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INTRODUCTION TO KALMAN FILTERS

Ly = BD
S. A, Billings

Consider a linear, discrete time-invariant multivariable sys-
tem defined by

¢x(k) + Bu(k) + Cw(k) (1)
Hx(k+1) + v(k+1) (2)

x(k+1)
z(k+1)

where z(*) is a vector of outputs or measurements, u(+) is the
vector of control inputs and w(*) is a vector of disturbances
acting on the system. The measurements are corrupted by
noise and round-off errors, represented by the additive vector

v(e).

state vector x(k+1) given all the available data up to the
current instant, i.e. z(k+1), z(k),....z(0) and u(k),....u(0).
This is illustrated schematically in the diagram below. The
notation ﬁ(h/j),is used to mean the estimate of x(k) based on
all the information up to and including the time interval jJ.

\
The problem to be solved is to estimate the value of the
|
|

If k>j, the problem is one of PREDICTION, if k = j one of
FILTERING, and if k<j one of SMOOTHING or interpolation.

Only the filtering problem will be treated here and the
derivation is accomplished in a manner that relies more upon
physical intuition than upon mathematical sophistication.

v(k)

x(k+1)
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The variables w(k) and v(k) are assumed to be zero mean,
stationary white sequences with the following properties,

= k (3)
+ k

E[v(k)v' (§)] = RSy (4)
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S. A. Billings is with the Department of Control Engineering,
Upiversity of Sheffield, Mappin Street, Sheffield S1 3JD.



where w(k) and v(k) are assumed to be independent

E[v(k)w (i)] = 0¥k, ] (5)

Given the preceding model determine an estimate x(k+1/k+1) of
the system state at time (k+1) that is a linear combination of the
previous system state and the measurement data z(k+1). The Kalman-
Bucy filter is designed such that the estimate is 'best' in the
sense that the expected value of the sum of squares of the error
in the estimate is minimum., That is, the X(k+1/k+1) is to be
chosen so that

ERx(k+1)—§(k+1/k+1))(x(k+1)—§(k+1/k+1)ﬁ = minimum

Assume that the estimate X(k/k) is available. What is the best
estimate of x(k+1) given the measurements up to the time interval
(k)? From estimation theory it .can be shown (see Appendix I)
that the best estimate is given by the minimum variance estimate
or the Conditional Expectation E[x(k+1)/k].

Thus from equation (1)

E(x(k+1)/k) = E[(¢x(k)+Bu(k)+Cw(k))/k]
¢E [x(k)/k] + BE[u(k)/k] + CE[w(k)/k]

X(k+1/k)

But by definition E[x(k)/k] = X(k/k), E[u(k)/k] = u(k) because
u(k) is not a random vector and by hypothesis, the noise w(k) is
independent of the state at all times earlier than (k+1) and is
also independent of the measurement noise. Thus because w(k) is

a white noise sequence

E[w(k)/k]

Hence the BEST estimate of x(k+1) based on the estimate at
time (k) is

X(k+1/k) = ¢X(k/k) + Bu(k) (6)
and similarly
zZ(k+1) = Hx(k+1/k) - (7)

If a measurement at time (k+1) is now made available the error
z(k+1) in the predicted measurement can be defined as

Z(k+1) = z(k+1) - z(k+1) (8)

The prediction of equation (6) can be improved by using thg
information available at time (k+1) and adding a proportion of z
to each element of X(k+1/k),

XK(k+1/k+1) = R(k+1/k) + KzZ(k+1) (9)

The estimate of equation (9) is thus of the 'predictor-correc-
tor' type which tries to drive z to zero.

Substituting equations (7) and (8) into (9) gives

~
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(I-KH)x(k+1/k) + Kz(k+1) (10)
(I-KH)(¢x(k/k)+Bu(k)) + Kz(k+1) (11)

R(k+1/k+1)

Equation (11) is the defining equation of the state estimator
which, estimates x(k+1l) from only the current measurements z(k+1l)
and the previous estimate. Thus equation (11) defines a recur-
sive filter. (If w(k) and v(k+1l) are zero for all k, equation
(11) defines the LUENBERGER OBSERVER and X approaches x for all K).
The problem now remains to find a suitable value of the filter
gain matrix K.

Define the estimation error as

X(k+1) = x(k+1) - X(k+1/k+1) (12)

Substituting from_équaﬁions.fl), {2) and (11) and manipulafing
gives -

R(k+1) = (I-KH)(9¢x(k) + Cw(k)) - Kv(k+1) (13)

The filter gain K must be chosen such that
E [(x(k+1)-R(k+1/k+1)) (x(k+1)-R(k+1/k+1)) 7]
= E[R(k+1)X (k+1)] = minimum
Define the covariance of the estimation error as
P(k+1) = E[X(k+1)X (k+1)] (14)

so that "squaring' equation (13), and taking the expectation,
noting that the cross-product terms such as E[x(k)wT(k)],
E[w(k),vT(k+1)]|, etc are zero gives

(I-KH)6P(k) ¢ (T-KH) T +(I-KH)CQCT(I-KH) +KRK®
(I-KH)P*(k+1) (I-KH)T + KRK' (15)

P(k+1)

1l

where
J T '
P*¥(k+1) = ¢P(k)¢~ + CQC (16)
Note that since P(+) and Q are symmetric, so is P*(-).
Re-arranging equation (15)
P(k+1) = K(HP*(k+1)H +R)K -P*(k+1)H K —KHP*(k+1)+P*(k+1)
(17)

Observe that the first three terms of equation (17) have the
form of a quadratic matrix polynomial in terms of the unknown fil-
ter gain K. Hypothesize the existence of a matrix V such that

equation (17) becomes

P(k+1) = (K-V)(EP*(k+1)HT+R)(K-V) —V(HP*(k+1)H +R)V +P*(k+1)
(18)

This procedure is the matrix equivalent of completing the

E:



square of a quadratic polynomial. Equation (18) is equivalent to
equation (17) provided the matrix V satisfies

V(HP*(k+1)H +R) = P*(k+1)HT (19)

For an optimal estimate, K must be chosen so that the estima-
tion error is a minimum, In the minimum variance sense this is
achieved when P(k+1l) is a minimum (equation 14). Note that the
value of K which minimises P(k+1) will not necessarily be the same
value that minimises P(k+2) etc. Hence the particular value of K
will be denoted K(k+1l) etc. By inspection of equation (18), since
the only term involving K is quadratic, the minimum P(k+1) is
obtained when

K=V (20)
Hence from (19)
T T -1
K(k+1) = P*(k+1)H (HP*(k+1)H +R) (21)
Substituting K = V in equation (18) gives the optimal solution as
P(k+1) = P*(k+1)-K(HP*(k+1)H +R)K. (22)

Substituting equation (21) in (22) and using the fact that P*(-)
is symmetric gives

P(k+1) = P*(k+1)(I-H'K') = (I-KH)P*(k+1) (23)

Hence to summarise the KALMAN-BUCY filter is given by

P*(k) = ¢P(k-1)1+CQCT (24)
K(k) = P*(k)H (HP*(k)H +R) ' (25)
R(k/k) = (I-K(k)H)(¢=(k-1/k-1)+Bu(k-1))+K(k)z(k)  (26)
P(k) = (I-K(k)H)P*(k) (27)

Equations (24) through (27) indicate that the optimal estima-
tor is time varying, even for the autonomous process defined by
equations (1) and (2). A schematic diagram of the Kalman-Bucy
filter is illustrated below. Notice that the equations for
K(k), P(k) and P*(k) are independent of the observation sequence
and can be precomputed if desired.

In the case where system and measurement dynamics are linear
constant coefficient equations and the noise statistics are
stationary (as in the case above), the filtering process may
reach a steady-state where the covariance and gain matrix are con-
stant. Complete observability is a sufficient condition for the
existence of a steady-state solution. Complete controllability
will assure that the steady-state solution is unique.

By applying vector-matrix manipulations the Kalman filter
equations can be put into a number of equivalent forms. With
appropriate values of ¢, B, C, H, Q and R the equations are still
valid for time-varying processes.



observation current
z(k+1l) + Z(k+1) - estl?ate
¥ innovation K(k+1) P x(k+1/k+1)
X tion Delay
z(k+1)
* TRx/x)
previous
u(k) estimate
Block diagramfpf“thé diéérete fi1ter
Continuous-Time Formuidfioﬁ‘
X = Fx(t) + Du(t) + Gw(t) (28)
z(t) = Hx(t) + v(t) (29)

If the unit interval for the discrete case solution is allow-
ed to approach zero, we obtain the solution for the continuous

case; Viz

%X = FX + K(t)[z(t)-HX] + Du(t) (30)
K(t) = P(t/t)H R ! (31)
b = FP + PFL - PHIR 1EP+GQGT RICCATI EQUATION (32)

The limiting process is a matter of some delicacy because of
the presence of Dirac delta functions. However, the procedure
can be made mathematically legitimate by a sufficiently sophisti-

cated analysis.

The Extended Kalman Filter

The Kalman filter can be used to estimate the state of a non-
linear system by linearising the system equations around a nominal

solution. Thus if

Xi = fi(x,u,w,t) (33)

and x° is a nominal trajectory, expanding egn (33) in a Taylor
series about the nominal value neglecting all except the first
order terms yields

§x = x-x° ;o du = u-u®
§x = ASx + ASu + Qw(t) (34)
where
: 5fi Gfi 6fi
Ay =5x. v 2= %a. ¢ %5 T sw. | .o kB
J J J J X=X,
u=u



Equation (34) can be converted to discrete-time form in the
usual manner and the estimate &X can be generated by a Kalman
filter using this discrete form where X = x +6X. When tge nomi-
nal trajectory is defined as the best previous estimate x (k)= =xX(k/k)
the resulting estimator is called an Extended Kalman Filter.
Note that the gain K, the linearisation and discretisation must be

recomputed at each step.
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Appendix 1

Minimum Variance Estimates

Suppose that a vector random variable X is to be estimated
from the given observations zq,2g. Only the case where x
and z are scalars will be con81dered %0 simplify the derivation.
Assume that the conditional probability density function P(X/Z) is
known and consider the variance of an estimate X of x determined
as a function of the observations (i.e. & = X(z)).

For a given set of observations we can define

[o.2]

var{Z(z)} = [ (R(z)-X)2P(X/Z)dX (36)
where X is the true value of X. Differentiating w.r.t. X yields
d/dx{var{x(z)}} = 2 [ (x(2)-X)P(X/Z)dX (37)

- 00

and at the extremum which can be shown to be a minimum
co [se]

X(z)[ P(X/z)dX = [ XP(X/Z)dX

o o]

But [ P(X/Z)dX

- OO
value

1 and the integral on the r.h.s. is the expected

Il

E[X/Z] (38)

That is the conditional expectation of the unknown random
variable x given the observation z is a minimum variance estimate.

X(z)

It can readily be shown that if the cost to be minimised is
quadratic in the estimation error, the optimal estimate is E[X/2]
regardless of the form of P(X/Z). If P(X/Z) is Gaussian a linear



