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SUMMARY

A general transfer function matrix (T.F.M) has been derived for
symmetrically built packed distillation columns, separating ideal binaryE
mixtures. This T.F.M is used to assess the adequacy of assuming zero
vapour hold-up in the model and also, as previously proposed by the

authorsl'z'3

;, of setting the ratio of vapour to liquid hold-ups to unity
for predicting the dynamics of a general system.

The analytical results are subsfantiated in frequency domain .
It is noted that variations in the ratio of vapour to liguid hold-ups do
not greatly influence the general dynamics of packed columns and that when
this ratio is set to unity, the resulting simple model proposed by us,

may adequately be tsed for the purpose of dynamic analysis and controller

design.



Introduction

3
'“'” has produced precise, parametric transfer

Previous analysis
function matrices for symmetrically - built packed distillation columns
separatingideal mixtures in extreme cases when the ratio of vapour hold-
up to that of liquid in a subsection of the column is taken as unity and
zero. Clearly either of the two situations represent limiting conditions
of a typical case. While for tray columns, due to large liguid hold-ups
retained on the trays, the ratio of vapour to liquid hold-ups may reasonably
be taken as zero, in the case of an equilvanet packed tower effecting the
same amount of separation, such assumption may be considerably removed
from reality. Practical reports4 indicate a reduction of around 75% of
liguid hold-up in the packéd columns in a common situation.

In this report a transfer function matrix (T.F.M.) of the model is
derived in the general case when no assumption is made on the numerical
value of the vapour to liquid hold-up ratio. The T.F.M., besides providing
a more accurate description of the process dynamics for the purpose of
analysis, model approximation, controller design, etc., provides a basis
for comparisons between the potentials of the two above mentioned special
cases in representing the dynamics of a general case.

The results show that either of the special cases result in substan-
tially similar frequency response to that obtained for a given general case.
But the casein which the ratio of vapour to liquid capacitance is assumed
to be unity is more on the safe side and easier to use for controller
design.

Derivation of the General T.F.M.

The linearized model of the system, when the equilibrium curve is
approximated by straight lines of slopes a and 1l/a, where o is the mixture |

relative volatility, is
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where y and x' denote small disturbances in vapour and liquid compositions

in the rectifier and stripper respectively, ye and xé their associated
equilibrium values, v and % are the perturbations in the internal vapour

and liquid rates and c¢ is the ratio of rectifier-vapour to stripper liquid
hbld—up = stripper-vapour/rectifier liquid hold-up). As discussed in 1,

2 and 3, symmetricity in structure demands equal packing length in both

sections of the tower and the overall mass-transfer coefficient in terms

of vapour composition driving force in the rectifier to be egual to that in terms

of liquid composition in the stripper. The variables h and T define normalised

length and time

T =t k/H;l and h = h'k/v
where Hi is the stripper liguid hold-up per unit length, k is the overall
mass-transfer coefficient, V is the vapour rate in rectifier, h' represents

the distance as measured from an origin at the ends of the tower, bent

into a conceptual u-tube, The parameter G denotes the normalised composition

gradient in steady state and t is the actual time.
None of the assumptions made in the development of the model is unusual
and have already been used by a number of authors, for example 5,6,7 and 8.

The boundary conditions at feed point and top and bottom of the column

are

y(L) = Xe(L) = €GV/2V at feed

x' (L) = ye(L) + eGL/2V (2)

aT dye(o)/dT v(o) - uye(o)

at top and bottom
x' (o) - axé(o) (3)

il

aT dxé(o)/dT



In (2) and (3), € =0 - 1, L is the 'length' of a subsection and T is

the hold-up at condenser and reboiler.
Taking a Laplace transform in time, the equations of the model can

be written as follows

3 3
(cp +1 -4 _ (-1 - G v
v+ Tt | (3)
1 -p - 1-4d ol
/
|
for + 5 @) [ ) - _
cp 1 d 1 o W E—R (2)
§+ e v
[ 1 -p = 1 + dJ " lav

where the superscript ~ is used to indicate transformed variables, p
denotes the Laplace's variable and d is an operator representing
deferentiation w.r.t. length. The characteristic equation of the simul-
taneous ordinary differential differential equations(4) is

2

S - (l-clps - (L +c + cp)p =0

The roots of which are:

2
(l—c)pi#%l—Cfp +4 (1+c+cp)p
"Lz T 2

Defining the variables P and g as follows

P = Egg'P and q = ¥(1+c) P (4+p+cp) /4 (39

then

s =P+ g (6)

The roots of the characteristic equation of (3) may easily be found

to be - s

1,2
Therefore the general solution of (3) and (4) may be written as
—s2h —slh
(v = E.e + E,e +1i (a)
—Szh —slh
y = I e + b
Y, ) + I2e i2 (b) -
s_h 52h
x N Je +J,e +i, (c)
s_.h s_h
~'= e + d
x! X + K e 14 (d)
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where El(2)'Il(2)'Jl(2) and Kl(2) are arbitrary functions of p and i,

to 14 are the particular integrals of the solution for each dependant

variable, easily obtainable as

1= - Q#p)V=od . _ _¥-(ltcplag , _ _aV-(tep)d . . _ _ (l4p)av-i -
= - 22y o TTCPIO ;o VS LITOP)IA = - ~TRIAVEA
1 (l4+c+cp)p’ ™2 (l+c+cp)p 3 (l+c+cp)p 4 (l+c+cp)

Clearly (from (3) and (4)) the arbitrary functions Gf(7) are related to
each other and four of them are defined in terms of the others. The

{
necessary relations between arbitrary functions are obtained noting that

(1) should be identically satisfied by (7). Substituting from (7-c) and

(7-d) into the second equation of (4)
(

5

K2 = (l+p—52)J2 (9)

(l+p~sl)Jl

Similarly substituting from (7-a) and (7-b) into the first equation of (3)

H
I

+ep+
(1+cp 52)El

I, = (l4cp+s

l)E2 (10)

Using (5) it is crucial to note that

l+cp+s

+p=-
1l+p sl 5

l+p-s_ = l+cp+sl (11)

2
Using (6),(9),(1l0) and (11) the general solution (7) may be written as:

(~ _ _~Ph gh -gh ,

y = e [Ele +E2e ] + ll

e ~BET SHpdop gh 24+p+cp -gh !

. [(_—5—_—_ q)Ele + 5 + q)Eze ] + i, (12)
~,_ Ph gh -gh ;

xh= g [Jle + 3,8 i i

“1. Ph 2+p+cp _ gh ' 2+p+ep -gh .

xe e [(——E———- q)Jle + (——~§——-+ )J2e ]+ i,

The boundary condition equations when transformed can be written as

[7(Lp) = x_(L,p) - eGv/2v (13)
Feed: . . N

x(L,p) = ye(L,p) + eGR/2V (14)

[ -1 . )
Top and | o hey(O,p) = ye(OrP) (15)
bottom a_lheiTo,p) = %é(o,p) (16)



The considerable resemblance between the first and the second
pair of equations (12) is worth noting. Unfortunately the dependance
of composition variables of each subsection of the column to those of

the other at the feed boundary places an awkward barrier in the way

of using this similarity by fitting the equations (12) to (13) - (16)

in pairs. However, if we add and subtract the equations (13) and (14)

and also the equations (15) and (16), denoting vectors 4, ¥ and u as:

y—X ye_xe
9= | ~ =~ | 4| . (a)
+x! +x!
y+x Y, .
and (17)
v + 8
G
L= = - (b)
v - 4

the equations of the boundary conditions can be written as

ql(L.P) = - rl(L.P) - Eul/2

Feed: g, (L,p) r. (L,p) - eu./2 (18)
L 2 Z 2

-1
Top and[a heql(o,p) = rl(o,p)

-1
bottom |a heqz(o,p) = rz(o,p) (19)

in which the first row of equations are independent of the second. Now
the above mentioned similarities in the equations (12) allow the alterna-
tive variables given in (17) to be substituted therein without the penalty
of excessive complication. The resulting equations, although no longer
possessing the property of (12), are somewhat simpler to fit to (18) and

(19) than it is to fit (12) to (13) - (16). They may be written as



q; —[Alcosh(qh)+Blsinh(qh)]sinh(Ph)+[A2cosh(qh)+stinh(qh)]cosh(Ph)+il-i3

[Alcosh(qh)+Blsinh(qh)]cosH(Ph)— [AZCOSh(qh)+B sinh(qh)]sinh(PL)+il+i3

9, 2

+p+
r, = [2+—§+9~l'i cosh (gh) —~gsinh (qh)]A2+[31§—CP sinh(gh) —qcosh(qh)]Bz}cosh(Ph)

2+p+ ; 2+p+
—{[——E-EE-cosh(qh)—q51nh(qh)]Al+[——%}£ﬂl

E sinh(gh) —qcosh(qh)]Bl}sinh(Ph) oL,

2

2+p+tcp

. _,(2tptcp .
r, —{[“""“—"'Cosh(qh)—q51nh{qh)]Al+[ S

= sinh(qh)—qcosh(qh)]Bl}cosh(Ph)

|

2+p+
——E—EE-sinh(qh)—qcosh(qh)]Bz}sinh(Ph)+i2+i4

—{[giEiEE-cosh(qh)—qsinh(qh)]A2+[ 5

2
(20)
where Al,Az,Bl,B2 are functions of p to be obtained by fitting (20) to the
boundary conditions (18) and (19).

At the feed boundary substituting from (20) into (18)

4+p+cp

. sinh(qL)—qcosh(qL)]Bz}cosh(PH

f {[éiEiEE-cosh( L) —gsinh ( L)]A +[
s qlL) -q qlL) |2,

4+
‘{[——Eigg-cosh(qL)—qsinh(qL)]Al+[Ei%iEE- sinh(qL)—qcosh(qL)]Bl}sinh(PL)

2
+i_+i, -1 _-i = - E-u
™ T T2
- +
{[p ;p cosh(qL)—c;[s;inh(qL)]A:L +[EEEE-sinh(qL)—qcosh(qL)]Bl}cosh(PH
_[e*cp i p+cp _. _ . 4 o e ok
\ {[ 5 cosh (glL) q51nh(qL)]A2 +[ 5 sinh (gL) qcosh(qL)]B2}51n{PL) i1, l2+14
:-e—u
2 2 (21)

when h = o, the equations (20) reduce to

( - GO
q, (o) =2, +1; =14
r. (o,p) = s an A_.-gB_ +i_ -1
T 2 2 2 2 4
= i+ i
qz(o,p) Al + ll 13
2+p+cp : 2
R - + +
rz(o,p) 5 Al q B1 12 14

The above equatiors using the boundary conditions at terminals, i.e. the

equatiors (19) can be written as
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Substituting from (22) into (21) and using (8) and (17b) after some

lengthy algebra, not appropriate for inclusion, the vector g(o,p) can be

obtained as

g(o,p)

where

r+' 1] l+' L]
) cosh(PL)gll 51nh(PL)g2l cosh(PL)g12 51nh(PL)922
) IHaHcp sinh(PL)g!. +cosh(PL)g/ sinh(PL)g!_+cosh(PL)g! e
11 21 12 )
G(p) (23)
e _ G~ PL _ l-co =PI
9:4 {(l+c)cosh(qL)[(s+ — DPle "+ (e —  ble ]
- gsinh(qr) [(a+c) e+ (1+care TF] -e (L+c) [24 (L4c+ E)p)1/r

v = E_ ' a-c PL =g, -PL
ng— { (l+c)51nh(qL)[(e+ ~§—-p)e -(e- ——5—-p)e ]

+ qeosh (qL) [ (o+e) ™ = (14ca) e P e (1-c) g} /s

+ P + -PL
91,= {(1+c)cosh(qr) [(1+a+ 22 p)ere (14a+ i_gﬂ-p)e o
2
P =P 1-
- qsinh(qL)[(a—c)e L+(l—cu)e LJ 3 - ; p}/R
+ P i -
g52= {-(1+c)sinh(qL)[(l+a+ g-Z-E-p)e L+(1+u+ _iE~.p)e PL]

+ qcosh(qL)[(u—c)ePL—(l—ca)e PLJ— 2eq(l+c+ Egﬁ}/s

R

=1 =1
(1+c) p(l+a he)cosh(qL}+2q(l—a he)sinh(qL)

S

1l

=i "
(I+c)p (1+a he)sinh(qL)+2q(l—u lhe)cosh(qL)

and as given before

B = P and q = /(l+c)p(4+c+cp)/4



An outstanding property of G(p) is that when c = 1, gél and gi2
vanish. Consequently from (23) clearly the systems T.F.M., G(p),

becomes diagonal. The elements of which are simply

- {(a~l)[cosh(qL)—l]p_l—(l+a)sinh(qL)q_l e /2}

g, (p) = — =
1 { (l+a lhe)cosh(qL)+qp l(l—u lhe)sinh(qL)}
and

_ {(a—l)p(costh—l}q—z- (l+a)5inh(qL)q_l - e/2}
gztp) =

{(l+heanl)sinh(qL)pq_l+ (l—he&l)cosh(qL)}

Zero - and High - Frequency Behaviour

There is of course much information about the system dynamics which
can be obtained from the behaviour of the system at zero frequency and
high fyrequencies. Because the model is a hyperbolic system of partial
differential equations, any significant wave phenomena will be predicted

by analysis of the system behaviour in the high frequency region.

Zero Frequency Behaviour

At zero frequency it can easily be observed that, similar to the case

of unity c, and gél in (23) again vahish and therefore G(p) becomes

]
L
diagonal, the elements of which are

2
(o) = af{(a-1)L - (l+a)L - /2}
91 T 2(e-L)L + 1 + o

and

(o) _a{l+a)L + e/2}
9 (0-1)

The High-Frequency asymptote of the T.F.M.

The variable g can be written as

o

) _ (+o)p 4
a = /(L+e)p(4tptep) /4 = == |1 + s

which at high frequencies approach

1+
q = 1+ ~—E-p

2
pre



If now both numerators and denominators of gil,g are

1] 1 1
1279217922

_L -
multiplied by Z2e & ;, in the resulting 1 + e ar terms the exponential

term compared to 1 can be neglected. This is because the modulus of
the exponential term at high frequencies is nearly equal to e_ZL and
when L is as small as 2 its value will be of the order 0.018 (when
L =05 it will be 0.00004). It is unlikely that for a subsection of

column L, the N.T.U, is less than 2. Then after some algebraic operatidps

the elements of G can be derived as

-L - -L -pL

fo 0l = -2 (1l+c)-e (3+c+cple e ch_ e (l+3c+cple .e P (24)
911 P 4[l+c+c/(l+c) +Cp]

(Bop) = kB e (3+C+Cp)eTLe_CpL+ € (1+3c+cp) e e PE (25)
9gq VAP 4[1+cte/ (1+c) +cp]

(o) & —2(l—c)—€[3+c+2C/(l+c)+cp]e_%e_CpL+E[l+3c+2c/(1+c)+cﬂ é?e‘PL
Hypg el = 4{l+c+c/ (1+c) +op)

(26)

(o,p) = =2 (1l4c) -€ [3+C+2C/{l+c) +CpJ é‘]-—_‘ehch-ELl+3C+2C/(l+C)+Cp]e'_-Le_pL
g22p+;p 4[T+c+e/ (L+c) +cp)

(27)
From the above equations it is clear that at high frequencies the
system response contains two waves both of initial amplitude %—e-L but

one is delayed with reépect to the other by L(l-c) units of normalised time.

From (25) - (27) it is clear that the rational part of the two
diagonal elements, i.e. (24) and (27), dominate those of the off diagonals, i.e.
(25) and (26), unless c is set to zero. Also as the term -2(1l+c) is
evidently always much greater than the amplitudes of both waves it can be
concluded that at high frequencies G(p) is dominant.

When c is set to zero, from (24) to (27) it is clear that the system
response is approximated by a proper T:F.M., net a strictly proper one.

This is clearly an undesirable property from the control point of

view.
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Computed Results and Discussion

The computed results presented in this section are solely discussed
in the context of determination of the effect of parameter ¢ on the system
dynamics and comparison of the quality of predictions when c is set to zero
and unity. Not attempt is made to discuss other properties of the parametric
T.F.M. derived in section 2, i.e. G(p) in (23). Such analysis is presented
in full detail in (9).

As discussed at the end of section 2, when ¢ is set to unity the sygtem
T.F.M. greatly simplifies and assumes a diagonal form. Setting ¢ to zero
does to a certain extent simplify the T.F.M., however compared to the unity
case, the extent of simplification is less and it does not result in a
diagonal form.

In section 3 it was shown that in general, when c is not equal to unity,
the T.F.M. is diagonal at zero frequency and at high fregencies except when
c=o. The existence of dominance at intermediate frequencies can be checked
by plotting the Gershgorin circles on the loci of diagonal elements of the
T.F.M. in the Nyguist diagrams. Figures (1) and (2) show the Nyquist
diagrams of the elements éll(jm) and §22(jm) of the inverse T.F.M. for both
c=1 and c=0 cases with row estimate Gershogirn circles on the loci of the
latter case. The system parameters are L=5, e=l, T=5. As pointed out before,
it is not expected that the T.F.M. when c=o to sustain dominance at very
high fréquencies. But one could argue the validity of models derived for
complex systems such as distillation columns in this region. A second point

worth noting is the inclusion of the -1 point in the circles of the fig. (1).

In general both c=1 and c=o cases have very similar diagonal loci, but as
the fig. (1) shows the latter case exhibits more gain margin and faster
response.

Figures (3) and (4) show the Nyquist diagrams of the elements éll(jm)

and §22(jm} of the inverse T.F.M. for the same system parameters but for ¢=0.15.




Bearing in mind the arguments so far on the dominance of the T.F.M.
the system is row dominant at all frequencies. Notice that the -1 point

is now excluded by the Gershgorin circles.

Figures (5) and (6) show the loci of éll(jw) and ézz(jm) for the
cases ¢ = 0.15 and 1. Clearly the loci of both figures are remarkably
similar. The locus of c=1 case crosses the real axis to the right of
that of ¢=0.15, hence it possessed a safe approximating property when |
used for controller design. Transportation‘delayed terms of high fre-
guency behaviour have given rise to the lobes in loci of Nyquist diagrams
shown in the Figures (1) to (6).

From what has been discussed, it is concluded that setting c = 1
in the model results in a simple diagonal transfef function matrix which
with a high degree of robustness provides dynamic information on the general
system and may more usefully be used for controller design compared to the
T.F.M which results from setting ¢ = O.
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estimate Gershgorin circles.



N

X markings at frequencies of 0.1,0.2,0.5,0.75,1,1.25,1.5,2,5,10

Fig. 3 Loci of éll(jm) for ¢ = 0.15 with row estimate Gershgorin circles
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