The
University
W Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Efficient Fortran Programming Pracice.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76196/

Monograph:

Morris, A.S. and Gray, L.S. (1982) Efficient Fortran Programming Pracice. Research
Report. ACSE Report 182 . Department of Control Engineering, University of Sheffield,
Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

EFFICIENT FORTRAN PROGRAMMING PRACTICE

by A. S. MORRIS and L. S. GRAY

RESEARCH REPCRT NO. 182

This paper consists of printed notes given as the second
lecture of a two-part special lecture course on efficient
programming. Emphacis is placed on structured programming
and the implementation of this disciplined approach to
programming using Fortran 77.

Dept. of Control Engineering
University of Sheffield
Mappin Street

Sheffield S1 3JD

EFFICIENT FORTRAN PROGRAMMING PRACTICE

2 Introduction

The first part éf this 'efficient programming' course covered the
functioning of the operating system, and exélained how such factors as
program size and input/output timing affect overall system efficiency
and speed. You should now be in a position to appreciate the benefits
in program éxecution speed which can accrue from reducing program size
and re-organising how program input/output is carried out.

Such improvements in execution speed of a program can be termed
the direct way of improving computer system efficiency. However, there
is also an indirect path to improved system efficiency through education
of users to program in a structured manner, thereby minimising compila-
tion errors and logic errors during program development. If the time
spent in program development can be reduced, the benefit will be a
reduction in overall computer loading and corresponding improvement in
computer performance for everyocne.

I shall therefore cover this part of the course in two parts.
Firstly, I shall gxplain what structured programming is all about and
why all modern computing languages are designed to encourage it. I
shall explain how the features of Fortran 77 can be exploited to write
programs in this disciplined manner. t this stage, I shall have covered
what I term the indirect path to efficient computer usage, that of mini-
mising program development time. The second part of this lecture will
be an explanation of the direct means of improving system efficiency.
The main attack will be on program size reduction with some secondary
consideration of input-output planning. The language discussed will be

Fortran 77 althoucgh similar principles can be applied to other languages.

i ———

2.

Structured Programming

Structured programming is all about writing programs in a concise

way which removes as many sources of error from the program as possible.

Such a manner of programming minimises both compilation errors and logic

errors in program execution.

This results in reduced program develop-

ment times which has a beneficial effect in decreasing the average loading

level on the whole computer system, besides meking the programmer more

productive.

Structured programming is essentially a code of practice in program

design.

A useful analogy can be dravn bDetween the design principles of

a new car and the design of a new computer program. The same principles of

good engineering design practice apply to each.

Let us consider this analogy, and compare the steps taken in car design

with the equivalent steps in computer program design. The program is a

simple one to input some data, manipulate it, and output it.

Step 1:

Step 2:

Step 3:

CAR

Split design into components
Engine
Transmission
Brakes
Suspension
Body

Design each component

Make sure each component will
fit together with other
components without problems

Document
To facilitate future main-
tenance of car

PROGRAM

Input
Manipulation, stage 1
Manipulation, stage 2
Manipulation, stage 3
Output

Make sure all program modules
will fit together without
problems

To facilitate future mainten-
ance and/or development of
program

We are now at a stage where we can write down some general rules

about structured programming.

-3 -

Rule 1

Rule

The algorithm to be programmed should be split up into as many
separately Aefined steps as possible. The execution of the
program via these steps should be Qell—planned before any code
is written. Flowcharts are a very good aid to this.

2

Each of these separately identified steps should be programmed
as a self-contained module. Each module should communicate with
a main (control) unit of the program by a number of well-defined
parameters. By making each module independent except for well-
defined communication parameters, any problems of fitting

different modules together are avoided.

Rule 3
Each module should be written in such a way that its purpose
and the manner in which it functions are clear. It should be
well-documented within the program.

Rule 4

The flow of control in the program should be constrained to

well-defined forms of looping and conditional branching such

as
REPEAT WHILE IF THEN
. . ELSE IF
p : ELSE
UNTIL DO ENDIF
Note
ONLY THE LAST OF THESE STRUCTURES IS AVAILABLE IN FORTRAN 77
Rule 5

Any arbitrary change of control such as allowed by GOTO state-
ments (and camputed GOTO), logical IF statements, etc., should
be avoided. (This is not always possible, especially using

Fortran).

A

Rule 6

Everything should be rigidly defined rather than using default
values. e.g.; the TYPE of all variables and arrays should be
defined.

2.1 Structured Programming Langquages

A structured programming language such aé Pascal is one which encourages
programs to be written in a structured way by providing well-structured
control architecture. As far as possible, no unstructured features are
available and so writing in an unstructured way is made very difficult.
However, the techniques of strgctured programming do not limit one to using
a structured language. Structured programming is a code of practice which
can be applied to produce reasonably well-structured programs even when
using a programming language such as Fortran which 1s fundamentally
unstructured. All that is necessery is more care in writing a programn
in Fortran as the language does not constrain you to write in a structured
way. Wwhereas Pascal forces writing in a structured way, Fortran allows

you to choose to write in a structured way but does not force ycu to dec so.

In this respect, Fortran 77 (Perkin-Elmer Fortran 7) is better than Fortran 4
in being somewhat more structured.

2.2 Structured features of Fortran 77

The major advance of Fortran 77 for programmers wishing to write in a
structured way is the IF, ELSE 1F, ELSE, ENDIF construct which are together
described as a BLOCKIF block.

For example, consider character string variables CCLOR and HUE which
can be set equal to var%ous string values, and an appropriate subroutine
is to be called depending on the values (note - character string handling

is a new feature of Fortran 77).

6,
!

IF(COLOR.EC.'RED') THEN
CALL RED

ELSE IF(COLOR.EQ.'WHITE' }THEN
CALL WHITE

ELSE IF(COLOR.EQ.'BLUE" ;THEN

IF (HUE.EQ. 'LIGHT") THEN

CALL GREEN
ELSE
CALL BLUE
ENDIF
ELSE
CALL ERROR
ENDIF

This example illustrates many points about the BLOCKIF construct.
Each BLOCKIF construct consists of an IF statement, an ENDIP statement
and optionally an ELSE statement plus any number of ELSEIF statements.
Each IF statement must be matched with an ENDIF statement. A BLOCKIF
statement can be nested. In this example, there is an inner BLOCKIF
and an outer BLCCKIF.

Indentation and spaces can be freely used to aid program readability.
All such spaces are ignored by the compiler. Thus, the above section
could be written as follous and would mean exactly the same to the computer.

IF(COLOR.EQ.'RED")THEN

CALL RED

ELSEIF (COLCR.EQ.'WHITE')JTHEN

CALL WHITE

ELSEIF'(COLOR.EQ.'BLUE"' jTHEN

IF (HUE.EQ. 'LIGHT' ; THEN

CALL GREEN

ELSE

CALL BLUE

ENDIF

ELSE

CALL ERROR

END IF

The other way by which Fortran 77 has been made more of a structured
language than Fortran 4 is through a tidying-up operation whereby certain
'loopholes' have been plugged. Many circumstances can arise in Fortran 4
where, because some statement is used 'outside the rules', the action at

execution time is unpredictable. Fortran 77 has tightened up the rules

so that such breaches are thrown out at compilation time and the resulting

confusing logic errors at execution time are avoided. For example, whereas
Fortran 4 allowed the transfer of control into the range of a DO loop, this
is forbidden in Fortran 77. Appendix H of the Perkin-Elmer Fortran VIID
Reference Manual gives a full coverage of the new features of Fortran 77
and the differences over Fortran 4.

Modularity is implemented in Fortran by programming each of the ident-
ified program steps as a function or subroutine. The flow of control through
the modular subroutines is controlled by the main segment of the program.
Programming each module of a program as a Fortran subroutine conforms
precisely with the structured programming rule that each module should re
independent. Interaction with other modules is limited to only those
parameters defined in the subroutine CALL statement.

When a program consists of several such modules, it is good practice
to test the functioning of each module separately. As the operation of each
module is verified, it should be stored in semi-compiled form in a user
library. This avolids the wasted time in repeatedly compiling validated
subroutines along with those still under development. Such modular testing
is an important principle of structured programming.

2.3 Other new useful features of Fortran 77

DO loop

One particularly useful feature of the standard language is that DO
loop parameters can be both real and negative. For instance we can have
a DO loop as follows:

DO 1 A=2.3,-1.5,-0.1

1 CONTINUE
This will execute the loop first with A set to 2.3. On the next loop
execution A will be set to 2.2 and loop execution will continue with A

decrementing in steps of 0.1 until it is egual to -1.5.

- 9 =

Note

The DO loop is an example of a situation where a GOTO statement is
permissible within the rules of structured programming. It 1s a useful
way of terminating a DO loop when a certain condition, e.g., an error
criterion, is satisfied. However, the target of the GOTO statement should
be the line immediately following the DO loop - it should not 'go' anywhere

else.

e.g. C EVALUATE EXP(X) BY POWER SERIES

EXEX=1:0
A=1.0
DO 1 C=1.0,100.0
A=AR/C
EXPX=EXPX+A
IF(ABS(A) .LT.1E-10)GOTO 2

1 CONTINUE

2 CONTINUE

C THIS IS THE END OF THE DO LOOP

Character Strings

Character strings can be handled and manipulated in the same way as
numeric variables. A special operator for string concatenation is available.

Character string variables are declared in a CHARACTER type statement
which defines the maximum length in characters of each character variable.

e.g- CHARACTER*5 A,B
CHARACTER*4 C

declares two string variables A and B each of length 5 characters (5 bytes)
and a string variable C of length 4 characters.
Initial values can be given to character string variables in three
ways; DATA statement, READ statement, assignment statement.
eege. DATA A/'TITLE'/
READ(1,2)B
2 FORMAT (AS)
C='PQRS"
Character string variables can be handled like ordinary variables in

many circumstances, e.g., logical expressions:

IF(B.EQ.'TITLE"')CALL OQUTPUT

= B ow
Arithmetic operators do not have any meaning with string variables,

but there is a special concatentation operator //.
CHARACTER*17 F
€.g. CHARACTER®3 A,B
CHARACTER®*2 C
CHARACTER*6 D
CHARACTER*1 E
DATA A,B,C,D,E/'THE','DOG','IS','ASLEEP'," '/
F=A//E//B//E//C//E//D
WRITE(2,1)F
FORMAT (1X,A17)

Resultant output is THE DOG IS ASLEEP
Note if we had written F=D//E//C//E//A//E//B
the output would be ASLEEP IS THE DOG

Free format input/ocutput

vhilst some Fortran 4 compilers have had free format facilities for a
long time, these were extensions to the langquage, not standard Fortran 4.

Free-format is a standard feature of Fortran 77.

Thus, whereas previously a program using free-format statements only
worked on some Fortran 4 compilers, it will work with all Fortran 77 com-
pilers, and so programs using free-format are now fully portable between
computers.

The standard Fortran 77 READ and WRITE statements are:

INTEGER K,L,M

REAL A,B

READ (1,*)K,L,M

READ (1,*)A,B

WRITE(2,*)A,B,K,L,M «++
This program will expect two lines of input data. The first should be
three integer values separated by at least one space. The second should be
two real values separated by at least one space. OQutput values are separ-
ated by commas.

Character strings can also be input and output in free-format.

esis CHARACTER*6 F
READ(1,*)F

++The command WRITE(2,*) is known as a list directed output statement. It
is not in general suitable for writing data to a file for subsequent input
to the same or another program.. However, list directed output written to a
file can be read back in by a free-format (list directed) READ statement
provided the data only consists of numerical and logical values.

-9 -
ﬁote that when free-format input is used for character strings, the
required characters should be contained within quotes when typed in at
a terminal.
i.e., to enter the character string PQRSTU
when the executing program gives the prompt > requesting data input,
type ' PQRSTU!
In the above free-format READ and WRITE statements, the numbers 1 and 2
refer to the logical unit number (I/0 channel).
There is an alternative fcrm of READ and WRITE statement which uses
default logical unit numbers.
These read from the user terminal but write to the lineprinter, using
the default logical unit assignments set up on the Perkin-Elmer 3220.
These alternative forms are:
READ*,K,L, (reads from logical unit 1,
WRITE* ,K,L,M (writes to logical unit 3)
This form of free-format could be forced to read and write to the uzer
terminal by including the following assignments in a user—-vritten assign-
ment file:

AS 1,CON:
AS 3,CON:

- 10 -

Program Size Reduction

Reducing program size is likely to have the greatest impact on improving
execution speed out of the measures discussed. There are many areas in
Fortran programming where careful thought can contribute to program size
reduction and these will be considered in the following discussion.

3.1 Overlaying

One measSure which can contribute greatly to increasing program executicon
speed is overlaying, the mechanics of which have been discussad in the last |
lecture. The benefits of overlaying are very difficult to predict quanti-
tatively. Overlaying reduces the size of the program and so there is an
inherent increase in execution speed. However, this is at the expense of the
time taken to load each overlay from disc into memory as it is needed, and
this detracts from the speed improvement resulting from the size decrease.
However, if the subroutines in each overlay are carefully chosen to minimise
the number of times each overlay has to be loaded during program executicn,
overlaying can have very significant benefits. For instance, a user recently
reported that, having reduced his program size from 125Kb to B85Kb by cver-
laying, execution speed increased by a factor of 5. Such an improvement may
not always be possible, but, providing some thcught is given as to how
subroutines are divided into overlays to avoid excessive swapping of overlays
in and out of memory, overlaying can usually be guaranteed to give a sub-
stantial improvement in execution time.

3.2 Calculation of memory requirements of program

variables and arrays

The memory requirements of each variable in the program differs according

to the TYPE of the variable as given below.

= 11 =

Variable type Memory requirement (bytes)

INTEGER®? (range -32768 to +32767) 2
. .

INTEEER 4}(range ~2147483648 to +2147483647) 4
INTEGER —65 63 57

REAL (range 16 to 16 "-16" ")(accuracy 7 digits) 4
DOUBLE PRECISION (range 16—65 to 1663—1657)(accuracy 16 digits) 8
CCMPLEX accuracy 7 digits for each part 8
DOUBLE COMPLEX accuracy 16 digits for each part 16
CHARACTER®*n n

The usual lesson from this table is to use INTEGER®"2 variables rather than
INTEGER (INTEGER*4), providing the range is sufficient, as this saves 2 bytes%
per variable. This saving becomes significant in the case of integer arrays.
Careful thought should be given to the dimensions of arrays. For
instance a (30,30,30) real array requires 108000 bytes of storage. Making i
a small concession on the accuracy of the program might mean that an array
of (15,15,15) could be used instead, requiring only 13500 bytes of storace
(a factor of eight reduction).

3.3 COMMON statement

COMMON statements allow the memory storage area used by variables and
arrays in one program segment to be shared by other variables and arrays in
other program segments. This is particularly useful for work arrays which
are only used to hold intermediate values whilst a subroutine is being
* executed and are not requiredlafter subroutine execution. All such work
arrays in different subroutines can be made to share the same storage area,
which can have a significant effect in reducing the program size.

It should be noted, however, that as soon as we put COMMON statements
in subroutines, we are digressing somewhat from the structured programming
rule about independence of program modules. The COMMON statement allows
the data values within a subroutine to be altered by other segments external
to the subroutine, and so breaks the rule that a subroutine cannot be affected

other than by the parameters defined in the CALL statement.

- 12 =

These common storage areas, of which there are two kinds, are called common

blocks. The two types are blank common and labelled common, and the difference
between them is that eéch labelled common block has a name assoclated with
it whereas blank common blocks have no name. 'Thus, to enable all common
blocks to be uniquely identifiable, a program can only have one blank common
block but any number of labelled common blocks (as long as each has a
different label).

The variables and arrays to be stored in each common bleck are defined |
in a COMMON statement, and the guantities are stored in the order in which

they are declared.

€.g. CCMMON/P/A,4B,C Labelled commeon block C contains 3 variables
A, B and C
COMMON/Q/D,E,F(10) Labelled ccmmon block Q contains variables

D and E plus a ten-element array g
These two common blocks cculd alternatively be declared in a single CCHMMON
statement:
COMNMON/P/A4B,C/Q/D,E,F(10)
Elements to be stored in a blank COMMCH block are declared by a statement
such as
CCMMON B(3,4},C(3,4)
This puts 2 twelve~element arrays B and C in a klank common block.
The COMMON statement is sufficient to define arrays and no additional
DIMENSION statement is necessary.
If a subroutine A uses a work array X(10,10) and subroutine B uses
two work arrays P(5,5) and R(10,5), then the work arrays can be made to
use the same labelled common block G as follows:

SUBROUTINE A
COMMON/G/X(10,10)

-
.

RETURN

END

SUBROUTINE B
COMMON/G/P(5,5) yR(10,5)

RETURN
END

S [

]

There is no rule which says that wherever a common block is declared

in different segmenfs the elements must add up to the same storage require-
ments in each segmené. However, problems will arise if the elements declared
to be in a COMMON block exceed the size that the COMMON block was first
created as. It is good practice to declare all COMMON blocks used in the
main segment, and make sure that the declared size there is as large as the
largest size that the COMMON block is declared as in any subroutine.

Thus, in the above example, the maximum size of common block G is 100 |
elements in subroutine A (in subroutine B 75 elements are used).

Thus, the main segment should initialise COMMON block G as 1C0 elements
Eee COMMON/G/Z (100) [in main segment]

3.4 EQUIVALENCE statements

An important use of EQUIVALENCE statements is to split up arrays into
smaller sub-arrays.

eeg. REAL A(4,4),B(4),C(4),D(4),E(4;
EQUIVALENCE(A(1,1;,B),{A(1,2),C),(A(1,3),D),(A(1,4),E)

This sets the first four elements of array A equivalent to B
and sets the four elements of array A starting at element (1,2) to C
and sets the four elements of array A starting at element (1,3) to D

and sets the four elements of array A starting at element (1,4) to E

As the elements of an array are stored internally column by column,
this means that B,C,D and E are set respectively to columns 1,2,3 and 4

of array A. This can be a very useful technique of splitting arrays up

into separate columns and avoids the alternative tecium and extra storage

requirement of copying A to B,C,D and E via DO lcops.

- 14 -

4, Input-Output

Program execution speed can be enhanced considerably if input and
output to the programhis organised efficiently. The time-sharing feature
of the operating system operates to give eacﬁ program running in the com-
puter equal amounts of CPU time in tumm. These time slices are typically
500 milli-seconds long and thus program A would get 200 ms followed by
program B, followed by program C, etc. As soon as all other programs have
had 200 ms, program A will get another 200 ms slice. In orcder not to waste

CPU time, a program only gets its full 200 ms slice if it continues to have

work for the CPU to do during all the 200 ms. If at any time 1t temporarily

stops needing the CPU, its time slice is automatically ended. Such a
cessation of CPU requirement occurs whenever a job needs to input from

or output to a terminal. Thus, in order to make full use of its share of
CPU time slices, the program must minimise the number of input and output
operations, which in turn means that the number of items transferred during

each input or output operation must be maximised.

What all this is leading to is to suggest that, as far as possible, all

input and output operations to terminals should involve as many data values

transferred per line as possible.

e.G. if three data values are to be read in or written out,

use READ(1,3)A,B,C
WRITE(1,3)D,E,F

rather than READ(1,3)A
READ(1,3)B
READ(1,3)C
WRITE(1,3)D
WRITE(1,3)E
WRITE(143)F

etc.

&= 15 =

5. Coding Efficiency

A great amount can be gained in terms of improvements in program
execution speed by coding a program in an efficient way. This generally
means removing all redundant operations, where an arithmetic operation
is repeated more than once when none of the elements being operated on
have changed and so the result remains the same. Such reduncancy of
operations ‘occurs frequently during looping.

Another area where useful computation time can be saved is when
numbers are to be squared, because exponentia&ion takes considerably
longer than a single multiplication operation.

Suppose the square of A is to be assigned to variable B.

Then B A*A is much more efficient

than B = A**2
A good example of redundancy in lecoping is afforded by the following
part of a program to calculate the Fourier Series, where a has to be cal-

culated according to the formula:

m-1
o

an o | f(xk) cos
k=0

nkrm -
pekn
m

It is very tempting to translate this straight into Fortran, using the
following DO loop:

AN=0.0

DO 1 K=0,M-1

ANG=(4.0*ATAN(1.0)*N*K)*2.0/M

FK=(2.0/M)*K-1.0

AN=AN+FK*COS (ANG}*2.0/M

1 CONTINUE

Unfortunately, this code is horribly inefficient. Several quantities within
the DO loop never change value and yet are evaluated on every iteration of
the loop. Thus, there are a large number of unnecessary multiplications and

function evaluations carried out. The worst of these is the evaluation of

ATAN(1.0).

- 16 -

Close inspection of the DO loop reveals that several elements inside
it can be taken outside and evaluated just once, which is very much more
efficient. The improved program looks like:

X2M=2.0/M

ANG=X2M*N*4.0*ATAN(1.0)

AN-0.0

DO 1 K=0,M-1

FK=X2M*K-1.0

AN=AN+FK*COS (K*ANG) * X2M
1 CONTINUE

6. Program tracing

vhen execution errors are occurring in a program, tracing allows the
history of operations prior to an execution error to be examined. Either
the whole or just one or more sections of a program can be traced. The
change in value of some cr all variables and the order of execution of
statement labels is information which can be included within a trace report.
Disclosure of array subscripts which go out of hounds is also optional trace
information.

Tracing substantially increases the execution time of the program, and
so it is prudent to limit tracing to the area of the pregram where an error
is expected. The detail of trace information demanded should also be care-
fully chosen according to what sort of error is occurring and hence what
information is required to detect the cause of error. For instance, the
smaller the number of variables traced, the smaller the overhead o program
execution time.

The basic commands associated with tracing are ZTRACE and ZNTRACE.

Each section to be traced should start with BTRACE (in column 1) and end
with ZNTRACE. If the whole program is to be traced, the first line should
be ZTRACE and the last line ZNTRACE.

Optional arguments can follow the STRACE command, specifying variables
and array names to be traced, and a line of trace output will be produced

whenever one of the specified variables and arrays changes value. If no

- AT -
arguments are included with a BZTRACE command, then all variables and arrays
are traced. Irrespective of ZTRACE arguments, all statement labels are

traced as well as fariables.

€.g. ZTRACE A,B initialises tracing of variables A and B only
2TRACE initialises tracing of all variables
SNTRACE terminates variable and statement label tracing

Array, subscripts going out-of-bounds can be traced in a section of
program by including the command ZTEST at the start of the required secticnI
The command ZNTEST terminates subscript bound‘checking. Again, particular
array names to be checked can follow the ZTEST command as arguments. If no
arguments are specified, then all arrays are checked for subscripts going

out of bounds.

€eTa 2TEST C,D,E initialises subscript bound checking for arrays
C, D and E cnly

STEST initialises subscript bound checking for all
arrays
ZNTEST terminates subscript bound checking

5.1 Trace output

All trace iqformation goes to the peripheral assigned to logical unit
6. The only sensible medium for ocutputting this trasce output is a disc-~
file from which the required information can be subsequently extracted.
A VDU is unsuitable for trace output, as all but the last twenty or so
lines of information are lost. Likewise, a line printer is unsuitable
because the amount of trace information can be enormous should a program
go into an unending loop, and a boxful of lineprinter paper can be quickly
used up. In fact, trace output directly to a lineprinter is BANNED, in
deference to the high cost of lineprinter paper.

A file for trace output is automatically allocated by the run-time
default assignment command file (DEFAULT.ASN used by the RUN command) and

assigned to logical unit 6 for any trace output which might be created.

- 18 =
A LISTTRAC command is provided {see below) to allow the extraction of the
requi;ed information from the trace file.

If your programlhas a user—written assignment file rather than using
the default assignment file, the file chould include the following commands
‘tp allocate and assign the trace file.

XDE TEMP:PRCG.TRC
AL TEMP:PROG.TRC,IN,80
AS 6,TEMP:PROG.TRC,SWO
5.2 LISTTRAC command s

The LISTTRAC command allows the required information to be extracted
from the trace file (TEMP:PROG.TRC) and displayed on either the user terminal
or the lineprinter. Normally, the required information pointing to the
execution error is contained within the last few lines of the trace output.
However, to cover for all possiﬁilities, LISTTRAC allows up to the last
250 lines of trace output to be displayed.

This facility is invoked by typing as follows, starting in column 1:

LISTTRAC
The computer responds by asking whether trace output is to be displayed on
the user terminal or lineprinter (type 1 for user terminal, 2 for line-
printer). Finally, the computer asks you to specify how many lines of trace
output are required (mazimum 250).
e.g. entering 50 causes the last SO lines of trace output to be displayed.
Following display of trace output, the computer asks if you want to re-
display trace output. This facility is provided because you may wish to
examine more trace records than at first, or perhaps you have initially
looked at trace records on a VDU and now require hard copy on the lineprinter
for more detailed examinatione.

At this stage, trace output can be repeated as many times as desired.
When you finally reply to the computer that you don't require any more trace
output, the final action of the LISTTRAC function is to delete the trace file
(TEMP:PROG.TRC), which may be quite large and would seriously interfere with

the amount of free disc space if left undeleted.

