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SUMMARY

A new geometric method of calculating multivariable system zeros and
zero-directions is presented by considering a particular choice of state
feedback contrel law. This control law has been motivated by the study
of variable structure systems in the sliding mode. The cases of singular

and non-singular CB have been treated separately.
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iz Introduction

A new algorithm for the calculation of the multivariable zeros and
zero-directions of the square system S(A, B, C) is derived for the case of
equal number of inputs and ocutputs. It is shown that the zeros are a subset

. , k=1
of the eigenvalues of the matrix Ak =[A - B(CA

B)_lCAk]; 1 < k £ n, where
k is defined in (12) and (13) and is equal to 1 if'|CBl # 0. The matrix
Ak with k=1 is formed by a particular state feedback control law associated
with variable structure systems in the sliding mode (El-Ghezawi et al, 1981 ,
Utkin 1977). Once the zeros have been calculated the state and input zero-
directions can be determined independently and without resorting to the null
space of the (n+m)th order system matrix defined in Kouvaritakis and
MacFarlane (1976).

The paper begins with a brief overview of variable structure systems
in the sliding mode. The main results are then presented in the form of three
theorems. The relationship between the algorithm given for the case where
[Gif% O and the NAM algorithm due to Kouvaritakis and MacFarlane (1976) is
then discussed. Finally worked examples are included to illustrate the

validity of the methods.

2. Calculation of the system zeros

Consider the square linear time-invariant multivariable system S(A,B,C)

X = Ax + Bu

¥ = B

n m m . .
where x e R , ue R , y e R and B, C are full rank matrices. The algorithms
presented below for the calculation of the zeros and zero-directions of
S(A,B,C) are motivated by the observation that a particular feedback control

law

k-1 -1 k (2)



which yields the closed loop system

x=[na- B(ca" ') ea x = 2, x (3)
suggests a particularly simple method of computing the zeros. The control
equation (2) (with k = 1) arises in the analysis of variable structure systems
in the sliding mode and is known as the equivalent control. Further details
of the relationship between variable structure systems and the calculation of
multivariable system zeros are given in El-Ghezawi et al. (1981). A brief
overview of variable structure systems in the sliding mode is presented in

the next section.

3. Variable Structure Control Systemsin the Sliding Mode

Variable structure systems are characterized by a discontinuous control
action which changes structure upon reaching a set of switching surfaces.

The control has the form

Cu, (x) s, (x) <0
i

where u, is the ith component of u and si(x} is the ith of the m switching
hyperplanes which satisfy s(x) = 0,5 ¢ R". Sliding motion occurs when the control
constrains the state to remain on the switching hyperplanes s(x) = 0O (Utkin
1977) and then

s(x) =Cx =0and $(x) = (x = 0
The discontinuous control u can then be substituted by a continuous function termed
the 'equivalent control'’ ueq' The equivalent control is obtained by setting
§(x) = 0 and then solving for u to yield

=l

u = —(CB) CAx.

eq
Substituting back in equation (1) yields a reduced system described by

. -1

x = |I-B(eB) Clax = a_ x. (4)

J eq

Observe that wariable structure systems in the sliding mode are closely related

to the output zeroing problem as defined by MacFarlane and Karcanias (1976).

This follows by interpreting the switching functions s as the system outputs y.
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Calculation of the system zero's using variable structure systems is based
on the observation that if y(t) = O for t > o then y(t) = 0 for t > 0. This
yields an algorithm that consists of determining the eigenvalues of Aeq which
arises when the feedback control which ensures that y(t) = 0 is applied to (1).

Calculation of Zeros and Zero-directions

The problem of calculating the zeros and zero-directions has been tackled

using three different approaches depending upon the form of CB. The three



cases considered are:

Case 1:

Case 2:

Case 3:

4.1 Case

Theorem 1:

or

and

[CBI # 0; This is dealt with in Theorem 1.

i - k-1
ca’™ B =0 forall i=1,2, ..., k-1 and |ca

B| # 0; This is
known as the uniform rank case (Owens 1979) and is dealt with in
Theorem 2.

A non-uniform rank case with |CB| = 0 is discussed in Theorem 3.

3 8 |CB| # 0

(1)

(133

(iii)

For the system S(A,B,C) with |CB| £ 0
the n-m zeros zg of the system are given by

_ _ m
(a) {zi} = Sp(Aeq) {0}

g

(b) are the eigenvalues of the (n-m)th order matrix M AeqM where

9

M is a basis matrix for N{C} and M® is a generalized inverse

of M.

the state zero directions-mi associated with the zeros z, are
i

(a) +the corresponding eigenvectors of the matrix Aeq

(b) satisfy w, = M a; where the a, are the eigenvectors of MgAeqM.

. . = ],
the input zero-directions are g, = - (CB) CA wi = - (CB) CAMa., .
i

Proof :
*
(i) let v be the maximal (A,B)-invariant subspace in the kernel

* *__
or null space of C. Then v = N(C) and R = v & R(B). Since
CA = ca- (B)(cB) ‘ea=o0 |
eq (5)
n *
it therefore follows that Aeq RC. v and in particular
* *
A vCv . ()
eq
Since zeros are invariant under state feedback, the n-m zeros of

S(A,B,C) and the closed-loop system S(Aeq, B,C) are equal and

therefore from (6) the zeros are a subset of the eigenvalues of Aeq'

n *
The relation AeqR ¢ v implies that all other eigenvalues of

Aeq are zero proving (i) (a).



Furthermore, if zi is a zero, there exists a non-zero eigenvector
w. € NECI such that
i
W, = z W, i=1,2, ..., n-m (7)

Let M be a basis matrix for N(C) and write mi = Mai then

A My, = My, 2z, (8)
eq i 1 4
and
Ma Mo, =2z MMy, ' (9)
eq i i i
=z, o, (10)
i i

where M7 is any generalized inverse of M satisfying MM = In—m'

It follows from (9) that the zeros of S(A,B,C) are given by the

eigenvalues of M7

AeqM which has order n-m. This proves (i) (b).
(ii) This follows from equations(7)and (10) .
(1ii) Substituting x = W, = Ma, in (2) with ¥ = 1 gives

=1 =1

= - w = -

9; (CB) ~ca i (CB) "ca M oy (11)
which completes the proof of the theorem.

Using section(i)(a) in the theorem yields a technique for determining

the (n-m) zeros by finding the eigenvalues of the specified matrix Aeqj

without the need for calculating the annihilator matrices M and N i C.E.

the NAM algorithm of Kouvaritakis and MacFarlane (1976) . The method of
section (i) (b) has links with the NAM algorithm (see section 5). For both
cases (a) and (b) the zero-directions are calculated without resorting to
the determination of the null space of the (n+m) th order system matrix
as defined in Kouvaritakis and Macfarlane (1976).

For the case where n-m is large, method (a) is computationally simpler
than (b). For n-m small, i.e. nsm, method (b) may be a reasonable alternative.

i=1 ) k-1
4.2 Case 2: Uniform Rank CAl B=01i=1,...,k-1 and ]CA B| %’O

A system is said to have uniform rank k (Owens 1979) if

ca B = 0 1<ic<k (12)



and

e 1s| #o . (13)
R" is then decomposed as the direct sum
- kRn SE® AB®...®A ey (14)

T = N n(cal™h (15)
i=1

Theorem 2: Given the feedback control

.
u = - (ca 1e) tea¥x _ (16)

and
k-1_.-1 _k
Ak = A - B(CA B) CA (17)
then
(i) the (n-km) zeros Zi of S(A,B,C) are given by
(a) {z,} = sp(a) —{O}km1
i By
g : g g
A M =
or (b) the eigenvalues of the matrix Mk G M where Mk is a
*
basis matrix for v
(ii) the state zero-directions wi associated with
the zeros zi are

(a) The corresponding eigenvectors of the matrix Ak

; ; g
b tisfy w, =
and (b) satisfy i Mk oy where the o are eigenvectors of MkAkMk
ol . : ) ; k=1_.-1_k
(iii) the input zero-directions are given by iy =E (ca B) ca Mkai

Proof: (i) The zeros of S(A,B,C) are invariant under state feedback

and are therefore equal to the zeros of S(Ak,B,C). ~Noting that

; 1
il i1=1 K=l o=l K CA L= g=lk
CA Ak = CA - CA B(CA B) caA = [O i %
and therefore
i-1 * .
(@:Y Ak v =0 1 <1i <k (18)
we have
* %
ﬁ{va . (19)

and hence from (15) n-km eigenvalues of Ak are the zeros of S(A,B,C).

is a zero of S(A,B,C) then

If
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Ak W=z, W,. (20)
i i i
Writing
r 3 r 3 g 3
e O I (0] (B!
CcA Ak= 0 I wu © CA
I
k-1 2
CA B = &z O 0 J o]
J L \ CA

T T T : g
and noting that S(A ,C ,B ) has uniform rank k and hence, in a similar

manner to (14),

rank CA = kmn,

© ke
ca 1

we conclude that Ak has km zero eigenvalues. If S(A,B,C) has no zeros at
the origin then (i)(a) follows trivially since the (n-km) zeros must be the non-
zero elgenvalues of Ak' If S(n,B,C) has a zero at the origin, note that
(1) (a) is truefor S(A - aI,B,C) for O < a < § and some suitably smallsi
So (i) (a) follows by continuity letting a =+ O.
*

Now let Mk be a basis for v . Then

w; = Mkai ; oy A0 (21)

and
g g
A M = M
M A% T 2 MMy
= Zz, 0, (22)
1. 1
where ME is any matrix satisfying MEMk = In—km' Therefore, the system

zeros are given by the eigenvalues of



. |
MR, s

i y _
(ii) From (21) _mi Mkai
(iii) Substituting in (16) with x replaced by Wy = Mk oy yields
k-1_.-1_ k
9, = (i B) “ca Mkai : (24)

4.3: Case 3: The non-uniform rank case

The uniform rank case is completely resolved in the preceding sections. '
The case of a non-uniform rank system is more complex. The following result
does however, identify a condition when Theorems 1 and 2 have a natural
generalization. g
|
Theorem 3
* k o
Bl #0andv & N n(ca

- * ool
Then, Ak v €. v and the zeros of S(A,B,C) are a subset of the eigenvalues

— k-1

I —
Let k > 2, |ca” "B|=0 fori=1,2,...k-1, |cCA Ty,

of Ak. The zero-directions are then calculated as in Theorem 2.

*
Proof: ILet v be a basis matrix for v then

A

Av = vJ + B. (25)

*
By the definition of v there exists an m x n matrix F such that

B = BFv. (26)
From (25)
i i=1 i-1~ ]
CA'v=CA "vJ+CA "B 1L%5 K
i-1-
If i < k then CA B = 0.
k k_ -~
If i = k then CA v = CA lB
k-1
= CA BFv

i.e. a valid solution for F is

k-1 -1 k
F= {CA B) o8,
Also,
k-1_. -1k k-1_ -1k
[A-B(cA  "B) "CAJv =Av - B(CA B) CAV
- =j G ”
= Av - B(C ¥ lB) lCA (vJ + B)
k-1_ -1 k-1 k-1

Av - B(CA B) CA BFv ; since CA v =20
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= Av - BFv
= (A - BF)v
* % *
which has range in v . This proves that Ak Vv € v and the remainder of

the theorem follows in a similar manner to theorem 2.

This result has a similar interpretation to Theorems 1 and 2 but may
be difficult to apply in practice as k is not necessarily known and, although
the zeros are a subset of the eigenvalues of Ak’ we have not identified which
subset. 1In this sense the result is primarily of ‘theoretical interest.

5. The Relationship with the NAM algorithm

The algorithm (b) presented for the case [CB| # 0 resembles the NAM
method of Kouvaritakis and MacFarlane (1976) in the sense that both methods
determine the system zeros as the eigenvalues of an (n-m)-dimensional matrix.
Furthermore, it can be easily shown that the matrix Ne = Mg[I—B(CB)_lCﬂ
qualifies for the matrix N in the NAM algorithm. This is because

NB=20
e

2
=
Il
H

where the matrix M is the same in both methods (El-Ghezawi et al, 1981).
- i i-1 . k-1
Similar comments apply in the case of CA "B = 0, i < k and |CA B| # 0
when compared with Owens (1979).
6. Examples
We shall next give some worked examples to illustrate the algorithms
proved in the previous sections.

Example 1l: Consider the following example which was originally introduced

by Patel (1977) where |CB| # O.



w 13 =
1 o]
CB = = I_.
0 1 .
We now use the results of Theorem 1.
(o] 1 0
-1
A =|‘I—B(CB) C]A= 0 -3 0
eq o
O -1 0

]

2
Using (a) the zeros are given by sp (Aeq}- {0} {-3,0,0} - {0,0}.

= - 3
From (b) M = N(C) = [l =3 —l] and M7 = [l o] O] giving
0 1 0 1
WA m=[1 o o |o -3 ol [-3|=-3
eq -
0 s 0 -1

The system, therefore has a single zero at -3 and this agrees with the wvalue

obtained by Patel (1977). The state zero-direction wl is given by
1
w_ = -3
1 %1
-1

where 0. is an arbitrary scalar since n - m = 1. The input zero direction o

1 1

given by (11) is

=i
9, = - (CB) "ca w,
1 =2 8 1 1
= = _3 =
2 - 3
o 3],

Example 2: Consider the uniform rank system

(o0 o -2 0o o) (1 o)

1 0 -5 o 0 o.czOlOOl
A=|0 1 -4 o o|;B=|oO 0'100101

o o 2 o - o 1

o o 1 1 -4 o o
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with CB = 0 and

[
o
1
[1s8
=
|
fInS
|
e
'_I
=

CAB

1]
@]
—

|
w
-
w

|

R
(@]
-

-4

We may use Theorem 2 with k = 2. Using (a) the zeros are given by

km
sp(A) - {0} = {-3,0,0,0,0} - {0,0,0,0}
= -3,
. 1 1 [ ) |
The algorithm (b) yields 1 o ] 4 -1 4 2
* 0O O ik 3 -1 4 1
M_=v =N(C) () N(Ca) = N =
0 O 1 1 0 0 1
o 1 @] o] 1 (e} -2
o o -1 0] o] 1 -1
b J J
From (17)
f
1 1 -9 0 |
0 -5 o
Ak = o] 1 -4 o]
=1 3 =3 4 -16
0 (6] 1 1 -4
\ J
g _ *
waM =[o 1 o or ﬂ A -V
2
1
=1 o5 o o |1]=-3
-2
-1
o
Therefore the system has a single zero at z = -3. The state zero-direction
is equal to Wy = Mﬁal = [2 11-2 —l]Tal where ul is an arbitrary scalar since n-km=1.
The input zero-direction obtained from (24) is
=1 2
9 = (CaB) CA M,

It

- (CAB}_lCA.AMk



— 19 =
{ 3
-2
=1L 1 . (0] O] -3 -4
o -1 3 -1 4J -3 o)
6
)
Example 3:
For
( ) ( )
1 -1 1 Q 0 1
|
4 -5 0 (0] 0 4 1 0 0 0
A = ; B = ;C=
-2 3 -6 2 6 (0] 0 1 0 (0]
o o 1 —2J 0 C}J
(@]
JCBI = = 0 but CB # 0. We now use Theorem 3.
0 4
[0 1
1 -1 1 (0] a 4 © -3
CAB = =
4 -5 0 0 6 0 0 ~16
o} oJ
8
Clearly |CB] = O)I CA B{ # 0 and k = 2 since it is easily verified that
O (@] 0 B @]
" 0 5 o) ? | . 4 0
v ¢ NN N(CA)}Zspan 1 o nspan o - _1 | |=span o
(0] 1 1 0 { 1
Let Mk = 0
0
(6]
d.
and then
g )
Mk_[o o o 1]

Note that ME Ak Mk can be easily calculated since MEAkMk = ME [I - BéCAB)thA]AMk

giving

& B ==,

The system therefore has a single zero at z,= - 2 and this agrees with the
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resul's of Patel (1977). The state zero-direction is giwven by (21)
T
= = 1
w, =M a =[0 o o I
where al is taken to be unity.

The input zero direction is obtained from (24)

[0]
16 -3)(-s 7 -5 2|0
- 1
97 e =g o w6l-e 21 4 o jio
lJ
= 1/3
(e}

8. Conclusions

A new geometric method for the calculation of system zeros and
zero-directions has been presented for the system S(A,B,C) with an equal
number of inputs and outputs for both the cases of CB singular and non-
singular. The method presented is based upon a particular choice of state
feedback control law motivated by variable structure systems in the sliding mode.
The determination of the zeros is achieved by finding a subset of the eigenvalues
of an nth order matrix Ak or by calculating the eigenvalues of an (n-m) th order
matrix MgAkM. The algorithms provided
offer the advantage over known techniques of the ability to calculate the state
and the input zero-directions independently of each other without resorting to
the determination of the null space of the (n+m)th order system matrix.
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