seen , there exists a descent direction given by minimizing the

norms of the elements in
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H(u’) = H[g(uo)] - H[i(uo)] {1, <30,

Hence , d=(1,—3)T ié the direction of maximum descent .(cf. fig.4.1).
In order to find an appropriate multiplier A, we could use a one-
dimensional searchﬁ% however , 1t is easier to use the method of
step (4) given in the above algorithm . Solving this subproblem ,
we find that N=1/9 and so the next value of u is given by

wt=u® + 2% = (1/9,-1/3)T . |
Repeating this procedure we find that the sblution of (4.2) with
u:u1 gives

Twh= {2,397, zh={3.0% 0,271,
(ef.fig.4.2).
Again , H[X(uliL\H[E(ul)] =¢ , and so ul is not optimal . By

theorem 3.1 , we find that the steepest descent direction is

at={=2,-3)".
Hence , solving the subproblem in step (4) again we find 1l=47/117,
and so u2=ul+};dl = (—9/13,-20/13)T-

Returning to (4.2) , with u=u® we find that

X(u?) =1(0,0)7,(2,3)™} ana x(u® = $(3,07,(0,2)T Y,

(ef. fig.4.3).
This time, H[ﬁ(uZiLWH[i(u2)] ¥¢ , and so 5o is an optimal solution
of the problem and

£(%)F*(u®) - £x(u?) = 8L .

5. Conelusion

In this paper we have considered the minimization of the extreme
difference €(u)=f*(u)-g*(u) , extending the conjugate strong duality
theorem . It has been*shown that when HLE(uiLWH[K(u)] 4¢ , i.e.0€H(u),
then d=0, Thus u is the optimal solution for the extreme difference
problem. If H[f(u)]ﬂH[j.g(_(u)] =Q§, i.e. O¢.H(u) , then d#0, and 4 is
the direction of steepest descent . Using this result , we have
developed a procedure for minimizing the function €, and applied it

to an example of a function defined on a discrete subset of En
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Begin

CRead f,g;

Initialize

u

{

Solve the problem

* o= sup{f+xTu:xeX§
® inf{g+xTu:x€Y}

Il

IS |
|

obtain X(u),X(u)

!
Z/érint i(u),g(ub/

H:HEX(uﬂ-H[i(uﬂ

dz{(] if p=0
p/llpllif p$0

Determineq

Let u=utAd

Fig. 3.1 Block Diagram of the Main Program for the

Extreme Difference Problemn.
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