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MULTIPASS PROCESSES [1] are a relatively new class of control system

1. INTRODUCTION

first introduced by Edwards in 1974 [2] to model processes which may be
considered as a repeated sequence of actions by a processing tool on

a material or workpiece. Examples of such systems include the longwall
cutting of coal, metal rolling, agricultural ploughing and image
processing.

The stability of such systems when governe& by linear equations has
been considered by Owens in 1977 [3], whilst the controllability of
linear multipass systems has been considered by Collins in 1980 [4].

This report is concerned with the optimal control of multipass
systems described by linear ordinary differential equations with constant
coefficients. We denote the state and control vectors on pass k by
xk(t) and uk(t) respectively, where k = 0, 1, 2, ... . Here xk(t)
is assumed to be an n-vector and uk(t) an r-vector. The variable t can
be taken as the distance along the pass or, if each pass is described
with constant velocity, time. The passes are assumed to have constant
length T, so that t ¢ [0, Tl. The rate of change of the state vector X
at position t is assumed to be dependent only on the state and control
vectors on the current pass k at position t, i.e. xk(t) and uk(t), and
also on the state vector from the pass previous to the current one at
the same position t, i.e. Xk*l(t)' We then have the following system of

ordinary differential equations:

dxg ()
— = Ax (©) + Ax (&) + By (b), (1.1)
dt
0<t<T,k=1,2, 3, ... , where A1 and A2 are constant n x n matrices,

B a constant n x r matrix and T the fixed length of the pass.
To determine the system we require an initial pass profile, i.e. the

state on the zeroth pass:

(1.2)

In
t
In
=

xo(t) = flt), 0




and boundary conditions at the beginning of each pass:
xk(O) = Cps = de 25 35 ssas ; (1.3)

In the following discussion we shall limit our attention to processes
involving a fixed finite number of passes only. Thus k will assume the
values k = 1, 2, ..., M where M is the total number of passes.

Our problem is to synthesize, if possible, a feedback controller of
the above system by suitable choice of quadratic performance criteria.

In general there are two main types of coﬁtroller required 1in
quadratic optimization problems, namely terminal controllers and regulators.
A terminal controller is designed to bring a system close to a desired
terminal condition (usually takensto be zero) while exhibiting "acceptable"
behaviour on the way. A regulator is designed to keep a stationary
system within "acceptable" deviation from a reference condition using
"acceptable" amounts of control. This report will be concerned with
finding terminal controllers for the system governed by (1.1), (1.2)
and (1.3),

Thus, given a system of the form of (1.1) we desire to bring it from
an initial state ck(=xk(0)) to a terminal state xk(T) = 0 on each pass
k, 1 £ k £ m, using "acceptable" levels of control uk{t) and not exceeding
"acceptable" levels of the state on the way, given also initial profile
£(t).

The method we shall consider to do this is to minimize a quadratic
performance index made up of terms involving a quadratic form in the
terminal state added to an integral of quadratic forms in the state and

control over 0 to T for each pass k and then summed over all the passes

T~

i

Here G and Q are positive semidefinite matrices and R a positive

M
J = %-kzl {xk'(T)ka(T) + J xk'(T)QXk(T) + uk!(T)Ruk(T)}dT } (1.4)

definite matrix, all constant and of conformable dimensions. Primes will



be used throughout this report to denote the transpose of a vector or

matrix. Of course, an appropriate choice of these matrices is now required

in order to obtain the desired "acceptable" levels of xk(T), xk(t) and
uk(t)’ k=1, 2, ..., M. When dealing with a real process one might,

for example, choose them to be diagonal with

1/(C)ii = maximum acceptable value of [(xk(T))i]
1/(Q)ii = T x maximum acceptable value of [(xk(t))i]
1/(R)ii = T x maximum acceptable value of [(uk(t))i]
for k =1, 2, ..., M, Clearly (1.4) could be generalized to contain

'cross' terms in the control and state, for example, or by allowing Q and
R to vary with t and all three matrices to be dependent on k. For
simplicity, however, we shall deal only with performance criteria of

the form (1.4).

The choice of G and Q to be positive semidefinite and R positive
definite is motivated on the grounds that we would like the performance
index to have a non-negative value for all xk(t) and uk(t), I <k <m.

In particular we choose R positive definite so that any use of the
control is penalized. The weaker condition is applied to G and Q since
we may wish to neglect some of the system states.

More information on the use of quadratic performance criteria in
optimal regulator and terminal controller problems with regard to other
types of linear systems is available in the standard texts on optimal
control (see e.g. [51]).

We now wish to investigate conditions to be satisfied by the control
uk(t), 0 <t 2T, 1 £k £M for the performance criterion (1.4) to be
minimized.

It is worth noting here that this type of system bears considerable
resemblance to the quadratic optimization problem for differential delay

systems where the delay occurs explicitly in the system equation as in
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Tt
by B 5.
min = 2

x' (T,)Gx(T,) + %-J [x'(t)Qx(t) + u'(t)Ru(t)]dt

0

subject to

el . A]x(t) + Azx(t—'r) + Bu(t), 0 <t < Tf
dt
x(8) = ¢(B) - T<0<0 .

Here Al’ A2, B, G, Q and R are constant matrices similar to those
in (1.1) and (1.4), Tf is the fixed terminal time of the process and
T the fixed length of the delay. The multipass problem we are considering
reduces to the above form if we set ¢ = % (D, I <k <M In this
case our delay length T becomes T and the final time Tf becomes M x T,

A solution to the above problem was determined by Chang and Lee [7].

Section 2 of this report will deal with basic concepts and
preliminaries and will consider relevant aspects of causality in these
processes. A "non-causal' controller for the system will be derived in
section 3 of linear feedback form. The existence of causal linear
feedback controllers will be demonstrated in section 4 and the main
results concerning the conditions satisfied by two such controllers
stated and discussed in sections 5 and 8. Section 5 also contains the
conditions satisfied by another form of non-causal controller. Sections
6 and 7 contain computational and implementation considerations for the
controllers derived.

Z; BASIC DEFINITIONS, ADMISSIBLE CONTROLS AND CAUSALITY CONCEPTS

Let us first introduce some notation:
C, = c(Lo, t1, @F) will denote the Banach space of continuous functions
with domain [0, T] and range'@?. The norm of this space is defined

as ||fll = sup |£(t) |, where |.| denotes the usual Euclidean norm of
0<t<T

R
; i s ; .
The fuclidean norm on R gives rise to the spectral matrix norm:
T 1 . i
HAJ& = (p(A”A))* where A is an n x n real valued square matrix and

p(ATA) denotes the maximum eigenvalue of ATA.
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let CF = CF([O, T] x [0, T], An) denote the Banach space of real
valued n x n matrix functions of two variables with domain [0, T] x [0, T].
These functions are piecewise continuous with finite discontinuity along

the diagonal of the domain such that

A(t, t+) = A(t, t=) = F(t), 0 < t < T for all A ¢ EJF

where F(t) is a real valued continuous n x n matrix function defined on

[0, T]. The norm of this space is defined as:

Al = sup  { ||Alt, 8)|| }, AecC
i t,8e¢[0,T] o F
t#8
where ||.||n denotes the spectral matrix norm defined above.

Finally, we introdwe the Hibert spaces  H, = H([0, T], Ep) and
H2 = H([0, TJ, @F) of Lebesgue integrale vecor functions defined on [0, T] with

. n r . .
ranges in R and R respectively. The inner products for these spaces

are

T
<%, Y:>1 ( x'(t)Qy(t)dt for x, ye H

1

’0
T
and <?, yj)z = ( x'(t)Ry(t)dt for x, y ¢ B,
)0
where Q is an n x n positive definite constant matrix and R an r x r

positive definite matrix.

These inner products give rise to the following norms:

'8 T %
HXH1 = J ' (e)Qx(t)dt
| 0
( T 1 %
and l|y|‘2 - JO yt(t)Ry(t)dtJ

We are now in a position to define an admissible control for system

£1s1)a

DEFINITION 2.1. An admissible control for system (l,1) is to satisfy the

requirement that it is a continuous time-dependent functional of the

system states, i.e. u(t) = u(t, x) where



X =

[xo(e)xl(e) xM(e)]T, 0<e9c<T.

The control is otherwise unconstrained.

It is useful here to introduce the concept of causality with regard
to multipass systems.

In the multipass systems considered here the passes are regarded as
being described in sequence: xl(t) first, xz(t) second and so on. Thus
if we are on pass k at position t all passes xg(t) for which & > k,
0 £t £T are considered as being in the "future'", i.e. they have yet to
be described. Similarly Xk(T) for t £ 1 € T is considered as "future"
information. The following diagram may help to illustrate the position.

B (s oo o s e e e o R B, —mmm —e—e Information

ahead of 2 ), ie.
in the future.”

Information
behind 2 l6), i.e.

‘ E T N
} S U he ‘past.
K L ]
bt ¥ Current skate at
T & sition E,ie. o s,
Q- ] Po ! k
]
[}
1 . 1
|
o
© POS\TION —> T

This idea leads to the following definitions:

DEFINITION 2.2. A controller uk(t), 1 < ks M 0<t<Tis said to be

causal if it feeds back the state only from the following set:

. . < < < =
{Xk(T). 05T t}U{xg(t). Ot T, 0= 8 <k} C» It need not,
of course, feed back the whole of this set to be causal as a part of it
may suffice, but it may not feed back any state information not contained
in C, . Ck will be known as the causal data set for controller uk(t).

k

We thus see that a causal controller may feedback only 'past"
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information in the sense described above.

DEFINITION 2.3. A controller uk(t), L<k<M 0st<Tis said to

be non-causal if at least some part of its feedback is from the set
N ={x(: t<rs Tz (£): 0<t<T, k<&<M. It my also
feedback information from Ck' Nk will be known as the non-causal data
set for controller uk(t).

Finally we remark that in the following discussion we shall be
searching for linear controllers of (1.1). A éontroller is said to be

linear if:

uk(t, ay + pz) = ou (t, y) + fu, (t, z) 1

O
IA A
[l
IAIA

“Li

for all

Y, Z € CkUN for all scalars o, B.

k
3. A NON-CAUSAL SOLUTION

We shall now obtain a solution to this problem of non-causal type.

Write:

’xl(t)' i By O 0 v D 1 (B 0 ..... 0
%, (t) By &y © ys s 0 B B auas 0

x(t) = D, aA=]|o0 By A cuun B |, B =y :
_xM(t)# I 0 0, AIJ LO . 0 B |

|

. - - " - |
u, (6) Q 0 . 0 R 0 .. 0
u, (£) N 0 @ seswes 0 N 0 R ...... 0

u(t) = w Q = * » R = T, s

:

u  (t) 0 cesvs B 70 0 ... 0 R
-M == — L K d
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- = b = -3
A, ['G 0 veevee O ¢,
- 0 - 0 G iy O c2
D= . , G= , & =
L 0 ] _0 issus 0 G J CM

Here x(t) will be an n.m vector, u(t) an m.r vector, ¢ an n.m vector,

~ ~

A an n.m x n.m matrix, B an m.r x m.r matrix, D an n.m x n matrix,

(]

definite matrix.

In terms of these new quantities our problem now becomes:

and Q n?x n? positive semidefinite matrices and R an r2 x r2 positive

T
. ~ 1 ~ o
min J = %-X'(T)GX(T) oy j [x"(1)Qx(t) + u'(1r)Ru(r)] dr (3.1)
0
subject to
() - Ex(r) + Bu(t) +BE(D), 0t =T, x(0) = c.  (3.2)
dt
From the calculus of variations we know that this prdblem has solution
ue) = - R 15 (3.3)
where p(t) is a solution of the two point boundary value problem :
2O~ o) -F(), O0=tsT, p(M = Gx(D
dt
(3.4)
ax(h) . Ax(t) + Bu(t) + DE(t), 0<ts< T, x(0) =C
dt

Here p(t) is a differentiable, time-dependent m.n vector. This result is

obtained by augmenting the functional (3.1) with the differential equation

(3.2) in the usual way. The derivation can be found in the standard texts

on optimal control, see, for example [5].
In the absence of the term Bf(t) in (3.4) this two point boundary
value problem has the well known solution
p(t) = K(o)x(t) - (3.5)
where the n.m x m.n differentiable time-dependent matrix K(t) satisfies

the equation



dK(t)
dt

+ R(OX + A'%(e) + § - KOBR '3 Ik(r) =0, ®(1) = & (3.6)

This type of equation is known as a Riccati since it contains a
quadratic term in K. For derivation see again [5].
As can be seen, this yields a linear feedback control law given by:

B R (eyx(t) . (3.7

u(t) = = R
As we also seek a linear feedback control for (3.2) in the presence |
of the 5£(t) term we shall try a solution Df'(3.4) of the form of (3.5)
but with an added "tracking" vector in order to take into account the
Bf(t) term.
We thus make a trial solution of (3.4) of the form
p(t) = K(t)x(t) + g(t) (3.8)

where K(t) is an n.m x n.m differentiable time-dependent matrix and g(t)

a differentiable time-dependent n.m vector.

Then
dp(t) . 4 (K(t)x(t) + g(t)) = dK(t) x(t) + K(t) dx(t) + dg(t)
eE de de dt de j
- 8 ) + kO + Bule) + Be(0)] + LB (using (3.2)) ‘
dt dt

IKE) w(e) + K(OEx(t) - KOFRE ®()x(t) + g(r)) + ke)De(r) + 8L
dt dt ‘
|
i

(using (3.3) & (3.8))

- {d_“_t_) s etk = K(t)”ﬁ’ﬁ"’ﬁ"K(t)}x(t) + 3808 r)ERTIE  g(e) + r(0)BE(D)
dt dt (3.9)

From (3.4) we also have

p0) - - Fp(r) - Qx(t) = - A'R(£)x(t) - X'g(t) - Ox(t) (3.10)

Equating the R.H.S's of (3.9) and (3.10) and collecting terms yields

[ dRO) L kA + B'R(e) - KOFR B R(e) + 5]"(':)
dt

+ [i.g_(.t.)_ r (X - RO B Hgr) + K(t)'ﬁf(t)J =0, 0<t<T. (3.11)
dt
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We can thus satisfy (3.11) identically if we set both brackets to
zero., We also require that p(T) = EX(T)

ie. Gx(I) = R(D)x(T) + g(T)
Hence we choose K(T) = E, g(T) = 0.

To summarize, for a solution of the form (3.8) the matrix K and vector

g must satisfy

dECH). +xee)R % Bvrey = K(e)BR 'B'K(t) +9 =0, 0<t<T \
dt
K(T) = G
(3.12)
88 4 @ -k '$g0) + kOBE() =0, 0T
dt
g(T) =0
This is the standard Riccati solution of (3.1), (3.2) with tracking
vector g.
Now, partition K(t), g(t) and p(t) so that
r~ - . e r~ &
B (B) Rple) sonmmnn Kpo(6) (g, () p, ()
010 : :
K(t) = . T, s B(r) = . » p(t) = -
‘ i . .
] MJ(t) I KMM(t)4 LgM(t)J _pM(t)_
where each Kij<t) is an n x n matrix and gi(t), pi(t) are n—-vectors,
Then we have
M
p; (t) = .Zl Kij(t)xj(t) B )y 1=2dis MOstsT £3:13)
and hence from (3.3)
M
w () = - & B ] R0 (0 +g(6) |, 1sisM0stsT. (3.14)

j=1
Since in general Kij(t) 70, 1<1i, j<M, 0<t < T, our controller
at position t on pass i feedsback the state vector at the corresponding
position t from all passes, 1, 2, ..., M, It is thus a non-causal controller
in the sense of (2.3). It is, however, linear and thus, raises the following

question:
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Is there a causal linear feedback solution of (1.1) - (1.4)7
We answer this in the next section.

4. EXISTENCE OF A CAUSAL LINEAR FEEDBACK SOLUTION

In this section we reformulate the problem in an abstract Hilbert
space setting in order to demonstrate the existence of a linear feedback
solution which is causal. We shall also indicate the existence of a
further non-causal solution of a different form from (318 ;

Let H] snd H2 be the Hilbert spaces as defined in section 2. 1In

this setting our problem now becomes
M

: ! & 3!
= - -
win 3 = 5 1 {7+ o2 ]
k=1
subject to
(4.1)
— < <
X Axk + Buk, I =k =M,
<k =
X € Hl’ uk € H2, 1l £k = M
Here A and B are specified bounded linear operators.
We now quote the following theorem:
THEOREM 4,2 There exist bounded linear operators Lk and Ek for which

the choices

A
=
IA
=

or u =L x 1

" k Kk

kT ke
both minimize J of (4.1).

The proof relies on the ideas of dynamic programming and is contained
in Appendix 1.

The control law W, = kak—l of the ahove theorem is clearly causal
since it only feeds back information from the pass previous to the current
one. The second controller W = ikxk may not, however, be causal since
it could feedback information from the current pass "ahead" of the
current position (i.e. uk(t) might depend on Xk(T) for T > t).

We have, thus, answered the question of the existence of a causal

linear feedback solution which was posed in the previous section.

It is also worth noting at this point that we have determined the
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~

existence in the form of u = kak a (possibly) non-causal solution of

a different type to (3.14), i.e. non-causal solutions to this problem are
not necessarily unique. This suggests that a causal linear feedback
solution to this problem may also be non-unique, as indeed is the case

as will be seen later in this report.

While the theorem answers the question of existence of a linear
causal feedback controller for (1.1) it does not indicate the conditions |
to be satisfied by such a solution. It is to’the end of finding such
conditions that we now turn.

5 MAIN RESULTS PART 1

The theorem to follow is a summary of the first main result of
this report; it is a statement of sufficient conditions for a causal
linear feedback control law of the form of theorem (4.2) (i.e. W = kak—l)
to be optimal for criterion (1.4).

THEOREM 5.1 The linear control law

T
uk(t) = —R_IB'U [Ho(t)X(k,t,e)ﬂil(k,t,e)]xk_](B)de-i-ﬂo(t)pk(t)ﬂ:k(t)},

0
0<tsT, 1 k<M

provides the absolute minimum of performance criterion (1.4) for the
dynamic system (1.1), (1.2) and (1.3) provided the n x n symmetric
matrix, Ho(t), of functions defined on [0, T] together with the n x n
matrices, Hl(k,t,e), X(k,t,0), of functions of two variables having
domain [0, T] x [0, T] and k-vectors, Pk(t) and ck(t) defined on [0, T]

satisfy the relations:

dn
. ' = ol -
(£) + Ho(t)Al + Alno(t) + Q Ho(t)BR B ]'[O(t) 0, 0=t <1,

dt

HO(T) = G

L5

la)




3]'[l

ot

II(k,t,t+) - Hl(k,t,t—)

1;(k,T,8) =0,

I!(M+],t,e) =0,

L2 (k,t,6) = (AI—BR~

0

0

IA

<

]

6,

B‘Ho(t))X(k,t,e)—BR"

IA

(k,t,e)+(A]'—no(t)BRle')HI(k,t,e)+A2'|

— 13 -

(T
[Hl(k+1,t,s)+ﬂ (t)X(k+],t,s)}
Ny 9
X(k,s,6)ds = 0,
8=xt, 0<t,e<T,1<ks<M
Ho(t)Az, 0<t<T, lskcsM
l sk M
T

I
Bf]’[}(k,t,e), e E- t.’ OSt,ﬁST,

)t
l <k = M

{(k,t,t=) = X(k,t,t+) = A2, DetgeT,1skzsM

((k,0,8) =0, 0<p8<T, ]l cksM

((M+1,t,68) = 0, 0 < t, 9 T

b r (T

it

e () 2

p
k _ T ) _ i -~
—(t) = (A] BR B Ho(t))Pkkt) BR B zk(t), 0 <t

() +(a, -1 (£)BR'B)g, (£)+a,)

it

k(O) = G5 l < k<M

M+1(t) =0, D= kel
Here Hl(k,t,t+) denotes

1wtes lim Hl(k,t,e).

f>t-

ka+](t>+no(ttpk+]'t>+JO{n1(k+x,t,s>+

HO(t)}}((kH,t,s)}pk(s)ds_J

3

0<t=<T, 1< k<M

IA
3

lim Hl(k,t,e).
6+t+

Similarly m, (k,t,t-)

The proof of the above theorem is contained

(5.1b)

(5.1¢)
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on xﬁ?i, 0 <8 <T. This control thus feeds back the whole of the pass
previous to the current omeand is thus causal and of the form u, = kak—l
from theorem 4.2.

2) H](k,t,e) and X(k,t,p) are piecewise continuous functions with
discontinuity along the § = t diagonal of their domain of definition.

3) no(t), which is independent of pass ngmber, is just the standard
time dependent Riccati matrix indicated in section 3.

4) We may write (see Appendix 2)

£l
x (t) = J X(k,t,0)x _,(e)dp +p (t), O0<t<T, l<sks<N
0
Using this we may eliminate X(k,t,p) and pk(t) from (5.1) to obtain
u (t) = -R B'{Ho(t)xk(t) + [ m(k,t,e)%, _ (p)de + gk(t)} Msted
J0 l <k s M

A

5) Putting AZ = 0 results in n](k,t,e) and Qk(t) vanishing for 0 < t,9
and 1 < k < M, (5.3) then becomes
w (6) = = KB (D)% (1) . (5.4)
This is just the standard Riccati feedback on each pass which is
the expected result of setting A, =0 since this removes the "interpass"
coupling. Note also under these conditions (5.2) ceases to be valid.
6) Setting ¢, = 0, 1 < k < M results in (5.1c) collapsing to zero for

k

1 < k < M which is a considerable simplification. We shall make use of

this fact for computation purposes.
We see, then, that to characterize the feedback kernels in (5.1)

requires the solution of the standard time-dependent Riccati matrix

equation (5.la) together with the pair of two point boundary value problems

(5.1b) and (5.1c).

We now indicate a solution of the type u = kak which, as has
already been stated, may not be causal. We thus derive a less general
solution than (5.1) for ease of derivation since such a solution is of
less practical value.

The extra restrictions we require are that G = 0 in (1.4) and

(5.2)

(5.3)
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that xk(O) = 0, 1 <k <Min (1.3). We thus have

M
1 .
J=3 X [Xk'(T)QXk(T) + Uk‘(T)Ruk(T)]dT (5.5)
k=170
with dynamical system
dxk
j;:-(t) = Alxk(t) + Azxk_l(t) + Buk(t), 0 <t <T,
1l <k <M
(5.6)
xk(O) =0, 1l <k <M
x (&) = f(£), 0 <t < T
THEOREM 5.7 The linear control law
T :
uk(t) = - R—lB‘J Fk(t,e)xk(e)da, 0<t<T, 1 <k <M
0

provides the absolute minimum of performance criterion (5.5) for the

dynamic system (5.6) provided the n x n matrix function of two variables,
Fk(t,e), with domain [0, T] x [0, T]together with the n x n matrix

function of two variables, Yk(t,e), also with domain [0, T] x [0, T] satisfy

the relations:

oF T

k g f _
7;:(t,e)+A1 Fk(t,6)+A2JOFk+](t,s)Yk+l(s,e)ds «D; Ozt;,8=2T,
Fk(t,t+) - Fk(t,t—) = Q, 0s£t<T, 1<ksM l <sk<sM, =t

Fk(T,e) =0, 0<@g<T,1csksM

FM+1(t,e) =0, 0<t, <T

3Y, si (T + (5.7a)
— (t,8) =AY, (t,8)-BR 'B'| F (t,s)Y, (s,8)ds,
i 17k 0 k k

o
In
o
@@
IA
o |

Yk(t,t—) = Yk(t,t+) = AZ’ 0t T, 1 k<M

Yk(O,e) = 0, 0<ps<sT, 1 kM

YM+](t,e) =0y 0 gk, €T

The proof of this theorem is contained in Appendix 2.
Remarks:
1) The control law (5.7) may be non-causal since it is an integral control

over xk(e), 0<p<Ton pass k, i.e, it may feed back information from

"ahead" of the current position on the current pass.
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2) As with Theorem 5.1, the feedback kernels Fk(t,e) and Yk(t,e)
are discontinuous along the § = t diagonal of their domain.

3) We may write (see Appendix 2)

IA

T
xk(t) = J Y, (t, e)xk_i(e)de, Dt l; 12 ke N (5.8)
0

We now state an existence theorem giving sufficient conditions for
a unique solution to the two point boundary value problems (5.1b) and
(5.1c). As existence and uniqueness of solutions of the Riccati
equation (5,.la) are already well known this theorem will show a control
of the form (5.1) exists and is unique under appropriate conditionms.
THEOREM 5.9 The two point boundary value problems (5.1b) and (5.1c)
have unique solution for 0 < t, 8 < T, 1 < k < M provided Hikk+], t, s)

and X(k+1, t, s) exist for each k and that

-1
T3 (sup|| ¢(t,7) || )% ||BR B'|| .|| A, || . sup || T, (k+1,t,8)+1 (t)
T,te[O,Tj t " zim ty8e[ 0,0] ! "
tzs
X(k+1,t,s)][n < 1 (5.9a)

where

ln, is a matrix norm as described in section 2 and ¢(t,r) is the
transition matrix associated with the solution of the linear system

99-(t, 8) = (A] - BR_]B'HO(t))C(t,B) + D(t,8), O0=<t, B<T

ot

where C and D are n x n matrix functions of two variables having domain
[0 T] = [0 T1.

REMARK This theorem gives a condition for the existence of a unique
solution to (5.1b) and (5.lc) for pass k provided (5.1b) has solution

on pass k+1, Now for k = M, X(M+1, t, s) and HI(M+]’ t, s) are
identically zero and thus (5.1b) and (5.1c) are guaranteed to have unique
solutions, Once HI(M, t, s) and X(M, t, s) are determined we may then

test the condition for k = M-1 and so on solving the system in reverse

order,
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Remarks:

1)  While the theorem is able to give sufficient conditions for unique
solutions to (5.1b) and (5.1c) the expression obtained in (5.9a)

is difficult to evaluate since the transition matrix,

¢(t, 1), is, in practice, very difficult to compute. TFor this reason

noe attempt is made to evaluate it.

2) The theorem indicates certain qualitative conditions for a
solution, for example if T and A, are "small" or R is "large" then
(5.9a) will be satisfied.

6. NUMERICAL SOLUTIONS

In this section we consider the numerical solution of systems
(5.1b) and (5.1c), the solution of (5.1a) being already known and well
documented. The ideas discussed are then applied to scalar examples.

The computation of these control kernels for implementation in a
real process may require considerable effort. Since they are independent
of the system state, however, this may be achieved off line prior to the
commencement of the process and the kernels then stored in the system's
control unit. The control itself is then calculated on line by the
control unit using the system state from the previous pass, which
must also be stored.

The proof of theorem 5.9 relies on the contraction mapping principle,
(5.9a) being the condition under which an integrated version of (5.1b)
is a contraction., Hence, if (5.9a) holds we may take any function
satisfying the boundary and discontinuity conditions and iterate using
the contraction and obtain convergence to the unique solution of (5.1b).

This idea suggests the following successive approximation method
for the numerical solution of (5.1b).

Since H[(M+1,t,e) = X(M+1,t,8) = 0 we have, for k = M
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oIl
— (46,0 + (A - (OBR BYMOE,0 =0, 6= t,0ce,057 (6.1)
ot

I, (M,t,e4) - I, (M,t,t-) = m(e)A,, 0<t<T (6.2)
HI(M,T,B) =0, 0<p8<cT (6.3)
ax -1, -1,
-— (M,t,0) = (A]-BR B ﬂb(t))X(M,t,e) - BR B n](M,t,e), 0<st,gs T
ot
g = t (6.4)
X(M,t,t-) = X(M,t,t4) = A,, 0 <t <T (6.5)
X(M,0,8) = 0, 0<8<T (6.6)

We notice that in this instance equation (6.1) is no longer coupled
to equation (6.4). We may, thus, integrate (6.1) (with appropriate
boundary conditions (6.1) and (6.2)) numerically without difficulty
(it is assumed here, of course, that no(t) has already been found
from equation (5.1a)) and obtain HI(M,t,e). Once HI(M,t,B) is known
we may then integrate (6.4) with boundary conditions (6.5) and (6.6)
to give X(M,t,0).

Now for k = M=1 we have

ol | o T
——r (M—l,t,8)+(A]’-H0(t)BR B')HI(M—],t,e)+A2'[

[n](M,t,s)+n0(t)X(Msts5)]
ot o

X(M-1,t,s)ds = 0, 0<t<T,pg=z t (6.

H](Mr],t,t+) - HI(M—l,t,t—) = Ho(t)AZ’ 0<ts=T (6.8)

H](M—!,T,G) =0, 06 <T (6.9)

1 ]

8X (M-1,t,8) = (AI—BR" B'Ho(t))X(M—l,t,e)—BR— B'm,(M-1,t,8), ¢ =t

at
bzw, bl (6.10)
X(M-1,t,t=) = X(M-1,t,t+) = A2> 0<t<T (6.11)
X(M-1,0,8) =0, 0<o6 < T (6.12)

Since HI(M,t,e) and X(M,t,0) are known we make an initial guess

at X(M-1,t,0) which satisfies the boundary conditions, A suitable
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choice is say

X(l) = 9 % 0<t, 58 <T,

(M~1,t,8) [0

(N

We then substitute X(M~1,t,e)

into equation (6.7) and integrate it

numerically to obtain the corresponding function Il say H?}i 1. £.8) We
t=ls by

]5

. ] . . ;
now substitute H( ) into (6.10) and integrate to obtain
1(M=1,t,8)
2 % . L ; ; . |
XEMZI t.g)° which is in turn substituted into (6.7) and so on until

the iterations converge.

It is noted that a similar method can be used to obtain a solution
of (5.1c) for 1 < k < M once the X's and TI's have been found.

We now look at some scalar examples of the computation of the E]
and X matrices and the corresponding optimal control and state trajectories.
The dynamical systems for which we shall choose to do this will all have
zero initial conditions since, as was remarked in section 5, this
results in (5.1c) collapsing to zero thus reducing the amount of
computation.

For comparison, the trajectories obtained using a numerical
optimization technique developed by Jones and Owens [6] will be shown
although in this case the control is not in feedback form. The corresponding

open loop trajectories will also be displayed.

7 IMPLEMENTATION CONSIDERATTIONS

We now consider the storage problems involved in implementing the

control law (5.1) and develop the idea of a minimal data storage

controller,

Once HO, II,, X etc. have been calculated for all passes off line

] 3
we then implement the following integral feedback control

PN D ‘ o
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or pk(t)-
Our dataset for such a feedback is thus the current state plus

the whole of the pass previous to the current one, as illustrated in

the diagram.

el
— === Datuset for
i x, L)
L. u e,
W S -
L Pass  Position —» T

Hence, as we traverse pass k we need to store all of pass k-1 to
determine w and also pass k as we go along since we shall need it to

determine u We thus need storage space for two whole passes, whilst

k+1°
our feedback dataset is only one pass in length.

This gives rise to the following question: can we find a causal
feedback control for our system which has less storage requirements?

In view of the analogy between our system and the differential
delay system it seems likely that our feedback dataset for a causal
controller will be not less than one pass long (this is not true for
a non-causal controller of course, e.g. (3.14)).

Suppose we could find a controller for our system whose dataset

was {xﬁii : PE T2 T} 1] {xk(r) : 0 g £ t} for uk(t),

This clearly has a dataset of one passlength as illustrated below.

k!
X (€Y ——=—= Datuset {or
D e A W, (t
) . E) é ).
S L — _—
| ?hss T%sdﬁon — .;

We see, however, that this type of controller would require only one

passlength of data storage since as we traverse pass k we overwrite the
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storage area containing xk_l(T) for 0 < © £ t, where t is the current
position, with xk(T), 0 <1 <t.

The desirability of reducing storage leads us to find a control of

this form in the next section.

B4 MAIN RESULTS PART 2

We begin by recapping the problem:

M T
min J = %-kEI{X£(T)GXk(T) + JO[UQ(T)Ruk(T) + XQ{T)QXk(T)JdT} (8.1)

subject to

d
;— () = Alxk{t) % Azxk_l(t) + Buk(t), 0<t<T, k=1, 2,...,
with
xk(O) = ¢ 1l £k <M (8.3)
and
Xo(t) = flr), Q=€ gT (8.4)

Henceforth in this section we shall consider only system with zero
initial conditions on each pass for reasons of simplicity, so that we
have

xk(O) =0, 1<ks<sM (8.5}

A more general version of the following result is contained in
Appendix 3.

The following theorem is a summary of the second main result of this
report; namely it is a statement of sufficient conditions to be satisfied
by a causal linear feedback controller requiring minimum data storage
to be optimal for criterion (8.1).

THEOREM 8.6 The linear control law

g t
uk(t) = —R_IBT[KO(k,t)Xk(t)+JtKl(k,t,@)xk_l(9)d6+JOK2(k,t,e)xk(e)de:] s

0< t<s T, 1< k< M

provides the absolute minimum of performance criterion (8.1) for the

\

(8.2)
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dynamical system (8.2), (8.4) and (8.5) provided the n x n symmetric
matrix, Ko(k,t), of function defined on [0, T] together with the n x n
matrices, Kl(k,t,e) and Kz(k,t,e), of functions of two variables defined
Tand 0 st < T, 0 < 8 < t respectively

in the regions 0 < t < T, t £ 8 <

and the three n x n matrices, K3(k,t,e,g), Ka(k,t,e,g) and K5(k,t,e,g),

A

of funetions in three variables with domains of definition 0 < t < T,

T;: 0 <t <T,0<p<ct<cog=cTand 0t <T, 0c<

t £08, 0 <

satisfy the relations:

dK
il (k,t)+Q+A'K (k,t)+K (k,t)A -K (k,t)BR 1B'K (k,t)+K, (k,t,t)+K (k,t,t) = 0,
3 170 o] 1 o o] 2 2
l<k<M,0<ctcT (8.6a)
Ko(k,T) = G, l <k <M (8.6b)
BK] .
———(k,t,6)+{A;—Ko(k,t)BR B'}Kl(k,t,e)+K4(k,t,t,e) =0, 1 <« k <M,
ot
0<t<pa<T (8.6c)
Kl(k,t,t) = Ko(k,t)Az, Il <k<M (8.6d)
2K, [ -
i (k,t,e)+lA;—KO(k,t)BR B'}Kz(k,t,e)+1<5(k,t,t,e) =0, I <kz<N,
at
0<p9p<ts<T (8.6e)
Kz(k,T,e) = 0y 09T, 1l <k<M (8.61)
oK -
—= (k,t,0,0) = K;(k,t,e)BR B'Kl(k,t,o), 0O<t<p,o0<T, | <k<M (8.6g)
At
K3(k’t’t’e) = AéKI(k,t,e), l k<M, 0 t<cpscT (8.6h)
K3(k,t,e,c) = Ké(k,t,e,g), l«<kesM,0<t<c<pg,oc<T (8.61)
9K .
— (k,t,0,0) = Kﬁ(k,t,e)BR, B'Ki(k,t,g), l < k<M, 06 tcsgscT (8.6])
3t
K4(k,t,5;t) = Ké(k,t,e)Az, l<k<M,0<p0=<tsT (8.6k)
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3K _
,_2.(k,t,e,g) = Ké(k,t,@)BR ]B'Kz(k,t,c), 1 <k<M 0<0,0<tc=<t (8.61)

ot

= T (8.6m)

1A
@
-
Q
A

K. (k,T,0,0) = Ky(k+1,0,8,0), 1<k <M-I, 0

0, 0<96,0=T (8.6n)

il

K (M,T,6,0)
The proof of this theorem is contained in Appendix 3.
Remarks:
1) The linear control law stated in (8¥6) ig an integral operation on
xé?i, t £86 < T and xk(e), 0 <06 <t at position t and is thus of the

form desired for minimal data storage, as discussed in the previous

section.

2) Unlike the control of theorem (5.1), all the feedback kernels in

this instance are continuous.

3) The system of equations obtained in (5.1) for the control kernels

bears considerable resemblance to the system obtained for the corresponding
optimal solution for the differential delay system with quadratic performance

index. See for example [7].

4) Putting AZ = 0 results in all the kernels except u vanishing. ko
itself then becomes pass independent and reduces to the standard Riccati
matrix. (8.6) then becomes
. ~ Ly
w () = -R 'B Ko(t)xk(t) (8.7)

where KO satisfies the standard Riccati equation and boundary condition

as in (5.1a). This is the expected result, c.f. remark 5 to (5.1).
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APPENDIX 1
In this appendix we provide the proof of theorem 4.2. The proof
will rely on the principle of optimality as used in dynamic programming.
THE PRINCIPLE OF OPTIMALITY states that, if an optimal path from

the initial stage t, to the final stage t,, of a process exists and

N

at an intermediate stage ty it passes through the state x , then the
a

optimal path from X, at stage t N
optimal path.

The proof of (4.2) is as follows:

In the Hilbert space setting our problem becomes

| M
wn =g | {_HXKHZ; +[|ukug} (Al.1a)

subject to
= -_ 1
xk+l Axk + Buk+], 0 < k < M-I (Al,1b)
where X, € Hl and up € HZ for 1 £ k £ M, A and B are specified
bounded linear operators. Hl and H, are the Hilbert spaces defined

in Section 2.

We define Jk by

M

1
=7 ) {le-Hz +||U-|i2'} (A1.2)
2 gager U3 T

i.e, Jk is the value of the performance index for the process (Al.lb) restricted

to the last k=1 passes.

We now make the following induction hypothesis:

min J, = <ko_k, KKy | (A1.3)
where Kk is a self-adjoint positive definite linear operator for
k& 1; 2y 3 wess Ms
Since our process has only M passes
K =0 . (A1.4)

Now assume (Al.3) holds for some value of k > 0. Then, using the

i Fo stage t. coincides with the overall
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principle of optimality:

| e ! -
min J,_,, = mm{-i- =y 115+ 7 1wy 13 "2L<xM-k’ Ky 1}

Using (Al.1b) this becomes
min J = min 1 ||A +Bu I|%# - |u |2 + L<A +Bu
I+ ] L VE N R VR | Il | VIR [ A R -
Ky Ay *Buy ) > 1}
= min{l<:A +Bu +Bu ‘> 4 1.
7 N1 PP ARy B ) T 5y >

1 .
t g A By K (A B O !}

Now, for simplicity, write Kyek—1 = %0 U

o "M-k % Ky = K

Then
; . 1 1~
= s iy o
min J, | mln{2 <AxO+Bu, (I+K)(Ax0+Bu):>] + 2‘\u’ll>b}

1 5 1
Now = {Ax +Bu, (I+K)(AXO+Bu)>1 + “2“<u’ u>2

]
[\_1' o
/;\
(]

:D.,_

o
+
=
N
)
V4

I I L * ;
+ 5 (ax, (I+4K)Bu >, + 5<Bu, (I+K)Ax > + 7, (I8 (I+K)B)u >,

1 * % . ] *
=5<%,A(nmk%>]+<B(ymA%,u>]+§<@,(nB(ntm>2. (A1.5)

* 5
Now, since X is not determined by u, %ﬂ<xo, A (I+K)Axo;>] is fixed.
Writing u = u + 6u it is easily verified that a necessary condition
for a minimum of min{—<u Luy, +<{b, ud is that Lu + b = 0
m Ui 2\..‘ 3 2 WD /)2 a u = .

Thus, for a minimum of (Al.5) we require

* *
(I+B (I+K)B)u + B (I+K)Axo =0 (A1.6)
% s *

16 u = —(I+B (I+K)B) 'B (1+K) Ax_ (Al.72)
or

UMk T Dok Wt . ¥l
where

L = (1+B*(1+K)B)'IB* I+K. )A &t 7

M-k (T4 ‘Al 2e)

* * * %
Notice: B (I+K)(I+BB (I+K)) = (I+B (I+K)B)B (I+K)
* -
Thus, premultiplying each side of the above by (I+B (I+K)B) l and post

; ; : # -1 .
multiplying by (I+BB (I+K)) we obtain
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* % = % -1 %
B (I+K) (I+BB (I+K)) = (I+B (I+K)B) B (I+K)
Thus
% * -1
u=-B (I+K)(I+BB (I+K)) Axo

Substituting into (Al.1b) gives

x = Ax + Bu
o]

* * -1
= [I — BB (I+K) (I+BB (I+K)) ]AXD

% % * -1
(I+BB (I+K) - BB (I+K)) (I+BB (I+K)) Axo

% .
(I+BB (I+K)) IAXO . (A1.8)
We thus have
*
u=-38 (I+t)x . (A1.9)
Now

. - | 1
min J, = mln{:z—'(x, x>] + -2—<u, u>2 + :2—<x, KX>I}

Substituting for u using (Al1.9) gives

. 1 1 * * )
min Jk+1 = 5<x, (I+K)x’>] = 5<B (I+K)x, B (_I+K)x>2

5 %y (140 (14BB" (1) x>

Now substituting (Al.8) gives
1

min i,y = g BB (0) a (1) (1988™ (190) (148" (140)) " >
= 2 {(14BB" (1)) " 'ax , (1+K)Ax >
2 o’ a ]
1 * % ]
= §<xo’ A (I+BB (I+K)) (T+R)Ax_ >
Thus

R, = A*(I+BB*(I+KR))_1(I+Kk)A (A1.10)

and the proof is complete by induction.

Notice

L
n

and L
n

- (I+B*(I+KM_k)B)“]B*(1+KM_R)A (A1.11)

- B (14K (A1.12)

in the statement of theorem 4.2.
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The K's satisfy the recurrence relation
% HS -1
z%+i=A(LmB(L«Q) (DKQA, 0< k<M (A1.13)
with

E =0 . (A1.14)

APPENDIX 2
In this appendix we give the proofs of theorems (5.1), (5.7) and
(5.9). We begin with theorem (5.1).

Proof of theorem 5.1

A
=

By writing (3.4) and (3.3) in terms of xk(t) and Ak(t), 1 « k <

we obtain

dax
—£ () = =AM (0 = AT (B) = Qx (B), 2 (T) = Gx (T) l 0 <t
dt

Mo () 20 | 1exk
dx, =Tt W
— () = Apx (0) + Ax _(t) = BR "B, (0), x (0) = ¢ | 0<ts
dt |

x (£) = £(t) J[ I s ks

From (A]1.8) we know that there exists a linear relationship between

and . In our trial solution we shall thus write
*k =1
i
xk(t) = JOX(k,t,e)xk_l(e)de tp (), lsksM, O<stsT
and attempt to find equations for X and p.

We also know there exists a linear relationship between u (and

hence Ak) and X from theorem 4.2. We make the trial solution of

T
A (B) = no(t)xk(t)+JOn1(k,t,e)xk_l(e)de+zk<t), l < k<m (A2.4)
0= t<T
In view of (A2.3) this is clearly a linear feedback of X This

form of control is chosen since it is a perturbation of the standard
terminal controller with added tracking vector and integral feedback

to account for the interpass coupling of our system.

A
=]

(A2.1)

1A
=

(A2 .2)

(A2.3)
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From (A2.3) we have

dz T ax dpy

dt Jo st dt

Now, substituting (A2.3) into (A2.2) yields

— (t) = A
dt

dxk JT
X(k,t,0)x . (o)do + A x, _ (t) + A p. (t)
1, -1 2%K -1 1Pk i 2

7 .
—BR'IB'ﬂg[nl(k,t,e)+Ho(t)X(k,t,e)]xk_l(e)de+no(t)pk(t)+zk(t)} ’

Equating (A2.5) and (A2.6) gives

'1‘ E
53X -1_, -1,
[ [;—-(k,t,e)-{Al-BR B Ho(t)}X(k,t.e)+BR B nl(k,t, ) xk_l(e)de

0 3t
5 -1, -1,
+ — () - AI-BR B no(t) pk(t) + BR 'B zk(t)
dt
® {X(t,t—) = Xkt ) = Az}xk_l(t) =0 . (A2.7)

This equation is satisfied identically if we choose X and p to
satisfy (5.1b)2and (5.]c)2.
Similarly, by differentiating (A2.4) and equating it with (A2.1)

we obtain

d =
{ T;?'(t)+Ho(t)A1+Al'Ho(t)+Q_”o(t)BR ]Binoct) *x

+ {n](k,t,t—)—nl(k,t,t+)+n0(t)A2}xk_](t)

dg -
+ —E (£)+(a) - _(OBR B ()44 ¢, (£)4A, T (£)p, , | (£)

de (A2.8)

+

ik
A2'JO[HI(k+1,t,s)+no(t)x(k+1,t,sﬂpk(s)ds

T BH] =]
+ J {——— (k,t,e)+[AI'—n (t)BR B'}n (k,t,p)
o] 1

0\at

(T
A 'J [n](k+l,t,s)+n0(t)x(k+l,t,s)JXk(s,e)dsxk_l(e)de = 0,
0

+

2
This equation is satisfied identically by choosing Mys T and ¢ to

satisfy equations (5.la), (5.1b)]and (5.1c)f

This completes the proof.

e ) o= {X(k,t,t-)—K(k,t,t+)}xk_l(t)+( — (k,t,0)x, _,(8)de +—(t) . (A2.5)
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Theorem (5.7) is obtained in similar fashion using the trial solution

IA
3
“
IA
=
IA

E
xk(t) 2'[0 Yk(t,(ﬁxk_l(e)de, 0= + M

(A2.9)

IA
rt
1A
:—]
IA
-
IA
=

T
A (E) =J0Fk&,@xb4(Mdm 0

Finally in this section, we indicate a proof of theorem (5.9).

Write
1

- “lgo
Ai BR B Ho(t)

BRIB

A (0),

]

BO,

Hl(k+l,t,s)+HO(t)X(k+],t,s) = g(k,t,s),

H}(k,t,t+)—H1(k,t,t-) = f(t) (=I%(t)A2).

Then we have, for 6 2 t and some k with 1 < k < M-I

d
E (1,e,0) = A ()X(c,t,8) - BT, (K,t,0),
o} o1l
ot
X(k,t,t=) - X(k,t,t+) = Ay s X(k,0,8) = 0
ol T (A2.10)
—gi-(k,t,e) = -A) (01 (k,t,0) - A J e(k,t,s)X(k,s,9)ds)
t 0

H](k,t,t+) - H](k,t,t—) = f£(t), nl(k,T,e) = 0.

Now X(k,t,0) e éA and T (k,t,0) « i
2

£(t)
Our proof relies on the contraction mapping

CONTRACTION MAPPING PRINCIPLE: Let V be a complete normed vector
space (i.e. a Banach space) and let f: V > V be such that for all
X, y €V

£ -£W I = A ||yl ,

where » < 1. Then the mapping f has a unique fixed point, i.e. there
exists a unique x' ¢ V such that f(x) = x.

The proof of this theorem tells us how “n find this fixed point,
Simply take any element of V and reapply f to it where upon convergence

to the fixed point will be obtained.

This is how we shall demonstrate the existence of a unique solution
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of (A2.10), i.e. by showing that under condition (5.9a), (A2.10) is a
contraction. The unique fixed point of the theorem will then be the

solution we seek.

Now, integrating (A2.10) we have

t
X(k,t,0) = J @(t,T)BOHI(k,T,S)dT + a(t,8)
0
? (A2.11)
T (T
H](k,t,e) = J @'(T,t)Az' J g(k,1,5)X(k,s;8)dsdt + g(t,0)
t 0
where
f 0 t > 8
al(t,0) =
( A2 t <8
J 0 t < 8
g(t,8) =
lf(t) t > 8
and ¢(t,r) is the transition matrix associated with Ao(t)l
Now, take any X(l) € GA . Then we have, on application of (A2.11)
2 "
E
1
X(Z)(k,t,a) = { @(t,T)Bonf )(k,T,G)dT + k(t,s) (A2.12a)
Jo
(n T t (1
M, " (k,t,0) = J @'(T,t)AZ'J g(k,7,8)X" 7" (k,s,8)dsdt + g(t,8) . (A2.12b)
t 0

Substituting (A2.12b) into (A2.12a) gives

t er T
X(Z)(k,t,e) = J e(t,r)B {| @'(U,T)Az'[ g(k,u,s)X(])(k,s,B)dsdu
0 oUy Jo
+B(T,8)}dT + a(t,e)
W(X(j)(k,t,a)) say. (A2,13)

We shall now find a sufficient condition for which w is a contraction

and the proof will be complete.

Let X, X' ¢ CA and let Y = w(X), Y' = w(X'). Then
2
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E T ) T
”Y_Y1’|A = sup ”J @(t,T)BO[ @'(U,T)Azl( g(k,u,S){X(S,S)—X'(S,G)}dsdudT”
2 t,8¢[0,T] JoO J Jo n
tzp
<12 se ece,ol] B0 IA L s [l steee
segre[0,T] k. o n f t,8eL0,T] n
gzt
SUF ||X(t,8)-X'(t,9)H
t’eé O:T:I a
tz8
b
(using J f(x)dx < sup ||f(x)” . (b-a))
a XEEasb]

2
3 1 n ] !
T [t sup ||¢(t,t)[[ J “BOII HA2|| sup ”g(k,t,g)f\ .{!X—X H

,'[‘ O,T tsGE[O,T] 2
A2t
= Al|x=x"]]
%
neve ) = 12 | loCedll )" - B, - Nyl It
where ) = sup dlt,t . . . sup glk,t,q
\t,7e[0,T] 2 olln 2'n t,0e[0,T] iln
tz9

Thus, if ) < 1, wis a contraction and this completes the proof.

The proof that (5.9a) is also a sufficient condition for a unique solution

to (5.1c) follows similar lines.

APPENDIX 3

In this final appendix we supply the proof of theorem (8.6). Consider
the following

t:

T
" {xk'(t)Ko(k,t)xk(t)+xk'(t)JtK](k,t,e)xk_l(e)de+xk’(t)JOKz(k,t,e)xk(e)de

T

t
+ thﬁ_](e)KI'(k,t,e)dexk(t)+JOXk'(B)Kz'(k,t,e)dexk(t)

4

+ J }( Xl:(—l(6)K3(k’t’e’c)xk—l(o)ded0 + J[ J X-k1 (e)Kq(k,t,e,U)Xk_](g)dgde
t't 0/t
T t t[t \
+ o (@K, (k,t,0,0)% (0)d de+J x' (0K (k,t,0,0)% (g)ded
jt[oxk_l 4 Fs b/ ¥y Ol bg il k " 0)¥% (g)dédo |
+ xk'(t)ka(t) + uk'(t)Ruk(t)

ka' dK dx
= = (DK (0%, (£)+x ' () —(k,£)x, (£)+x ' (IR (k,t) —% (&)
dt o n dt 2 k xk fe) B
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ka [T T
* j;;-(t) [JtK](k,t,a)xk_l(e)de+JOK2(k,t,e)xk(e)de]
T &K,
- xl'((t)Kl(k,t,t)xk_](t)“"X{((t)J ~L (k,t,0)% _ 1 (8)de+xy ()R, (k,t,t)x (t)
t »Jt
t EKZ r T t dxk
+ J — (k,t,0)x, (p)de+ J x_, (8)K] (k,t,e)de’rJ %, ()X, (k, t,e)de}-ﬂ (t)
0 st L ¢ dt
T &:; .
= %, (E)K] (k,t,t)xk(t)"' X _q(8)— (k,t,e)de+xé(t)Ké(k,t,t)xk(t)
Jt ot '
t T

Ak
xﬁ(e)-—{k,t,e)dexk(t) il | K, (e, t,t,0)%, _ (o)do-| %t (0)Ky(k,t,0,6)dx )

0 Jt It

T,T T
J J (8)—"‘" (kst)egﬂ)xk I(U)dﬂ"'xk(t)J K (k t t,O)xk ](G)dd
t t

E
- IO X{((G)K.{;(k’t’e’t)de]{k—] (t

t,T BK4 t
+ IOItxi(e)“"-(k,t,e,c)xk_l(o)dode - Xﬂ—l(t)J K) (eytyo, £)% (o) do

ot 0
IO RN
t

Tt aK' t
+ ()= (k,t,6,r)%, (r)dgde+ (t)J Ky (k,t,t,0) % ()d
JtJOXk " % Xy s 0)% (o)do

t
* | Ok e, 00, (0
0

(Substituting in (1.1) and rearranging gives)

T t !
- [uk<t)+R7‘B'[K0(k,t)xk(t>+JtK1<k,t,e>xk_]<s>de+JOK2<k,t,e)xk<e>de}J R

T t
[uk(t)+R_iB'[Ko(k,t)xk(t)fJtKl(k,t,a)xk_!(e)de+J0K2(k,t,e)xk(e)de] J

dK
£l (1) - (k,t)+Q+A;K0(k,t)+KO(k,t)Al-KO(k,t)BR-]B'KI(k,t)

dt
+ Kz(k,t,t)+Ké(k,t,t)ka(t)

J



T|3K

- 33 =

\

+ xi(t)Jt-:;} (k,t,e)+{A;~K0(k,t)BRf15'}K](k,t,s)+K4(k,t,t,e) xk_](e)de
T BL' i
+ (e) —-—-(k s e)+K (k,t,6)[A ~BR B! K, (k,t) 14K} (k,t,t,0) pdox, (t)
txk ot XR
(
t]akK,
+ xﬁ(t)J —= (k,t,e)+[A'—K (k,t)BR B']K (k,t,6)+K (k,t,t,0) xk(e)de
0 t
t . aK'2 ' s, ¢
+ Joﬁgge) —;;— (k,t,8)+K, (k,t,6)[A -BR 'B KO(E,t)J+K5(k,t,6,t)Jdexk(t)
T (T 3K, -1
+ X;(""](e) TR (k,t,e,o’)—K; (k"tje)BR B‘Kl(k,tgo) xk_i(o)dedcf
Jelt At ‘ :
aK

0

ft T
+ ). xk(e)

ot

=1

it (g by o)—k (k,t,e)BR‘ B? K, (k,t,o)Jxk ](o)dode

ok 8K, -1

* xf(—l(e) —— (k,t,c,e)—Ki(k,t,e)BR B'Kz(kstao) Xk(G)dOde
’t/0 at
FEFE j BK

$ J J Xk(e) ———-(k,t,e g)-K! (k,t,B)BR B K (k, t,U)JXk(O)GGdG
0/o l 3t

+

k

+
t
+ x! (t)J
Ke-1 5
Choose K K

O’

Then we have

]!

x'{KO(k,t)Az—KI(k,t,t)}xk (t) + x (t){A (k,t)-K;(k,t,t)}xk(t)

I

(t)J { AJK, (k,£,0)K (k,t,t,e)}xk_l(e)de+J x!_,(6) Ki(k,E,0)4

t

- KB(k,t,e,t>}dexk_](t)

t
{AéKz(k,t,e)—Ka(k,t,S,t)}xk(e)de+JOX£(8){Ké(k,t,B)Az

K,, K

3’

K

= Ka(k,tge st)}dexk_lct)

g and K5 to satisfy 8.6a,c,d,e,g,h,i,j,k, and 1.
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T t
j% {XQ(t)KO(k,t)xk(t)+x£(t)[J K](k,t,e)xk_l(8)de+JOK2(k,t,e)xk(e)de}

t

T t
+ [J xl;."l (e)K'] (k,t,e)d@-l—JOxll(e)Ké(k,t,e)deJxk(t)

t

T BT
+ J Jt x;_](e)K4(k,t,e,o)xk_l(o)dadg+JOth£(e)K4(k,t,e,o)xk_l(c)dcde

t bt
Jo Xﬁ_](G)KA(k,t,G.G)XH(G)dcde+JOJOX£(61K5(k,t,e,g)xk(g)dode}

+
—
[ng H

% xﬁ(t)ka(t) W uﬁ(t)Ruk(t)

t 1

i
Kz(k,t,e)xk(e)de]J R

tKl(k,t,e)Xk_](e)d8+[

=1
= R B'|K. (k,t t)+
[ (0488 1 0,003, (01 |

T
[uk(T)+R_]B'[KO(k,t)xk(t)+th!(k,t,S)Xk_I(G)de

t
+ JOKZ(k,t,e>xk(e>de} } :

Integrating with respect to t over O to T and summing over k

from 1 to M we get
M

) {xﬁ(T)Ko(k,T)xk(T)+xﬁ(T)J
k=1

T T
OKz(k,T,e)xn(e)de+JOxﬁ(e)Ké(k,T,e)dsxk(T)

&l T
# J [ xﬁ(e)KS(k,T,e,o)xk(o)dedo-J J x'k—I(B)Ka(k’O’e’U)Xk-i(G)dedo}
0/0 0/ 0
M T
F 1| e ® o @)
k=170

- T '
= ) JO {Uk(t)+RfIBI[KO(k,t)Xk(t)+JOK2(k,t,9)xk(e)de+JtKl(k,t,e)xk_](e)de]J R

t T
luk(t)+R_]B'[Ko(k,t)xk(t)+JOKz(k,t,e)xk(e)d9+JtK](k,t,B)Xk_l(e)de}Jdt .
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Choose 8.6 b, f, m and n to be satisfied. Then we have

T

M
-7 1 (e m+f [ 51 (00m, (0 (OB (o) Joc |

0

L t 1

Kz(k,t,e)xk(e)de] ] R

Kl(k,t,e)xk_l(e)de+J

M T -
% ZIJO [uk(t)+Rf]B'LKO(k,t)xk(t)+J

k t

0

= f f
-1
(t)+R B'{K (k,t)x (£)+| K (k,t,0) ()de+| K,(k,t,p) (e)de] dt
[“k 0 X Jt 1 k-1 Jo 2 X J
§

T,T

(
7] J £1(8)K4(1,0,6,0) £(0) dodo
0/0

1
2

Choose ;k(t) and Ek(t) so that

- o i T
5, (6) = =R ‘B‘LKO<k,t>xkct)+JOKZ(k,t,e>xk(a)de+( K, G, £,0)5, (020 |+ (A3.1)

Jt

Then
T,T

Jlu] = %—J Jo f'(B)K3(|,0,8,d)f(o)d8dU
0

For any other xk(t) and uk(t)

| T .T

Jl] = E’J J f'(e)K3(1,0,e,o)f(o)dedo
0/0

T
{ K (k,t,0)% _, (8)de

1 T
{ [uk(t)+R B'LKG(k,t)xk(t)+Jt

o

1

[ 3 t(
K k,t, d R

T t
{uk(t)+Rf15-[KO(k,t)xk(t)+[tKl(k,t,e)xk_l(e)de+JOK2(k,t,e)xk(e)de] Jdt .
Thus
JLul- JLu]
| m T -1 r T T !
= E.kZ]JO[uk(t)+R B'LKO(k’t)Xk(t)+JOKZ(k’t’e)xk(e)de+JtK](k’t’e)xk—l(a)de] J R

t T
[uk(t)+R'lBr[KO(k,t)xk(t)+JOK2(k,t,a)xk(e)de+JtKl(k,t,e)xk_](e)de] )dt

> 0 Since R is positive definite.



We thus have that J[u] < J[u] for any choice of w (1 <k =M
and hence u as chosen in (A3.1) provides a minimum of J, i.e. 8.6 a - n
are sufficient conditions for Ek (1 £k £m) to be an optimal control for

system (1.1), (1.2), (1.3) and (1.4) and the proof is complete.
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