The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Control Systems Design for Uncertain Dynamical Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76195/

Monograph:

Owens, D.H. and Chotai, A. (1982) Control Systems Design for Uncertain Dynamical
Systems. Research Report. ACSE Report 189 . Department of Control Engineering,
University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

CONTROL SYSTEMS DESIGN FOR UNCERTAIN DYNAMICAL, SYSTEMS

by

D.H. Owens and A. Chotai

Department of Control Engineering,
University of Sheffield,
Mappin Street, Sheffield S1 3JD.

Research Report No. 189

May 1982

L ety L e | S ey S L S = P




5 OEST 5]

APPLICATION OF MULTIVARIABLE SYSTEMS THEORY, OCTOBER iLa2

' 4

'CONTROL SYSTEMS DESIGN FOR UNCERTAIN DYNAMICAL SYSTEMS

D.H.Owens and A.Chotai 5
Department of Control Engineering, University of Sheffield

The use of approximate plant models for computer-aided :
controller design for multivariable systems with uncertain |
or unknown dynamic model is considered. The techniques

use simple graphical analysis of plant and model step

response data as the basis for a pseudo-classical inverse

Nyquist stability criteria. Two illustrative examples are

described. )

INTRODUCTION

It would appear to be self-evident (see, for example, Rosenbrock (1), Owens (2),
(6), MacFarlane (3),(4) and Harris and Owens (5)) that multivariable systems
design theory has reached some degree of maturity in that, given an (assumed exact)
system model "in state-space or transfer function matrix form, a number of highly
successful computer-aided-design methodologies exist for the design of stable,
high-performance feedback systems. It is equally clear that it is commonly the
case in practice that the plant model is subject to severe uncertainty or may even
be unknown, This is not too much of a problem if the errors are small enough to
be within the tolerances implicit in the standard model-based techniques of
ensuring adequate gain and phase margins during the design. However, if the
observed errors are large, it is not possible to make confident predictions about
the stability and performance of the real implemented control scheme in terms of

the dynamic characteristics of the plant model observed off-line. There is .
clearly therefore an incentive to obtain ¢ fairly accurate plant model to reduce
this problem to negligible proportions. Unfortunately, accurate plant models

tend to be of fairly high dynamic order leading to an increase in the complexity
of the design process (particularly in the multivariable-case) that may be regarded
as undesirable or unnecessary. In contrast, it is frequently possible to construct
a low-order (but noticably inaccurate) model of plant dynamics that avoids these
complications but leads to the vitally important problem of confidently assessing
the stability and performance of the real implemented scheme in terms of the
" dynamics of the inaccurate model. It is of course possible to adopt the philo-
sophical viewpoint that the inadequacies of even a crude model of plant dynamics
can always be accommodated by final on-line tuning of the control scheme. There
are however problems associated with this pragmatic approach as it tends, in
general, to mean a reduction in control gains (and hence decreased performance)
and could lead to difficulties in multivariable systems where on-line tuning is
.not the straightforward business that it is for single-input/single-output '
systems, Based on these (and other) considerations the authors believe that the
use of approximate and possibly rough-and~ready models is a valuable possibility
in control design but that it requires the development of a modified design
methodology that explicitly includes observed dynamic differences in plant and
model characteristics in the design process, :

This paper is concerned with controller design when a plant model is not available
in the sense that :

(a) ,the plant model is not known but open-loop plant step responses are available
from plant tests, or ° '



APPLICATION OF MULTIVARIABLE SYSTEMS THEQRY, OCTOBER 1982

[ 4 -

i

(b) the plant model is known but is so complex that design calculations other than
simulations are not regarded as feasible (or necessary) with available com-
puting facilities.

In both cases the plant model is unknown from the designers viewpoint and the des-

ign must proceed using some other basis. The procedure followed here is des-

cribed in Owens and Chotai (7) and is based on preliminary work reported by, for

example, Edwards and Owens (8), Owens (9) and Owens and Chotai (10). In essence
~ . the following procedure is followed:

(1) construct an approximate model Ga of .the real plant G by whatever means is

available. It is not assumed that the modelling error G-Gg is small, hence
allowing the designer to reach his own compromise between accuracy and
simplicity,

* (i1) design a controller K for the model G, to ensure that the apbroximate
feedback scheme illustrated in Fig.1(Z) is stable with the desired stability
and performance characteristics, and finally

(iii) provide easily checked conditions that ensure that the resultant controller
' stabilizes the real plant G in the real, implemented configuration of
Fig.1(b).

(Note: wunity feedback is assumed but the incorporation of measurement dynamics
' 'is easily accomplished as described in ref.(7)).

Steps (1) and (ii) are standard parts of design off-line whereas step (iii) is a
new addition introduced to guarantee the successful implementation of a stable
control system despite the known plant/model differences. The details are des-
cribed in the following sections together with illustrative examples of applica-
tions to multivariable process plant.

Finally, we observe that this field of 'non-adaptive unknown systems control' has
only recently been identified as a theoretically feasible proposition with con-
tributions from Davison (11), Pentinnen and Koivo (12), Porter (13), Astrom (4)
and Owens and Chotai (7), (10), (15), (16) and is continuing to develop at a rapid
‘rate. -

STABILITY THEQRY FOR UNCERTAIN SYSTEMS

It is the purpose of this section to outline and illustrate by applications the
main results obtained in ref.(7) in the form of a computer-aided-design technique.
The details of the theory can be found in,ref.(7) and its generalization in
references (15) and (16).

Stability Theory for Uncertain Continuous Plapt

Suppose that the plant has f-inputs, m-outputs and is linear, time-invariant with
mxf strictly proper transfer function matrix G(s). The plant approximate model
to be used for controller design is supposed to have mxf strictly proper transfer
function matrix Gp(s). The forward path controller has 4ixm proper transfer
function matrix K(s) which is assumed to be designed by any means available to
ensure the stability and acceptable performance characteristics of the approxima-
ting feedback system of Fig.1(a). The basic theoretical problem outlined in the
introduction is the derivation of conditions on Gp, K and G which ensure that the
stability of Fig.1(a) implies the stability of Fig.1(b). The answer to the
problem clearly depends upon the modelling error G(s)-G,(s) but this is by
assumption unknown due to the uncertainty in our knowleége of the plant G(s)!
However, even though G(s) may not be known in detail it is frequently the case
that the plant step response matrix

! V. CE) as0 Ya.lt)
Y(t) = g I ceeen()
le(t) S le(t)
is kpnown from plant trials or complex model simulations. Here, Yi4(t) is the
system response from zero initial conditions of the it output y (tg to a unit

step in the jth input uj(t) with all other inputs held to zero. Clearly Y(t)



APPLICATION OF MULTIVARIABLE SYSTEMS THEQRY, OCTOBER 1982

L4

‘could be used (by curve fitting or other identification methods) as the basic data

to fit a 'best' approximate model Gp to the real plant G but we will take the
broader view that observations of Y(t) lead to a 'convenient' model G, but the

. errors are not necessarily small, Given a choice of G however, simulation

methods will then yield its step response matrix Y,(t) and the modelllng error
matrix’'

E(t) = Y(t) - YA(t) ..... (2)

:is easily computed by computing elements E (t) =Y. j(1:) - (Y (t))iJ

The error E contains all possible information on G-Gp but it is important to
extract only sufficient information to solve our problem and to extract it in a
convenient (and preferably graphical form). The general case (including the
effect of measurement nonlinearities) is described in references (15) and (16).
For simplicity, however, we restrict attention to the special case when the
modelling error G-GA is monotone (see ref (7)).

‘Definition: An m-output/&-input, strictly proper, linear system is monotonic if,

for all (i,j), the response of the ith output from zero initial conditions to a
unit step in the jth input is either monotonically increasing or monotonically

decreasing.

.(Note: +the definition used in ref (7) extends to sign-definite systems but this
generalization is not needed here).

An important practical point is that the monotonicity of G-Gj can be observed by
visual inspection of the time-variation of the elements Eij(t) of E(t).

The important consequence of monotonicity is that frequency domain characteristics

of the modelling error can be bounded in terms of its steady-state characteristics
observed in the time domain ie.

Proposition (see ref (7)): If Ei.(t) is monotonically increasing or decreasing
and bounded, then J

|6 j(4w) = (ByCi))yyl = EgyCe (3)

An important consequence of this result ig the following theorem proved in ref (7).

Theorem 1: If the unknown plant G is approximated by a model Gﬁ with the proper-
e

ties that G-G, is stable and monotonic and the controller K is signed to
stabilize the"model G, in the configuration shown in Fig.1(a), then the same
‘controller will also étabilize the real unknown plant G in the implemented scheme

‘of Fig.1(b) if

(1) KG is controllable and observable, and

;(ii) the inequality

£ m
A 8 sup max 1oLl ey +
s€D 1<i<t  J=1 k=1

R(8)Gy(8)) () |+ By (=) |
<1 veea(4)

is satisfied where D is the usual Nyquist contour in the complex plane.

The result has the following natural design interpretation:

Step’ 1: Obtain the plant: step sesponse Yij(t)’
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Step 2: Choose an approximate model G, such that the errors E;:(t) are all mono-
tonic (see ref (7) for some general techniques of achieving this objective).

Step 3: Design the controller K for the model G, to obtain the required stability
“and performance characteristics for the approximating feedback scheme of Fig.1(a),

Step 4: Check the inequality in equation (4) by numerical or graphical means,
Step 5: Check that KG is controllable and observable.

Steps 1-3 are easily undertaken as they are simply a special case of the classical
design process. It is steps 4 and 5 that enable the designer to check stability
of the implemented scheme despite the uncertainty in the plant G! Step 4 does
not, in the general form given, have a classical frequency domain structure but
presents no real problem as it only requires knowledge of Gp, K and the steady
state modelling error E(«), Step 5 could present a problem in principle as it
requires structural knowledge of G but, as observed in ref (7), its validity can
very often be deduced from physical considerations or, as controllability and
observability is generic, its validity rcould be assumed until the unlikely event
of it being proved otherwise.

Rather than dwell on the general case above, we will focus our attention on an
important special case that covers single-input/single-output systems and has the
‘flavour of the inverse Nyquist array (refs (1)-(3)) by choosing models and con-
trollers of diagonal (ie. non-interacting) structure. In such a case, theorem 1
‘has the following form (see ref (7)):

Theorem 2: The conclusions of theorem 1 remain valid with the extra constraints
that m =2 and GA and K are diagonal when (4) is replaced by the equivalent con-
ditions :

1
m 3
siy g

1im K (8)] <

1<k<m ... (5)
NS

‘and .

|1+ ((Gy(8))p Kkk(S))”ll > 4, (s)

: 1<ksm , Y s€p; e (6)

where DI is the positive ‘imaginary axis cbmponent of D and the 'confidence radius'
3 -1, § .

; d.(s) [(Ga(8))y | le [By (=) 1, 1<k<m cede o (T)

‘Conditions (5) and (6) have a much nicer graphical interpretation than (4). Con-

dition (5) provides a preliminary bound on the proportional component of the loop
gains whilst (6) can be checked by plotting the standard inverse Nyquist locus ?k
of (GA)kkKkk and superimposing 'confidence circles' (expressing the confidence

we can have in the predictions of the model Gp) at each frequency point of radius

(s). This procedure is illustrated in Fig.2. Note that (6) is satisfied if,
alid only if, the (-1,0) point does not lie in the 'confidence band'generated by the
confidence circles.

Noting that the stability of Fig.1l(a) can be undertaken by classical inverse
Nyquist analysis of I'y, it is clear that the result has an identical structure to
the multivariable inverse Nyquist array technique with the Gershgorin circles being
replaced by confidence circles reflecting our uncertainty in G. In this sense,
the result is a generalization of the INA to systems with uncertain dynamics.

Note however in the form stated, the result requires that G-G, must be monotonic
which implies, in particular, that Eij(t) = Yij(t)‘must be monotonic for i # j - ie.
the ‘interaction effects in G must be monotonic’ This constraint is removed in
references (15) and (16), An example of the application of these ideas is des-
..eribed below. - S ; sens s . :

|

|

|

|
‘



. APPLICATION OF MULTIVARIABLE SYSTEMS THEORY, OCTOBER 1982

&

Example: To illustrate the ideas outlined above consider the simple liquid stor-
age system illustrated in Fig.3 with input flows uy and ug, states xj equal to the
deviation of the liquid level in vessel i from a known equilibrium position and

outputs y; = X;+¥2 = %x3. . Each vessel is assumed to be cylindrical with cross-
* section areas ay and the pipework is assumed to have linear pressure/flow charac-
teristics in the area of interest characterized by a resistance parameter. The
state-variable model of the process has the structure
~0.5 -0.17 0.0 0.33 0.0

i

! x(t) = 0.25 -1.75 1.0 x(t) + |0.0 0.5) u(t)
0.0 2.0 -3.0 0.0 1.0

‘ .

‘ 1 0 0

i y(t) = x(t) . v ag (B

| 0 0 1 .

-and, with the data shown, the open-loop step respanses shown in Fig.4. Note that

we will only need the step responses during the design and hence a knowledge of the
model structure and data is not required for completion of a successful design.
‘We will however use the known model to check closed-loop characteristics.

Examination of Fig.4 indicates that all responses Y;4(t) -are monotonic and hence

that we can obtain a monotonic modelling error by ighoring interaction terms and

modelling diagonal terms accurately. More precisely, we will use an approximate
model of the form

g,(s) 0
GA(s) e 2 (9)
0 gy(s)
where gj(s) is an accurate model of the iJCh diagonal term of G(s). The g4 can be
computed from G(s) if it is known or by model fitting to satisfy the equation
; ' = T-1 1 s
i Yt = L7 (g ) 1) , i=1,2 el (10)
:These considerations lead to the choice of
S 0.33s2 + 1.568s + 1.07
81(5) = 3 5
s + 5.25s” + 5.58s + 1.50
: s® + 3.95¢ + 1.33
gy(s) = —3 5 ceena(11)
s” + 5.258" + 5.58s + 1.50 ’
and the steady state modelling error matrix
i 0 0.284
i i E(w) = vees.(12)
‘ 0,11 0

The magnitude of the interaction terms Y12 and Y21 in Fig.4 are less than 30% of
.the diagonal terms in transient magnitude. We can therefore expect, on intuitive
grounds, that a diagonal model will be successful and, of course, the benefits in
the design of K will be enormous.

The diagonal structure of Gy suggests that the controller K can be chosen to be
diagonal, .

kl(s) 0 )
K(s) = v o 0w {13)
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where, assuming PI control, the loop transfer functions have the structure

. 1 o
ki(S) = ki (1% TIE) , - s . (14)
' The stabilization of Fig.1(a) boils down to ensuring that the scalar feedback
systems gjk;/(1+giky), 1 = 1,2, are stable. Choosing the data ky = 2.5, kg = 2.5,
Ty = 1.67, Tg = 1.67, we can now check the stability of the designed controller
wﬁen implemented on the real plant described by equation (8) by checking condi-

tions (5) and (6) of theorem 2. Condition 5 boils down to

|k1] < 3.52 i |k,| < 9.09 ; ce...(15)
‘which are clearly satisfied whilst condition (6) is checked by plotting the con- !
fidence bands as shown in Fig.5. As the (-1,0) point does not lie in either of
the confidence bands we conclude that all the conditions of theorem 2 are satis-
.fied if KG is both controllable and observable. This last condition could be
checked if the plant model is available or assumed if unavailable. In either

‘case we conclude that the real plant will be stable with the designed controller.
This is verified by examination of the closed-loop step responses shown in Fig.6.

Stability Theory for Uncertain Discrete Plant

All of the ideas outlined above carry over with trivial modifications to the case
of L-input/m-output, linear, time-invariant discrete systems with synchronous
input actuation and output sampling (see refs (7), (15) and (16) for details).
The only real changes are that continuous time data such as Y(t) is replaced by
its sampled-data counter-part Y(k), transfer function matrices are replaced by
z-transfer function matrices and the Nyquist contour D is replaced by the two
circles |s| = 1 and |s| = R with R 'very large'. In fact the basic theorem 1
for the continuous case carries over to the discrete case with these simple modi-~
fications and theorem 2 also carries over with Dy replaced by the unit semi-
cirele {s : |s| =1, Ims < 0}, The details can be found in the references.

Example: To illustrate the application of the theory to the discrete case, we
consider the four-input/four-output boiler furnace introduced in ref (1) described
by the transfer function matrix

[ 1.0 0.7 0.3 0.2
1+4s - 1458 1+5s 1+5s
0.6 1.0 ¢ 0.4 0.35
1+5s 1+4s 1+5s 1+5s .

Gls) =1 4 35 0.4 1.0 0.6 se0e.(16)

1+5s 1+b5s 1+4s 1+5s
0.2 0.3 0.7 .

| 1+5s 1+5s 1+5s 1+4s |

The interaction effects are clearly, monotonic in continuous (and hence discrete)
time. Suppose that a sampling interval of h = 0.4 is used and that, despite the
‘large interaction effects, the approximate model is chosen to be diagonal and to
model the (sampled) diagonal terms exactly. The relevant model clearly has z-
transfer function matrix

0.1 .

GA(Z) = E—_OT'§I4 iine o l17)

(where I4 is the 4x4 unit matrix) and hence

0 0.7 0.3 0.2
0.6 0 0.4 0.35
E(e) = conmsl 38
0.35 0.4 0 0.6 :
’ 0.2 0.3 0.7 0
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Considering initially proportional control only with diagonal z-transfer function
matrix K(z) = k Iy (k>0) reflecting the identical loop structure-of Gp, it is
clear that K stabilizes Gy over the fairly wide gain range of 0<k<19. This may
be misleading as a prediction of the behaviour of the real plant in the presence
of such a controller however as, applying the discrete version of theorem 2, we

© can only guarantee stability of this configuration if (equation (5))

1 4

kK< max J [Byql = .44 wcuwon LB
i =1
"and (equation (6))
; . ; "
11 + (102-9)k™"| > |102-8| max | |E, .|
5 5 ij
i j=1
= |10z-9| 1.35 0 wmmes (19)

'whenever |z] = 1 ie (after a little graphical analysis)

v

k <0.71 e (20)

This last constraint is blearly the dominant one so we conclude that the controller
will stabilize the real plant in the configuration of Fig.1l(b) if the loop gain
;k < 0.71 and KG (and hence G) is controllable and observable.

Although the approximate model has provided a range of loop gains that guarantee
stability, simulations indicate that the closed-loop system is rather sluggish
with large steady state errors and interaction effects. This situation is due

in the main to the rather crude model Gp employed and can be improved, if required,
by using a more accurate representation. Suppose however that it is decided that
the disappointing performance is to be improved by using the same model but intro-
.ducing integral action into the controller ie K(z) = (k1+kzz/(z 1))I4 with ko # 0.
Equation (5) again yields ik1| <0.74 but equation (6) requires, in partlcular

that max d (1) < 1. This second inequality cannot be satisfied as (G (1)) =1
. i
for all i and max Z |E; } = 1.35. We conclude from this analysis that the

i j=1

"diagonal approximate model of (17) is also not accurate enough to provide a basis
for the design of integral controllers using the discrete version of theorem 2.
Clearly, a more accurate model Gp is required for this system. Although this
will most probably increase the complexity of the design of K for Ga the prin-
ciples of the design technique remain unchanged except that the discrete form of

theorem 1 rather than theorem 2 must be invoked. The details dre omitted for
brevity. ¢ .
- CONCLUSIONS

- The paper has outlined the principles underlying a new approach to controller
design in the presence of uncertainty by deliberate use of an approximate plant
~model for the purposes of controller design and the incorporation of observed
.differences in plant/model time-response characteristics into the design process
using graphical techniques similar to the inverse Nyquist array. The details of
the theory are given in refs (7), (15) and (16) and, at nosstage in the design
process, is an accurate plant model required. The techniques have been illus-.
~trated with two examples of simple-process plant by attempting design based on a
diagonal approximate model, The advantages of a diagonal model are obvious and
its use enables, in one case, the systematic design of loop controllers for a two-
input/two-output system. It cannot-be expected however that a diagonal model
will always be suitable. This was demonstrated by a 4-input/4-output boiler
furnace system where a diagonal model enabled the design of a rather conservative
'low-~gain' proportional controller but was not suitable for high-performance

design or the design of PI controls. A more accurate (non-diagonal) model is
‘needed in this case. The theory can however easily cope with such cases.
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