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Abstract
The paper considers Smith Predictor control structures for
multivariable process plant with separable delays on the output and
analyses the robustness of the control scheme with reépect to mis-—
match between the real plant and its model and to simultaneous
changes in plant dynamics. The cases of additive and feedback
mismatch are considered separately and represented in the form of

easily checked graphical stability criteria in the frequency domain.




1. Introduction

(1-10)

Recent work has focussed attention on the practical problems
of assessing the robustness of feedback control systems with respect to
changes in plant dynamic characteristics and of developing design
techniques that guarantee a required degree of robustness. The
property of robustness is perhaps of particular importance for the

case of control systems for plant including significant time-delays in

(11,12) where, for example, the well-known Smith predictor

its dynamics
control scheme incorporates a model of the plant. Off-line analysis

of the control configuration may well indicate that the Smith scheme

is stable with acceptable transient characteristics if the plant matches
the model exactly yet the inevitable mismatch between plant and model
dynamics can lead to severe stability and performance problems on

(11’12). It is clearly of vital importance that the

implementation
off-line design is at least robust enough to cope with the observed
plant/model mismatch and preferably robust enough to simu?taneously
retain stability and acceptable dynamic characteristics in the presence
of changes in plant dynamic characteristics. This 'double' robustness
problem is the subject of this paper which presents an extension of
standard robustness results for feedback systems to cover Smith control
schemes.

The general theory is described in section two where an abstract
viewpoint is taken, regarding the stability of the Smith scheme as an
input/output stability problem in arbitrary Banach spaces(l3’14).
Robustness results are then derived for the cases of additive or

feedback mismatch between plant and model. Section three then examines

the special case of dynamic systems described by convolution operators

when it is shown that the rather qualitative structural results of section

two take a useful graphical form suitable for computer—aided-design

using frequency response loci.

(11)



2% Robustness of Smith Control Schemes: General Theory

We consider an f-input/m-output linear system.with input vector u
and output vector y lying in input and output linear vector spaces U2
and Y respectively. The system (termed the plant) is regarded as
a linear operator mapping UE into Y" expressed in the separable form

y = Tz . z = Gu BT )
The linear operator T maps Y" into itself and is taken to represent
delays or other similar dynamic effects at the plant output whereas G,
mapping U2 into Ym, is linear énd represents delay-free dynamics.
The delay-free vector z&Y'.
The abstract Smith control scheme is illustrated in Fig.2 where

the linear operators G, and T, represent models of the plant elements G

A A
and T respectively and K is the forward path control element regarded
. m ., A . m .
as a mapping of Y into U". The signal r&Y is the demand or set-
point signal. The dynamics of the configuration, for zero-initial

conditions, can be represented by the equations

y = Tz v iCZ)
z = Gu L (0
u = K(r - GAu - (Tz - TAGAu)) v (4)

In practice, equation (4) has a unique solution u for each choice of r
and z and hence we will assume that it can be written in the form
*
u:K(ruTz) ---(5)
* ; 3 3 ; m , 2
where K is a uniquely defined linear mapping of Y into U . Clearly
the Smith scheme therefore has the equivalent feedback structure
illustrated in Fig.3.
L m ; L m 3
Let UO and Y0 be linear vector subspaces of U and Y respectively

(regarded as spaces of 'stable' inputs and outputs resp.) and that they
& P P




are endowed with norm topologiés with respect to which they are
Banach spaces. The Smith scheme is then said to be bounded-input/

(14)

bounded-output (BIBO) stable if the output response y from zero

initial conditions lies in YOm whenever the demand signal r lies in Yom.
Familiar examples of these ideas can be found in ref.(14) where U" and
i are, for example, cartesian products of extended Lp(O,+W) spaces
and UOR and YDm are cartesian products of Lp(0,+m).

In the following subsections, the robustness of the stability of
the Smith scheme is investigated in the above general form for two
cases of plant/model mismatch using the classical global contraction

(13,14)- . H

will be used to denote vector norms and induced operator norms with

mapping theorem For notational simplicity the notation

no reference to the underlying space.

2.1. The Case of Additive Plant Mismatch

It is trivially verified that the delay free plant component G

can be represented in terms of the model GA in the form ~

G = GA + AG e (6)

(5,6)

where AG is an additive perturbation of the model GA to represent

the mismatch G—GA between the delay-free components of plant and model.

In a similar manner, it is possible to write

T =T, + AT o (7)

The following theorem characterizes the stability of the Smith
scheme in terms of measures of AG and AT and the stability characteristics

of the Smith scheme of Figs. 2 and 3 with G

A and TA replacing G and T

respectively.




Theorem 1: With the above notafion, the Smith scheme of Fig.2 is
stable in the BIBO sense if
(i) the plant component G and its model GA map UO2 into Yom
and that their restrictions to UO2 have finite induced norms,
(ii) the delay components T,TA map YOm into itself with
restrictions to Yom of finite induced norm,

(iii) the restriction to Yom of the delay-free mapping

= 5 2 i % R
2 (I+KGA) L Kr has range in UO and finite induced

rHU.A
norm,
iv) A, & |l awe,) ™! kaTG, ||
1 A A
<1 . (8)
and
) Ay = e | x+xe,) ™ k1A
2" Ty A
<1 e s (9)

Proof: As G and T are stable and bounded by assumption it is sufficient

to prove that uE}UOR whenever rEEYOm. Clearly

u =K (r - TCu) ...(10)

which can be written as

_ % -1 %
u = (I+K TAGA) K (r - (TG-TAGA)u) o mul Gl )

This is an equation in UR of the form u = Wr(u). Suppose that Wr maps

m

Uog into itself whenever the demand rEiYo F The BIBO stability

requirement can then be replaced by the (sufficient) requirement that

Wr is a contraction mapping(ls’la) for all r. This is clearly the

case if

A * -1 %
A, = @, G R (TE-T,6 ) || <1 ... (12)



% -1 % T
We now prove that (I+K TAGA) 1K = (I+KGA) 1K by writing

% -1 %
u, = (I+K TAGA) K r in the form

u =V - v ... (13)
with
= K 'Y
v, =Kr s v, = TAGAuA s 0w (14)

*
Using the definition of K , (l4) takes the form i

v, = K(r - (I-T,)6,v)) ’ ... (15)

i}

<
|

g = K(TAGAuA - (I_TA)GAVZ) ...(16)

Subtracting (15) and (16) and using (13) yields, after a little

manipulation

u

A = K(r - GAUA) ...(17)

or u, = (I+KGA)_1Kr as required. Conditions (i)-(iii) clearly ensure
that Wr hence maps UO2 into itself for all rGEYOm and the result

follows from (8) and (9) noting that

-1
|| (T+8G,) K (TAG+ATG,) ||

>
L]

A

i[(I+KGA)_1KTAG][ + ][(I+KGA)_1KATGAH

A

(1—A1) + AI = 1 ... (18)

The interpretation of this result is fairly straightforward despite
its abstract form. Conditions (i) and (ii) boil down in practice to
the requirement that the plant TG and its approximate model TAGA are
open-loop stable. Condition (iii) simply states that the input response
u, of the delay-free feedback scheme of Fig.4 should be bounded
whenever T = 0 and the demand r is bounded. That is, the delay free

feedback scheme of Fig.4 is stable in the normal practical sense.




Finally, conditions (iv) and (ﬁ) provide upper bounds on the additive
mismatches AG and AT that guarantee BIBO stability. Note that if the
plant and its model are identical (ie G = GA and T = TA) we have
AG = 0, AT = 0 and (8) and (9) are trivially satisfied. The result
then states the well-known idea that the Smith scheme is stable if
the delay-free control scheme of Fig.4 is stable. In the présence of
non-zero mismatch, (8) and (9) allow a sequential assessment of the
cffect of delay mismatch AT via equation (8) followed by a consideration
of the mismatch AG in the delay;free component using equation (9).

An application of the above result is described in section 3.1.
It is useful however to make the following general observations on
situations when (8) and (9) will be valid:

(i) Using the usual properties of operator norms, it is easily

verified that condition (8) will be valid if the mismatch AT satisfies

llaze, || < L ... (19)
A e x|

The model GA is retained with AT on the left-hand-side as infinitessimally

small changes in dead-time can lead to large changes in AT and hence

large values of ‘|ATH whereas the low-pass filtering effect of GA is

. Note that (19) indicates

expected to generate small values of |1ATGA|
that Theorem 1 is a 'small-gain theorem' as, in general, ||(I+KGA)_1K“
will tend to become small as the gains in K are reduced to zero.

(Note: this argument is rather simplistic as the presence of integral
action in the control element generates large d.c. gains but the general

principle is expected to carry over in practice).



(ii) Using a similar argument to the above it is clear that (9)

is valid for mismatch

1

2 e
| (xexe,) e

llac]l <

again indicating the 'low-gain' validity of the results. It is more
interesting however to note the interplay between the delay and delay- :
free mismatch terms. If Al is small due to,lsay, 'small' delay mis-
match AT, then the permissible delay-free mismatch AG could be large.
If however Al is close to unity due to, say, poor modelling of the
delay term then the permissihleo delay-free mismatch AG could be
uncomfortably small.

We now prove the following result indicating the robustness of any

design satisfying the conditions of theorem 1:

Theorem 2: Suppose that the controller K is designed so that the
conditions of theorem 1 are satisfied and that, over a period of time,
the real plant TG changes its dynamic characteristics to those described
by the decomposition TG. If both T and G are BIBO stable, then the
Smith scheme will retain its BIBO stability if

(I-2.) (1-).)
. 2 ... (21)

ITe-0)] + ||(T-m¢| < -
“(I+KGA) K|

Proof: Following the argument of the proof of theorem 1, the perturbed
scheme is stable if

A 8 llasxe) ke - 1,6, || < 1 v (22)

o A AA

Noting that

Y < I @e) K| ] (16 - 10 ||+ 2 o (23)




and that TG-TG = T(G-G)+(T-T)G, it is clear that (22) is satisfied
if

AT || + |l[T-De| } < 1-2 cee(26)

||(1+KGA)_1K]

The result follows from (8) and (9) noting that (c.f. equation (18))

>
A

]](I+KGA)_1KTAG” + ’l(I+KGA)m1KATGA”

lz(l-Al) + Al ..o (25)

and hence that l—AO > (1—A1)(1—l2).

Condition (21) estimates the magnitude of the permissible future
changes é—G and %-T in plant dynamics in terms of the design parameters
GA and K and the computed parameters Al and A2 describing mismatch
characteristics with the initial plant data G and T. Note again that,
if Al and Az are small and small gains are used, the right-hand-side
of (21) is large, hence allowing large changes in plant dynamics before
instability results. Conversely, if high-gains are uéed and Al and
kz are close to unity, small changes in plant characteristics will
violate (21) indicating the possibility of instability.

Finally, we note that, in general, delay operators have unit norm
in both frequency domain and time-domain spaces. It is very often

the case therefore that ||i(é—G)” = ]|6~GH providing a partial

simplification of (21).

2.2. The Case of Feedback Plant Mismatch

Despite the simplicity of the analysis of additive mismatch the
results do suffer from the practical restriction that they require

(condition (i) of theorem 1) both the plant G and its model GA to be




BIBO stable whereas there are obvious practical situations where either
or both could be unstable. A useful general analysis of this problem
has not yet been achieved. A partial solution to the problem has

been suggested in ref.4 using the notion of a feedback perturbation.

In the context of the Smith scheme discussed in this paper, the mismatch
between G and G, has a feedback perturbation structure if there exists

A ;
a linear mapping H of Y" into UJl such that

=]l
G = (I + GAH’) G, ... (26)
when G is as illustrated in Fig.5. If both G and GAhave an inverse
then (26) indicates that
' -1
G~ = GA + H waw C2T)

and hence that a feedback perturbation H of G, is an additive perturbation

A

of its inverse. Such perturbations have been used to great advantage

td=9)

in first-order multivariable process control theory and approximation

of large scale systems(15)

and can be expected to have at least comparable
advantages for time—-delay systems analysis.

The following result describes the stability of the Smith scheme
in terms of additive mismatch AT = T—TA between the plant and model

delay components and feedback mismatch H between plant and model delay

free components.

Theorem 3: With the above notation, suppose that:
(i) the delay components T and TA map Yom into itself with
restriction to Yom of finite induced norm,
s & & m . £ 2
(1ii) the model GA maps UO into YO with restriction to U0 of

finite induced norm,



_10..

wr . ; m , L. . L.
(iii) the feedback mismatch H maps Y0 into UO with restriction
to Yom of finite induced norm,

(iv) the delay free mappings r+ z

A -1
= (I+GAK) G,Kr and

A
gh—r; 8 (I+G K)—lG ; map Y ™ into itself and U . into Y ™ respectively
A A A o} o o

with finite induced norm,

(v a8 |](I+GAK)_1GAKATH

1
€' ; wow (28)
and
. A1 -1 _
(vi) A," S I:KT;' H(I+GAK) G, (I+K (I TA)GA)H”

<1 s w0 (29)
Then the Smith scheme of Fig.2 is stable in the BIBO sense.
Proof: As T is stable it is sufficient to prove that zEEYom whenever

rE—.YOm. Clearly, from Fig.3,

*
GK (r = Tz)

N
1l

& (r - T,z = (T-T,)2) ... (30)

or, substituting for G from (26) and rearranging,

1+6 K1) ek ( )z)
z = (I+G TA) GA (r T TA z

A
1+¢,K'T,) e u 31
- ( +GA TA A z «..(3D)
which can be regarded as an equation z = Wrz in Y. Suppose now that
Wr maps Yom into itself whenever rE'YDm. As in the proof of theorem 2,

the stability requirement can then be replaced by the requirement that

: ; m m .
wr 1s a contraction on YO for all rEEYO . That is, we need

A!
o]

* ={ *
]|(I+GAK T,) "G, K (T-T,) + H) ||
< 1 BN 5+

We now prove that




- 11 -

* -1
(I+G,K TA) G

b = (I+GAK)"1¢A(I+K(I—TA)GA) Y c)

-1
(I+GAK) G,K

% X - %
and hence (using the definition of K ) that (I+GAK TA) 1GAK A

~ * -1 " .
K TA) G,r in the form

= (I+GA A

by writing the equation N

A ~

N + GAE = GAr ... (34)

* ~
where £ =K TAZA or, equivalently,

g = K(TAzA - (I—TA)GAE) U,
Multiplying (35) by GA and eliminating GAE using (34) yields, after a

little manipulation, the relation

~

- -1 . 5
2y = (I+G,K) "G, (T+K(I-T,)G,)r we « £36)

- * -
which implies (33) by comparing with z, = (I+GAK TA) lGA. Clearly these

A
results combined with conditions (i)-(iv) ensure that Wr maps Yom into

itself whenever rEEYOm, the remainder of the theorem following from

(28) and (29) noting that
-1 -1 '
A< [ K)o kATl + || (1+¢,K) G, (T+K (I-T, )G H ||

< A'l + 1 - A'l =1 i 55087)

The overall structure of the result is similar to that of Theorem 1 and
will not, for brevity, be discussed in detail except to note that,

(a) although the result requires that the model GA and the feedback
mismatch H be stable this does not imply that the plant
component G is stable as is illustrated by taking the transfer
function descriptions GA(S) = 1/(s+1) and H(s) = -2/(s+1)
when G(s) = (s+1)/(52+23—1),

(b) if the feedback mismatch H = 0, condition (29) is trivially

verified and (28) will be satisfied for small control gains

but, in the case of H # 0, (29) may not be satisfied at low




- 12 -

gains 1f the mismatch contribution ”GAH” >1 as it is

easily seen that

H|| ...(38)

lim sup A'z = HGA

l[x]|-+o0
We conclude this section with the following result characterizing
the robustness of the Smith scheme designed to satisfy the conditions

of theorem 3:

Theorem 4: If the controller K is designed to ensure the validity of
the conditions of theorem 3 and if the real plant TG changes its
dynamic characteristics to those described by %é, where the delay
component i is BIBO stable and é = (I+G(ﬁ—H))H1G is generated by the
stable perturbation ﬁ—H of G, then the Smith scheme will retain its
stability if

1

I (I+GAK)_1GAK(5‘~T) I+ 1l @+6,®) "6, (1K (1-T,)6,) H-H) ||

< (1-A'1)(1-1'2) ’ .. (39)

Proof: Note initially that a feedback perturbation H-H of G is just a

\
|
feedback perturbation H of G,. Stability is hence retained (c.f. (32))

A
if
= B L | 'O~ =
AR (4 £CR G, & (T-T)+) || <1 v (A0)
Clearly
3 g || (T+c K*T )_1(; K*('E—T) I
o - A A A

x -1 ~
+||@+c,KT) "6, H-H) || + A s wa (A1)

indicating that A'0<1 if




- 13 -

k- 3 '
|| a+c,K1,) 1GAK (T-T) || +

H(I+GAK*TA)_1GA(ﬁ-H)|] ¢ (e da-at,) .. (42)

2

as (l—A'l)(l—A'z) & 1~A'0 from (28), (29) and (37). The result follows

*
by eliminating K from (42) using (33).

Note that poor robustness margins are obtained if either or both

of the mismatch parameters A'. and A'z is close to unity and that

1

robustness is optimized by making A'l and A'z as small as possible

either by use of low gains (with consequent loss in performance) or
good models GA and TA of G and T.

3.  Graphical Stability Criteria

The analyses of section 2 have great generality allowing some
distributed, non-rational and even non-causal dynamics in G and non-
delay elements in T. The underlying spaces Ug and Y" can be freely

L m T
chosen as can the Banach subspaces Uo and Y0 characterizing bounded-

inputs and bounded-outputs. In general stability theory(13’14),

typical examples for continuous systems could be UOE = LPR(O,+m) and

Yom = Lqm(0,+m) with UPu and Y" defined as their extended spaces whereas,

™ with UE and Y™ as

for sampled-data systems U o L . and Y " = ¢

o p o q
their extended spaces may be suitable choices. There are clearly an
infinity of stability criteria derivable from the results of section 2.
For simplicity however we will use the framework provided by Freeman(le)
by choosing UO = YO to be the vector space of functions of a complex

variable s that are holomorphic and bounded in the open, connected set

2 =1{s : Res >0 , |s| < R} ce. (43)




S A

with R "large enough' to interpret 2 as the 'unstable region' of the
complex plane. We will denote the boundary (the Nyquist contour) of

{l by 99 and the norm of a qxl vector x(s) in theproduct space Yoq as

|[x” 2 max sup lxi(s)l oo (48)
1<i<q s€& 3R

All mappings T, G, TA’ < K are represented by transfer function
matrices of appropriate dimensions and a operator M mapping qu into
YOp (say) is bounded iff its pxq transfer funé¢tion matrix has elements

that are holomorphic and bounded in f. The induced operator norm is(16)

M| = max sup 3 M. . (s) ] ... (45)
l<i<p s€ g j=1 I

(Note: 1In the time domain M represents a convolution operator with
exponentially bounded with negative exponent kernel).

In the following sections, the abstract mismatch stability criteria
of theorems 1 and 3 are converted into graphical stability criteria
based upon frequency response data, For simplicity of presentation

we will suppose that G and G, are rational and strictly proper transfer

A
function matrices, that K is rational and proper and that both
-sT. =sT

T = diag{e 33 and TA = diagfe AJ}

: are mxm diagonal matrices
1<j<m

1<j<m
of pure delays. The case of single-input/single-output systems clearly

corresponds to the case of m = & =1,

3.1. Graphical Assessment of Additive Mismatch

With the above definitions, theorem 1 has the following simple

form describing stability in the presence of additive mismatch:




—.15_

Theorem 5: If the plant component G and its model G

, are asymptotically

stable and the delay free feedback system of Fig.4 is input-output
stable then the Smith scheme of Fig.2 is BIBO stable if

E —
A & omax osw ] [(@E(s)G,(s)) lK(s)(T(s)—TA(s))GA(s))ijI

L 1< s€oq j=1
<1 . (46)
and |
A1 ¢ -1
Y 2 TSy max swo ]| ((R()6, ()T K()T(8) (6(s)-6, (1)) |

1 1<i<p s€23Q j=1

=8 | <. (47)

Proof: The stability assumptions are equivalent to conditions (1)=-(1iii)

of theorem 1 whilst (46) and (47) are identical to (8) and (9) respectively.

The result has a clear frequency domain flavour and can be checked
by numerical evaluation of Al and 12. It does not however have a

Nyquist-like structure unless GA and K are diagonal, This includes

the important single-input/single-output case but it also includes square
multivariable cases where interaction is either regarded from physical
considerations as being small enough to be neglected in the model or it
is neglected to simplify the structure of the model and hence the design

of K to stabilize the delay-free feedback scheme (Fig.4). The details

are described in the following result:

Theorem 6: With the assumptions of theorem 5 and the condition that
m = ¢ and both GA and K are diagonal, the Smith scheme is stable if, for

1<k<m,
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(i) the band Bk(l)(T—TA) generated by plotting the inverse

Nyquist locus I, of (GA(S)) (s) with s = iw and w>0 and super-

k B

imposing at each frequency point circles of radius

rk(l)(w) Az (1 - cos w(Tk_TAk))% ... (48)

. 3 =1 . .
and centre ((GA(lm))kkKkk(lw)) does not contain the (-1,0) point of

the complex plane, and

D w71+ (6, o)) K @)L

(ii) noting that A, = max max{r
1 k
l<k<m >0

then the band B (2)(G-GA) generated from I’ as described in (i) but

k

with rk(l)(m) replaced by

k

2 . - s
rk( )(w) (l 5 ) Z lé - (6, Gw) lej(lw)[

. (49)
does not contain the (-1,0) point of the complex plane.
Proof: As G and GA are strictly proper, ll and 12 can be evaluated from
(46) and (47) by replacing 3Q by the positive imaginary axis

{s : s =iw, w>0}. The condition A1<1 is then equivalent to, 1l<k<m,

(GA(lw))kklﬁ(k(lw) ( _iﬂ.}T _ e_lCUTA)
1+ (GA(lm))kkKkk(lw)
<1, >0 ¢ s an(50)
or,
. -iwT
. . -1 =1wT A
|1+ (6, Gw)) K, Go)) 7] > e e
TaT=T) (1)
= |1 & B A | = rk (m) » m_>_0 ...(51)
which can be represented graphically by condition (i). Condition (ii)
follows from the requirement that A2<1 after similar manipulations to
-iwT
k

the above noting that |e =1, w0, I<k<m,




_.]_7_

The result has a similar structure to the well-known inverse

(17,18)

Nyquist array design method with the two sets of controller-

independent bands B (1)(T—TA) and B (2)(G—GA), 1<k<m, replacing the

k k
single set of Gershgorin bands. In practice the controller K is
designed to stabilize the delay-free scheme shown in Fig.4. The

inverse Nyquist loci I, , l<k<m, could, in fact be used to check this

k)

preliminary stability requirement and subsequently the bands Bk(l)(T—TA)

representing time-delay mismatch superimposed to check conditon (i).
If this approach is successful,‘l\1 can be calculated and the bands

(1)(T-TA), l<k<m, replaced by B (2)(G_GA) to check the validity of

By
condition (ii). Note that the time-delay mismatch parameter A, has

1
(2)
k

k

a significant effect on the width of B (G~GA) via the multiplicative

factor (1—)\1)_1 in rk(z)(w).

3.2, Graphical Assessment of Feedback Mismatch

Using the frequency domain spaces described above, theorem 3 has
the following graphical form describing the effect of feedback mis-

match on stability.

Theorem 7: If the model GA and the feedback mismatch H are asymptotically

stable and the delay free feedback system of Fig.4 is input-output
stable then the Smith scheme of Fig.2 is BIBO stable if
L

' =1
max  sup [ ((1+G, (s)K(s)) "G, (s)K(s) (T(s)-T,(s))). .|
l<i<t s€ 30 jzl G A AT

ne>

1
Ay

<1 v wwi{32)
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and
L
A | (146, ()R () V6, (8 (14K (s (1-T, ()
1 1<i<e s€ 30 j=1
GA(S))H(S))ij[
<1 s (3 3)

Proof: Conditions (i)-(iv) of theorem 3 hold from the assumptions and

(52) and (53) are simply (28) and (29).

Despite its frequency-domain flavour, a result of more classical
structure paralleling theorem 6 is stated as follows. The graphical

interpretation is obvious.

Theorem 8: With the assumptions of theorem 7 and the condition m = g,
suppose that both GA and K are diagonal and K is invertible. Then
Al = Al' and the Smith scheme is stable if conditions (i) and (ii) of

theorem 6 hold with rk(z)(m) replaced by

-1T

m
r, 2 46, Gy | ] i Go) |
i=1

A i -1..
b (w) = I:KIT-iKkk (Liw)+(1-e

# o6 (54)
Proof: It is clear that Al = hl' as GA’ T, TA and K are diagonal.
Condition (52) therefore reduces to condition (i) of theorem 6.

The remainder of the result follows from (53) and its graphical

interpretation in a similar manner to the proof of theorem 6.

It is interesting to note that, as the delays Tk and TAk tend to zero,

we clearly have ),' = G and

1

2 -1,. " .
r, P w =k, o DREANCINY ... (55)

j=1
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If the approximate model GA is chosen to have diagonal elements with
inverses equal to the diagonal elements of the inverse of the plant
element G, then a moments reflection (using (27)) indicates that the
bands Bk(z)(G-GA) are simply the Gershgorin bands of Q = GK. In this
sense theorem 8 is a generalization of the inverse Nyquist array

technique to Smith control schemes.

4. Conclusions

The paper has considered the dual robustness problem of stability
in the presence of plant/model mismatch and stability in the presence
of plant variations for the classical Smith control scheme for multi-
input/multi-output control schemes. The abstract functional analysis
viewpoint taken illustrates that the problem is very similar in structure
to the robustness problem for conventional feedback schemes with the
added complication that (i) we are interested in variations in two
plant components (the delay and delay-free elements) andr(ii) the
effective forward path controller K* is a nonlinear function of the
delay-free control K. Despite these added complexities, it has been
shown that the double robustness problem is capable of being analysed
for both additive and feedback mismatch using the contraction mapping
fixed point theorem providing results that can be applied to a wide
class of continuous or discrete systems in the time or frequency domains.
This fact may be of particular importance if the plant is partially
unknown when time domain information should be brought into the design
procedure in a similar manner to the delay free case discussed in
reference (10).

The results clearly lead to a large number of distinct design

techniques covering different areas of application. Their potential
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has been illustrated by a simple frequency domain design of multi-
variable Smith schemes using diagonal plant models (a special case
that includes the classical single-input/single-output case).
Stability analysis is undertaken using inverse Nyquist loci of the
diagonal terms of the plant model and the use of bands around these
loci that represent the destabilizing effect of mismatch in a manner
remeniscent of the inverse Nyquist array design technique. In fact
the frequency domain result for feedback mismatch reduces to the INA
criterion as plant and model delays tend to zero indicating that the
results described here are a generalization of the INA to Smith
control schemes for plants with significant time-delay.

The frequency domain results described in the paper were chosen
to reflect the similarity of the abstract results to well-known multi-
variable control concepts and robustness notions and do not necessarily
take the best form for design work. The refinement of these results
for practical computer-aided-design is under study and will be reported

in future papers.
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Fig.l. Plant decomposition




Fig.2.

Smith Control Scheme
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Fig.3.

Equivalent Smith Scheme
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Fig.4.

Delay-Free Control Scheme



Fig.5.

Plant regarded as a feedback
perturbation of the model



