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ABSTRACT

An exposition is given of recent advances in the theoretical
analysis of circuits comprising sets of intercoupled non-linear
oscillators. Motivation for this work has come from mathematical
modelling of biomedical systems, particularly for the electrical
activity of the gastro-intestinal digestive tract. Over the past
few years a matrix linearisation method has been developed and
applied to a wide range of structures comprising chains, arrays,
rings and tubes. Also, different coupling components including
bure time delay, and two types of van der Pol oscillator dynamics
have been investigated. Numerous mode patterns have begn predicted
and experimentally observed, and stability criteria established for
a wide range of conditions. The multi-oscillator mode analysis entails
a two-stage process comprising matrix mode decoupling followed by

equivalent linearisation similar to the Krylov-Bogolioubov approach.




1. Introduction

Extensive theoretical advances were made in the 1930's by both
Westernand Eastern researchers in the field of non-linear oscillators
under both free and externally stimulated conditions. These studies
were hased largely upon the now-classic dynamics referred to as the
van der Pol Equation. .It is this equation which forms the basis of the
mode analysis‘methods which will be described in this paper. In this “
early work the emphasis was on a single oscillator system with forcing
in one direction only. In some respects, this parallels the early
development of control systems theory based upon the single variable,
single loop concept. Oniy in recent years has there been any strong
attempt to extend non-linear mode analysis into the multi-oscillator
condition with mutual interaction (i.e. bidirectional coupling). This
also parallels the current interest in multivariable control systems
theory.

Non-linear mode analysis has been developed around the concept of
distributed arrays of coupled circuits. These circuits'comprise a mix-
ture of linear and non-linear components, where the basic mode structure
can be determined from the linear components only. In this paper the
emphasis is on coupled oscillatory circuit elements, although similar
treatment can also be used for distributed filter structures. The analy-

tical method involves two stages comprising determination of basic mode

behaviour via the unperturbed system (i.e. linear components only) followed

by an investigation of mode stability via a matrix linearisation method.
The analysis is therefore concerned with weakly non-linear systems, and
attention is not given to relaxation oscillations involving strong non-
linearities.

The theoretical advances have been strongly motivated by parallel

research into biomedical oscillations. In particular, the electrical




activity.in the gastro-intestinal digestive tract of humans and other
mammals has relevance in this area. This activity, known as 'slow-

waves', has been extensively modelled using non-linear oscillatory dynamics
Such a mathematical model was first proposed by Nelsen and Becker in 1968(1)
as an alternative to a linear cable model. Since that time the mathematical
model has been extended to comprise a one-dimensional chain for small-

(2)

intestinal studies and a two-dimensional array for gastric modelling(a).

|

The classic van der Pol equation has often been used in these studies, and
modifications to this equation to ‘make the zero state stable have been
used in modelling the human large-intestine (colon)(4). For this latter
work a small tubular structure was also considered. All of these struc-
tures and dynamics, together with different coupling conditions, have
pbroven to be amenable to theoretical mode analysis surveyed in this paper.
After a brief historical survey of theoretical work in non-linear
oscillator analysis, a verbal classification is given of the wvarious types
of mode behaviour which will be encountered. This is followed by a
development of non-linear mode theory for a two-dimensionai array. A
ladder structure is then treated as a special case of this array. A
tubular connection is next presented, followed by a ring as a special case
of this structure. Coupling delaf is then introduced in the ring connection.
This is followed by a treatment of oscillator dynamics including f£ifth-
bower characteristics for a chain connection, both with and without coupling
delay. An alternative approach which removes some of the restrictions
which apply to the matrix mode analysis method is described in the next
Section on harmonic balancing, and which summarises recent advancés
using this technique. Finally, a brief resumé is given of experimental
investigations which have verified the predictions arising from the theore-
tical studies. It should be noted that many other studies have been made

on coupled oscillators using dynamics other than the wvan der Pol type.




These studies which involve both theoretical and simulation approaches
are partially described in the area of biomedical modelling in(s).

2. Non-linear circuit mode analysis

2.1 Historical survey

Mention must first be made of the work by wvan der Pol himself whose
interest in oscillations was life-long and spanned the disciplines of
electronics, biology and music. In his early writings he considered mode
behaviour in chains and rings of coupled circuits under both transient

(6'7). In a series of papers which followed,

and resonant conditions
van der Pol extended the knowledge of non-linear circuit oscillations using
a number of methods. He considered free and forced oscillations in a triode,
using methods based on the celestial mechanics perturbation approach and a
technique based on energy averaging which was the precursor of the harmonic
; 8 ; ;
balancing approach( ). He produced graphical procedures to explain
hysteresis effects of switching between modes both for a single oscillator
with fifth power conductance characteristic(g), and for an oscillator
s : ., (10) .
mutually coupled to a passive resonant circuit . While these papers
used methods based on almost-linear conditions, van der Pol also analysed
relaxation oscillations in his own equation using a phase - plane approach
: ; . s § 1 ;
for this highly nonlinear condltlon(l ). Subseguent work dealt with
frequency 'pulling' in a forced oscillator, and the phenomencn of sup-
pression of the free oscillation by the external oscillations(i.e.
. . (12) : . . ; ; |
synchronisation) . These theoretical circuit analysis studies were |
. . . . (13) )
coupled with hypothesised application to heart rhythms and many biolo-
. pl . (14)
gical and social phenomena .
Although emphasis is placed in this review on the analytical advances
made for weakly non-linear systems, much work has been done in both the

West and the East on relaxation oscillations (eg. 15, 16 and 17). For

weakly non-linear systems the method of perturbations had been introduced



(18)

as early as 1772 by Euler for consideration of celestial mechanics.

This was generalised by Poisson in 1834(19), the problem of secular

20
terms overcame by LJndstedt in 1882 ( ). The method was reduced to a

(21)

/!
systematic averaging procedure by Poincare in 1886 and further

generalised in the area of celestial mechanics by von Zeipel in 1911(22).

(23)

As stated by Giacaglia ' "celestial mechanics had been worked down
to the bones by means of available tools of classical analysis bv the
end of the last century".

At the same time as van der Pol was producing work on non-linear
circuit analysis, eimilar studies were being made by Russian mathematicians.
A series of averaging methods (called equivalent linearisation, harmonic
balancing and energy balancing) was applied to non-linear circuits and

mechanical systems by Krylov and Bogolioubov in the 1930'5(24) and intro-

duced to the West in 1947(25). The connection between non-linear circuit

theory and classical averaging methods of celestial mechanics was shown by
(26) . : ,
, while the equivalence of the Krylov-Bogolioubov-
(27)

Cesari in 1959
Mitropolsky and von Zeigel's methods was demonstrated in 1961 The
Krylov-Bogolioubov method is a generalisation of that used by van der Pol,
and is closely related to the describing function technigue introduced in
England by Tustin(za) and in America by Kochenberqer(zg).

Although the majority of literature on synchronisation has been on
unidirectional forcing of single degree of freedom oscillators (e.g.
Haag(ao)), the first example of synchronisation observed appears to have
been a mutually coupled system. It is well known that Huyghens (1629-
1695) observed that if two clocks were slightay'dehsyﬂchrcnieed'iith‘one
another #henrhung on a wall, they became svnchronised when attached
to a thin wooden board. The first analvtical treatment of mutually

coupled non-linear oscillatory circuits was due to Russian authors in

the 1950's. Thus, synchronisation and power sharing were considered for



31
mutual inductive coupling by Akalovsky( ), a bridge comprising R,L and

2) (33)

. 3
C elements by Rapoport( » and parallel RC coupling by Parygin . The

analysis was extended to the case of the action of an external force on

(34)

two synchronised oscillators by Khoklov » and the mutual synchronisation

(35)

of three RC coupled oscillators by Parygin - It was not until the 1960's

that equivalent literature began to appear in the West. Thus, in 1963 Nag
(36) |
analysed the case of two capacitvely coupled tuned amode oscillators ),
and showed the stability of two modes using Liapunov theory. Using the
; . 5 M3TY . '
same equations AggarWal and Ritchie employed Liapunov theory to find
the inner bound both for periodic and aperiodic oscillations.

In the Russian literature applications of the above analysis were
frequently in the microwave devices field.- This is also true in analytical
treatment of noise performance in non-linear oscillatory systems.

(38) ; . . ; ; . (39)
Kurokawa considered noise in a single oscillator, while Schlosser
investigated noise in two mutually synchronised oscillators. The coupling
was via a three-port, characterised by a scattering matrix, with an appli-
cation in the combining of solid-state microwave devices to obtain larger
output powers.

In the field of circuit theory, an important paper on both one and

; . : : : . y (40)
two dimensional arrays of non-linear circuits is that by Scott in 1970 g
He considered a set of parallel capacitor and non-linear conductance
circuits linked via inductive elements to form a low-pass filter structure.
He analysed the lumped parameter system using a distributed approximation
commonly employed in solid-state physiecs to determine the properties of
crystal lattices. Scott showed that simultaneous existence of two modes
could not occur in a line array but could occur in a two-dimensional array.

In this work, and that which follows, only asynchronous modes are

considered. Such modes, often termed non-resonant, have ratios which




are non-rational and hence the averaging methods can be applied to their

g i 4
analysis. The same structure was analysed by Parmentler( 4 using the

b 42
method of contin%el approximation( ), producing the same conclusions.

Using the same method the equivalent high-pass filter structure was

chly " . ; ;
analysed by Aumann(4 ). Similar work mostly dealing with distributed

oscillatory systemswas appearing in the Russian literature at this time,

with the emphasis being on microwave and laser devices. Thus, analyses !

44)

have appeared on the mutual locking of lasers( ; asynchronous modes in

(45)

distributed oscillators r external forcing of a one-dimensional distri-

—
buted oscillator 6): and 'ensemble' coupling of oscillators(47'48).

The results for ladder filters were extended to ladder oscillators

(49)

by Endo and Mori for both the low-pass case (inductive coupling) and
the high-pass case (capacitive coupling). They used a matrix decoupling
method which will be ocutlined in the next section, and which has now been
applied to a number of related structures. Thus, mode analysis has been

performed for non-linear oscillator structures comprising two-dimensional

50) (51) (52)

arrays( ;, rings ; fifth-power oscillators

53
pure time—delay( '54}, tubular structures with third power and fifth

(55)

power dynamics - Since intercoupled oscillators are the basis of

, coupling networks with

gastro-intestinal modelling studies and other biomedical applications, it
is this form of non-linear circuit analysis that is singled out for descrip-
tion in the following sections.

2.2 Non-linear mode analysis techniques

The technigue pioneered by Endo and Mori for the determination of
mode behaviour in coupled non-linear oscillatory circuits comprises a
two stage process. The first stage entails a linear transformation
applied to the multivariable interacting system to reduce it to a diagonalised
uncoupled structure which is the matrix equivalent of a single oscillator

van der Pol equation. Equivalent linearisation of the non-linear terms




is then performed via the Krylov-Bogolioubov approach with mode
stability being investigated via perturbations and resulting variational
equations.

When considering a non-linear system with many degrees of freedom
a number of distinctions arise in classifying the various modes. The
first is the presence or absence of resonance. If the ratio of two mode
frequencies (wi/uj) is a rational number, these two frequencies are
called resonant; 4if it is an irrational numbér, they are called non-
resonant . Another matter is that of degeneration. If two or more
different modes have the same fréquency, these modes are called degenerate;

otherwise they are called non—degenérate. In degenerate modes there are

resonant interactions between them, and their phase relationships should
be considered. When there is a fixed phase relationship between degenerate
modes the modes are called regular. When the phase relationship cannot be
determined and is arbitrary, the modes are called irregular. All of these
mode distinctions are necessary in the following analyses of different
coupling structures, although it should be noted that resonant multimodes
will not be considered since the normal method of averaging cannot be ﬁsed
in this case.

The most general structure which has been analysed comprises a
tubular connection of oscillators, and this is of most relevance in the
gastro-intestinal models mentioned earlier. The structure is shown in
Fig. 1, where each node point contains an oscillator comprising parallel
LC and conductance terms- and is equivalent to a van der Pol type equation.
Both third power and fifth power polynomial conductance terms will be
considered in the following secﬁions. In the initial section a two-
dimensional array of oscillators will be considered since this introduces

most of the mathematical and modal‘ideas.




2.2.1 Two-dimensional Arrays

The structure comprises Fig. 1 with a cut along the axis of the tube,
and open-circuit boundarv conditions along each dimension of the array.
A conventional van der Pol oscillator is obtained by considering the

conductance to have the form

3
= - gV 4+ ,
i 943 T BV r 91993 > 0 (1)

th . ‘
Applying Kirchoff's laws to the i7 flode gives the following differenée—

differential equation

2
av,, g 39 av, . .
=¥ _l{l -3 v 2, _ij - 1 v (_l,_+ “l_gv
at c gl i3 dt CLo =1 2CL CLO ij
1 1 1 2 d:
| s, - — +-_+—-. —_— =
e, V1,541 cL, Vi1, Ger CLO) Viy cr_ Yom,g =9 (2)

i=1,2,...,m; 3=1,2,...,n

This equation can be put in normalised format by making the following

substitutions
1 1
TEYGe ta )t
O.
g.
1
V., = el
ij /(3g3) = |
9
E:
C. C
i (R
(2L L )
2L i
“C merL e
o

Thus (1) becomes

. 2. .
- 1- - +(1+ - L.
xij el Xij)xij axi,j-l (1 a)xiJ axl1]+l
- A+ L .=
axl_l’ (l+a)xl] uxi+l’j 0
_ ax -0 X
x = o X ) (4)



Defining X and Z matrices of order mxn as

X =

Exijl

3
[, )
(4) can be expressed as a matrix differential equation

e Z (5)

W[

X +B X+ XB = ¢gX -
m n

with a symmetric tridiagonal matrix of order m(n) |

( 1 -q 0
e
Bm(n) = -0 1+ s
5 ™ ~
N ™ S
-0, 1+a A -a
0] -0 1

The unperturbed form of (5)

X+B X+ XB =0
m n

can be transformed to the canonical form

¥ + (PTB P)Y + Y(QTB Q) =0 ) (7)
m n )

by substituting
X = PYQ (8)

The orthogonal transformation matrices P and Q which diagonalise matrix
B to produce an uncoupled system can be determined as an eigenvalue
(56)

problem of matrices by solving the difference equation

= Ap,. (9)

1+ =
0Py 7 i,y T APy

RLEES
with boundary conditions
Po3 TP15 7 Ppy T P,y

where pij is an element of P and Aj is an eigenvalue of Bm' which are

uniquely determined.to be




_lo_

- =/4§ cos AL G-Lim L

2m

i = I % wme By s iiéllﬂ- , i=1,2,...,m (10)

Similarly, the eigenvalues Ai and g elements can be determined for the

Bn matrix, so that (7) can be rewritten as

Y + A 0 B e ‘;\i -0 =0 , (11)

whose solution gives the elements yij of Y as

= 1 -+
gy = Byg sinln o+ g0
w,. = V/r T (12)
ij i i

The non-linear term of the fundamental equation (5) transformed into
Y-space is now linearised using the Krvlov-Bogolioubov technique. Ignoring
- ¥esonant interaction between modes and retaining the fundamental component

only in the Fourier series expansion of the non-linear term leads to

. 5 1 m n
Yy ¥ w g0 Voo =efic gy ¥ 8,607 (13)
ij iy et By ij 3 kel =1 iJj kg
where
m n
3 ;= 2 3 oL 2
sij(k,z) = z Z Inddkoa, -2 Imn(l,j,k,n)Aij (14)
k=1 ¢=1
and
m n
2 2 s 2
I (i,3,%,8) = ) § p. q.P° q (15)
mn a=1 b=y oi bj ak "b&

In (13) we can ignore all the 9k terms on the right hand side except 9ij'

since the left-hand side has a resonance centred around wij' Thus, (13)

can be re-written simply as
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s i ) _ . _ l Eﬁ
Yig TWyg Yy T eY54 T 3 ey
= 16
uij Sij yij (16)

To determine the stationary wvalues of the amplitudes Aij the unperturbed

solution (12) is substituted into (16) with the assumption that A, . is a

1]
slowly-varying function of time to give
m n
b..=v..[1-% ] ¥ 1 (i,3,k,Dv_, +% I (i,i,k,D)v,,
ij ij k=l 1=1 [n kl . mn ij
where
2
= 7
Vig T Byg : | (17)

To investigate the stabilitvy of the various modes it is necessarv to
aclassify the values of Imn(i,j,k,l). For the array structure it can be

shown that there are five groups of points in both (i.k) space and (j,1)
(50)

space giving the combinations shown in Table 1 . Using this informa-

tion a table of values for all Imn can be constructed and an example of
this is shown in Table 2 for a 3x4 array. The stationary values can be
found by putting

19 =0 , for all i and j (18)
Mode stability is determined by linearising the averaged equations around

the stationary values and investigating the variational equation via the

characteristic eauation. If the real parts of all the roots of the

characteristic equation are negative then the corresponding mode is stable.

For single modes (i.e. only one mode is excited) stability of mode (io,jo)

is investigated by letting

v, ., = 0 for all i,j except i ,] 19)
Kk #0, Uij or j except 1,3 (

The resulting characteristic equation yields a stability criterion that

R (P W R D
I‘“n(. ~2_9 y > % (20)
m o’ oo’ Yo
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Thus the stability of a mode can be determined solely from the (io,jo)th
column in the Imn table such as that of Table 2. In this example it can

be seen that modes (1,1) (1,3) are the onlv stable single modes out of the

12 possibilities.

For non-resonant double modes, two equal amplitude modes are excited

simultaneously, and thus

. = . =0 f 11 ij i ] s
Uiojo UrosO # 0, Uij or all ij egcept i3, and r s,

where the mode amplitudes can be found to be

9 = - ' (21)
iojO Imn(lo,jo,lo,jo) + 2 Imn(lo,jo.ro.so)

Investigating stability via the wvariational equation leads to the

following two criteria for stability

T j R (R,

( ijo! O'jo)

g — T s
Imn(lo'Jo' o']o) £ Imn(lo'jo'ro'so)

= g

(22)

I L A + I i,9 52 g8
mn( rls 0130). mn( r)r &5 O)

e

e - s
Imn(lo'jo'lo'jo) 2 Imn(lo']o'ro'so)

These criteria can be obtained via the Imn table such as Table 2. and in
the 3x4 example it can be seen that the only stable double mode is the
(1,2) (1,4) pair.

In the case of degenerate modes. phase must also be considered and
additional terms are required in the lineariéed equations., Considering

the two degenerate modes to be (a,B) and (y.8) the averaged equations

reduce to
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m n
UaB s EUO‘.B l,- 3 kzl lzl Im(aigrkrﬁ')uk +

l‘ Imn(a'B'a'B)UuB & lni Imn(a'B,‘Yra)U_Y(s =

2
L Imn(a'g'y'é)u'yﬁ cos™ ¢ (23)

b =% eV, s T (0B,Y,8) cosp sing

plus a similar expression for_ﬁyé.
The stationary values for amplitudes and phase are determined by

egquating the first derivatives of (23) to zero to give

2
Imn(a,B,G,&Uu + Imn(a,B,Y,é}(l + 2cos ¢)UY6 = 4

B

' 2
Imn(a,B,Y,6Xl + 2 cos ¢)Uu8 + Imn(Y;é,Y,ﬁ)UYG = 4

Imn(a,B.Y,S) sin¢ cos¢d UY5 = i (24)

Two solutions emerge from (24), one of which is given by

4
aB y¥8& T @rBro® + 3T (a,8,7,9)

(25)

This degenerate mode pair corresponds to a standing wave condition, and
stability analysis reveals that this is an unstable condition for the

two-dimensional array.

The other solution is aiven by

_ 4
Uus - Uyﬁ' Imn(u,B,a,S) + Imn(u,B,Y,G)

6 =+ m/2 (26)
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This mode pair corresponds to a travelling wave condition, and stability

analvsis yields the following criteria for the pair to be stable

Imn(arBrU-fB) > Imn(arBrYra)

Imn(i.j,a,ﬁ) + Imn(i,i,v,é)

! (27
I 1,08 ¥ I_T(a.8,y,0) » ;

for all i and j ewcent (i,3) = (afB) ,(y,8). These criteria (27) can also
be determined from the Imn table such as Table 2 and in the 3x4 array example
it can be seen that the degenerate mode pair (2,3)(3,1) is stable. Its

spatial distribution can be determined using (10) and (26) to be

r2(—3o°) 2(-150°) 2 (-150°) 2(-30°)
T 2(90%)  2(90°) 2(90°) 2(90°) sin (V(24a) 1)
2 (-150%)  2(-30%) 2(-30%) 2 ('15°O)J
and
5 (-1507) =3 2(-30°) 2 (-1500)\
% 4= 2(90%) 2(90%) 2 (90°) 2(90°) | cos(/(24a) 1)
E (-30°) 2(-150°) 2(-150°) 2(-30") (28)

2.2.2 One-dimensional chain

A ladder structure is clearly a particular case of the two-dimensional
array considered above, but has been more extensively treated by Endo and
Mori(48). Thus, thev analysed hoth open-circuit and short-circuit end
conditions, and also investiagated the possibilitv of multimodes comprising
more than two freguencies. Thev showed that under no condition could
more than two modes be excited simultaneously. Non-resonant double modes
can exist in a ladder structure with open boundarv conditions, but cannot
exist for a short-circuit boundary.

For a three oscillator ladder the stability table is agiven in Table 3.
Using the particular form of the stability criterion for single modes

given by (20)., investigation of the columns of Table 3 shows that mode 1

is the onlv stable single mode. Similarly. using stability criteria given
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by (22) and Table 3 shows that the only stable non-resonant double mode
is given by modes 2 and 3.

For a 4 oscillator ladder the stability table comprises the top left-
hand corner of Table 2., From this and criterion (20) it can be seen that
modes 1 and 3 are stable single modes. Similarly, from criteria (22) only
one of the 6 possible non-resonant double modes is stable, being the mode
pair 2 and 4. In these examnles no degenerate modes can exist since the |
mode frequencies are all different.

2.2.,3 ‘Tubular Structure

This tyﬁe of interconnection is shown in Fig. 1 and is relevant to
modelling studies for both the small-intestine (particularly for the duo-
denum) and the large-intestine (colon). An extensive mode analysis has

. : (58]
been performed on this structure by Alian :
The analvsis follows the same procedure as that outlined for the two-

dimensional array. The symmetrical tri-diagonal matrix for the peripheral

direction arcund the tube changes to

3\

r

1+q, - 0
B = - o 1+a \ (29)

m
% ™ \
N N N
N A -q
4 g
0 - l+aJ

The elements of the P matrix and the eigenvalues for the unperturbed

solution are found in an analogous manner, and are given by

l 4 r—
Pil —/é% for i =1,2,...m

- i/1 oo
pi' %+l =(-1) /é% for i =1,2,...m

when m is even
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2 2 i i '
D, ___/.: doe 2ri(3-1) for i=1,2,...m and
m m

. m+1
J=2’3'--- ('—2——)

when m is odd

when m is even |

2 i (4=
: J/: sin gﬂ&iﬂ_}) for i=1,2,...m and
1 m m

. 1
j = (E%?~). eee,m=1,m

o
Il

when m is odd
) m
j= (3 +2)eue, m=1,m

when m is even

R = L o g SRR 2T T
J m

for 3=1,2,ce.,m (30)

Similarly, for the axial direction of the tube the elements of the

Q matrix and the eigenvalues are given by

q; 4 0 for 4 5 152 vews i1t
/n _
_ /2 (2i-1) (§=1)m .
qij J/;-cos o for i=1,2,ee., 0
and j=2,3,...,0
Af =1+ 0 - 20 cos =0T (31)
i n

The equivalent linearistaion and stabilitv analysis follows a similar
procedure as that outlined for the array, with the crucial part being

the establishment of the equivalent stability table. The same criteria
can then be used to determine the various modes which are stable. In the
tubular case, two general stability tables are established depending on

whether the number of oscillators around the periphery is odd or even.



e T e

Both of these conditions are %1lustrated in the following examples.,
Consider firstly a 3x4 tube structure in which each ring has an

oAd nimber of oscillators. The mode frequencies are given in Table 4
from which it can be seen that single, non-resonant double, and degenerate
modes are feasible., The relevant stability table for this example is
provided by Table 5. Use of this table and stability criterion (20) shows
that only modes (1.,1) and (1,3) represent stable single modes out of the
12 possibilities. Similarlwv, using the tablé and stability criteria (22)
onlv one non=resonant double mo@e is stable, being the mode pair (1,2)
and (l,4). Also, regular degenerate modes transpire to be stable usina
Table 5 and stability criteria (27). These modes are the pairs (2,1)
with (341) and (2,3) with (3,3). Thus a 3x4 tubular structure produces
the following stable cnnditions

1) Two single ordinarv modes

2) One non-resonantdouble mode

3) Two regular degenerate modes
Secondly, consider a 4x3 tubular structure in which each ring has an even
number of oscillators. The resulting mode freguencies are given in Table
6 while the necessary stability table is nrovided bv Table 7. Use of
Tables 6 and 7 in conjunction with the stability criteria (20), (22) and
(27) yield the following summarised stable mode behaviour:-

1) Two single oxdinary modes, being mode (1,1) and mode (3,1)

2) One non-resonant double mode, being modes (1.2) and (3,3)

3) One regular degenerate double mode, beinac modes (2,1) and (4,1).
Tn all cases, the amplitude and spatial distribution of the voltaces
throughout the network can be determined bv notina that for single modes

qu Ai 3 Sln(mi 4 ® g $i 3 ), k=1,2,...m (32)
o "o o oo “2"0

ko T Pri,

i T JEMERERE |

where the elements p and g are obtained from (30,31), w is determined
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from (30,31,12) and Ai 3 is given by
. o o '

A, . 2
J
o o

(33)

|
I

/Imn ('lO'jD'lO':ID)
For non resonant double modes the spatial distribution is determined bv

X =P

kL ki

9, A sin (mr + ¢ ) (34)

where the amplitudes A&.j and Ar " can be found from (21) and the
folille] oo

remaining cuantities as before. Likewise, the degenerate modes spatial
distribution is found from

X0 = Dku qRBAaBSln(wT + ¢a8) + ka qRGAwégln (wt + ¢Y5) (35)

Again, these quantities can be found from the given equations plus (26)

to deterniine the amplitudes AaB and Ayé'

2.2.4 Ring Structure

In an analogous manner to the ladder structure, a ring formulation
can be considered as a special case of the tubular structure outlined
above. Further analysis has, however, been carried out on this structure
and will now be summarised. The unperturbed solution is readily shown to

be

Yy = Ak sin(ka + ¢k)

=
I

V{1+a-20cos2m (k-1) (36)
n

From (36) it appears that the mode frequencies can be classified as follows
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class 1 W, e. 2 s o s« =« =« s s« =« «'@& non-degenerate mode

1
Wy = oW
e T
? degenerate
class 2 ° ‘modes (37)

© (1) /2] = w[(m/2)+2})
Ym0+ ... ... . a nonudegénerate mode only
for n even

where [ ] indicates the highest integer number.
Classifying these modes as 1 and 2 it has been shown that no non-resonant
double modes comprisinag mode combinations 1 and 2, or 2 and 2 can exist
as stable conditions. Also, it has been shown that no triple non-resonant
modes can be stable. Berause of the mode pair degeneration shown by (37),
onlv one single mode occurs for an odd number of oscillators in the ring,
and this is always stable., For an even nimber of oscillators the additional
single mode can also be demonstrated to be stable. Stability of the
degenerate modes has also been determined with the additional situation
that an irregular degenerate condition arises when the number of oscillators
is a multiple of 4, Such degeneracy is given by mode pairs w =

(m/4)+1

w(3m/4)+l' The phase between two components of this irregular degenerate
mode cannot be determined, and hence no phase synchronisation can be
observed.

These concepts can be clarified by considering two examples. For a
ring of 4 oscillators the stable modes are illustrated in the vector diagram
of Fig. 2. Two sinale nondegenerate modes occur since n is evén, and one
irregular degenerate mode pair exists since n is a multiple of 4., For

this latter mode, although adjacent oscillators have an arbitrary phase

relationship, opposite oscillators are locked in anti-phase (i.e. 1 with 3.
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'

and 2 with 4). For a ring of 5 oscillators the equivalent vector diagrams
are shown in Fig. 3. Since n is odd, only one single mode exists, while
two regular degenerate mode pairs occur. In a ring connection the phase
between a@jécent oscillators under degeneracy is given by ﬂ:3600t/n, where
t is an integer, and n is the number of oscillators in the ring.

2.2.5 Coupling including Time Delays

In the treatment so far it has been assumed that couplina
between oscillators was via an inductive component, i.e. low-pass COnditiO;So
Dual results can be nbtained for the high-pass case, i.e. capacitive coupling
under the assumed conditions of small non-linearity. The matrix Krylov-
Bogolioubov mode analysis can bhe extended to the case of time delay (A)
inserted in all thé counling pathn(53). In the case of a ring connection
with coupling delay the unperturbed solution is identical to that given in
the previous section. The stability of the various modes is, however,
affected by the presence of the delay. The necessary stability table can
be obtained as a special case from the tubular structure given by either

Table 4 or 5 for rings of 3 or 4 oscillators. For non degenerate single

modes, stability is found by investigation of the elements

A
L F
bi =e(l - %gil Lﬁ) - a;—sln (miA) for
121 2:6 & w00 (38)
4 By
where U =(——) {1 - —— sin (w A)} (39)
Logy i 1

and g,, are corresponding entries in the stability table.
il 9

If all bi are negative then the mode is stable., The stability of the

other single mode miN/2)+l can be determined in a similar fashion. The
frequency and spatial dependence for mode wy is given by
A
il
-9 o L . .
X, /{1 (Ewl ) sin (mlA) sm(mlﬂ} for
k=1,2,.0.m (40)

Also, the other mode g (for even N) spatial dependence is given by

(N/2)+1



= 9] =

A
*igzgliij sin (w

(N/2)+1

x = 26-10511 - ¢

k )

A) sin(w

(N/2) +1 (N/2) +1"

for k =1,2,...m (41)

The stability of regular degenerate modes is determined by the signs of

bk and b&—i+l being negative, where
B S 20= M amy Y T Fkmeasy e’
- %E- sin (ka) :
k
Am—i+l
P T C T o) esey) wean) o si (g 0) (42)

The spatial distribution of the regular degenerate modes is given by

A

i+l
=2 - i i +
X, Y{1 ——— sin (wi+lA)}Sln(mriT i)
i+l
2ﬂki
¢ki = - i k=1,2,...m and

i=1,2,... [:(5'2'—1—)};1#1\1/4 (43)

The irregular degenerate modes occur when m is a multipe of 4 and their
stability is determined by the signs of b§ being negative, where

A
k
b! = - g - — sin(w A) for k # (m/4)+1,
k Wy k

(3m/4+1) (44)

The corresponding spatiai mode is given by

k.
= —_ +
X, 2 cos > sin (mDQn/4)T ) + \
. Tk,
2 sin — sin(w 1) for k =1,2,...m (45)

2 D(m/4)

¢ undetermined
Examples of the variation in amplitude, frequency and stability of these
various modes with increasing time delay are given for a 3 oscillator

ring in Fig. 4 and a 4 oscillator ring in Fig. 5.
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2.2,6 Oscillators with fifth power characteristic

Instead of the conventional third power conductance in the non-linear

van der Pol oscillator, the negative conductance can be extended to be

5

3
I(V) =g, V= 9, v+ 9 v, glr93rgs> o (46)

1

with this characteristic it has long been known that zero becomes a stable

state, and that one other limit cycle condition is also stable. The zero
i

stable state has been of considerable interest in modelling the electrical
activity of the large intestine (colon) where periods of rhythmic electrical
oscillations have appeared to be interspersed with sections of electrical
'silence'(57)° Coupled oscillators of this type have been hypothesised as
a model to explain the phenomena of dual rhythms and electrical silence in
the human large-intestine (4). Two coupled fifth power van der Pol oscil-
lators were analysed using the matrix Krylov-Bogolioubov method by Datardina

(52)

-and Linkens using a differential equation in the form

e 2 4 , 2
¥+e(b-cx +dx)x+wx=0 : (47)
They showed that the zero state is stable for all conditions, and that

single modes are stable provided that

¢® - 8bd > 0 (48)
Unlike the third power case for which a two oscillator case cannot produce
a stable non-resonant double mode, it was also found that a stable double
mode can exist provided that the following inequality is satisfied

2 f 2 2
|53.33b@ - 6¢”| < ¢ V36c”~ 320bd < |160bd - 6c (49)

The analysis has been extended to consider a ladder connection of such

(58

oscillators ) including also a parallel loss conductance across the

coupling inductors. In this case the basic matrix equations become

" : 1 1
X + B X==gC X + — gffX -— eX
n n C

3 5 “%f
X = [kl,xz,...,xan
x = [0, x0T (50)
e = [xS x5 x5]T
£ g g




-

In (50) parameter €(=gl /_ILLO/C(L+LO)} << 1) indicates the degree of
non~-linearity, and parameter B(=3g3//(5glg5) determines both amplitude
The matrices

and threshold conditions for the modes.

i :
Bn d Cn are given by

r 3 { 3
B = - o) = -
. 1 o Cn l+aG OtG (0]
= 1+ g
b o, -0 142
\ G h
* N N % N
N ~ he N,
A e
A 1+o —a ~ 1+2a -Q
. s G
|0 —aL 1 0 —uG _ l+aG

The coupling parameters aL(O < g, < 1) and aG(O < €O, << aL) are given
as follows

a,. = L/(L+L ) g0 = (52)
o G

GY{LL /C(L+L )}
L o [e)

Using the linear transformation method the sysfem can be decoupled into
canonical form. The eigenvalues (AK) and eigenvectors (pij) for Bn are
identical to those given for the ladder by equations (10). Similarly,

matrix Cn can also be diagonalised by this transformation yielding eigen-

values given by

(k=1)m)
G-

Y T 1+2(1 - ¢ - G s k=1,2,...,n (53)
The resulting canonical matrix form can be written as
e
1 .
Y+A Y=-el ¥ +2eB0- ¢l
n n 3 5
An: diagonal matrix with elements Ak
Fn: diagonal matrix with elelemtnsyk
n "~ T T
v = lul,uz,...,un] = P XC
T
Vo= [vpevyeeenv ] = By (54)
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The unperturbed solution is obtained as previously, while equivalent

linearisation of the non-linear terms v and V in (54) can be rerformed by

3
ignoring harmonics which appear in the Fourier expansion of X, and xi.
The linearised elements of v and V can be written as
n
; 3 3
M, = E. V. TE; = F Gua VU, 5 y g]_t i=1,2,.44)n
i it i i T 29%: "% T3 a1, xR tf
2 15 2
v, =r.¥, iz, ==h v. += J hjt y +
i i i 8 "ii 1 8 e, o t
n n n
v15 15 ’
a ) hei Y Y B Y ¥ hise v, 4 5 i=1,2,0..,n (55)
t=1,t#i s=1 t=1
s#i,t#1,s#t
The linearised equation is thus given from (54) and (55) by
V.t ALY, sel-y, +EBE -2z y.) (56)
YT M¥y TEIT Y YRR Tty Yy

The averaged equation obtained by assuming the amplitude Ak = /Gk and

phase ¢k to be slowly varying functions of time are given by

ce
It

1 i )
-c U - = s
g =Y by -3 BE F gL
$.= 0 ,  h= 1,000 (57)
In (55) the g,h and h' terms are defined by
n
2 2
g..= ) P B,
i3 kel ki kj

§ - B

; : (58)
s—p St =] sk

li
| ~18
(S

P.. *h!.,=
Pri Py 5 Bigx
These values can be calculated from (10) as before and are used in the
stability determination. The values for n = 2,3,4 are given in Table 8.
The zero state is stable for all conditions of parameters. The

stationary amplitudes of single modes are obtained by equatingy =0

in (57) to give

2
U = h -+ - 8+ h
. (gpp/ pp)(B VIR % pp/gpp}) (59)
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Stability analysis via the characteristic equation leads to the following

criterion for stability of single ordinary modes

2 2
= - > i =
S; =Q *R B +RB/B -8)>0,i=12,...n (60)
where

. =8(y, - 3h. v /h )
R 13 ip'p’ pp
R, = [2 h ) (3h. h - 29, )

1 gpp/ PP 1pgpp/ i) Jip
S=8yh /

Yo pp’ Fpp

General conditions are more difficult to obtain for non-resonant double
modes, but investigation of the linearised characteristic equation results

in the following criteria for double-mode stability

I +I <0,I I =-I I >0
PP aq PP 99 Pg gp
I,; 0 ,1i=1,2,..,n; 1 # pg (61)
where
1 1
= - - = - = +
Ty E(Yk 5 ngPIJP 2 ngq\)q
3 2 3 2 3
v e W, Pl oW ) B S 12...,m
8kp 'p 8 ka g 2kpg p q ' '
3 3 2
I =-€e(-=Bg v +=h vy v +=h uv’)
pg 2 7pg p 4pg p g 4gp p
Stationary amplitudes are calculated as usual by setting® = 0 in (57),

but in this case no general analytical expression is obtained, and numerical
methods must be used to find the v values. These values can then be
substituted in (61) to determine mode stability.

For n = 2 one double mode occurs, whose stability depends on the values
of Band 9 This is shown in Fig. 6 where the shaded region indicates
stability. For n = 3, there are no stable double modes, whereas for n=4
two of these modes are stable, being modes 1 and 3 or modes 2 and 4. The

stability zones tor these modes for varying: B and aGareportrayed in
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Figures 7 and 8, which show that the modes 2 and 4 do not have an upper
bound on B for stability.
Investigation of single mode stability for n = 2,3,4 yields the

following summarised results
n=2 a) mode 1 : stable region 82 > 8

b) mode 2 : stable region 82 > 8(1 + ZaG)
n =3 a) mode 1 : stable region 82 > 8

b) mode 2 : stable region 82 > 8(1 +_aG)

c¢) mode 3 : unstable for all B
n=4 a) mode 1 : stable region 82 > 8

b) mode 2 : stable region

(80/9) (1+(2 - ¢§3uG) < 82 < 16(1 + 2(2/541)&6)2/(1 + (5/542)aG)

c) mode 3 ; stable region 82 > 8(1 + 2aG)
d) mode 4 : stable region
2
(80/91+(2 + V2)ay) < 6% < 16(1 - 2(2/Z-1)ay) /(1-(5V3-2)a)

2.2.7 Fifth power oscillator chain with coupling delays

Mode analysis has been performed on a structure which combines the
coupling delays of section (2.2.5) with the oscillator dynamics of the
previous section (59).

The two oscillator case has been fully analysed and the following
rYesults obtained.

The =zero state is stable if the following inequalities are simul-
taneously satisfied

- g - 9—-sin(w A) <0
wl 1

LY T a1 (62)
w2 2

where the parameters refer to a governing differential equation structure

given by




iy

i 2 4 .
+ -— + -_— —>
x + eg(1 Bx, + xl)xl X, T ey, 0 (63)

For typical values of £ and o involving weak non-linearity and weak
coupling, stability criteria (62) show that the zero state has alternate
stable and unstable zones as the delay A is increased. Thus, the
structure switches between 'hard' and 'soft' oscillator characteristics
as the coupling delay varies.

There are two single modes representing in-phase and anti-phase
synchronisation with stationary amplitudes Al and Az. The in-phase mode

amplitude A, is given by

g .2 1 4 o . _
- e(l - 5 Al + 37 Al) - wi Sln\(mlﬂ) = 0 (64)

This mode is stable under the inequalities

8 Al2
i - — 4 =
€ 8 16 1= 8
B _2 3 4 o .
= _- —— E St et <
e(l 4 Al 33 Al) + " 51n(w2A) e} (65)

2

The anti-phase mode amplitude is given by

B 2 1 .4
- — — +
e(1l 5 A ——-A2

g 55 ly) +z——sin(w A) =0 (66)

5 2

Similarly, this mode is stable provided

B 2 3 .4 o ;
e(l - 4 A2 -+ 55-A2) 51—51n (wlA) <0
B 1 2
- e b e
£ 8 16 A2) <0 (67)

One non-resonant double mode is possible for this structure, with

stationary amplitude Al and A2 determined from the relationships:-

g, 2 2 1 4 4 2 2 o
b= — s - Ay =
e(l 8(Al+2A2) + 32(Al+3A2+6AlA2}) 5151n(w1 ) 0
B 2. .2 1 4 4 2 2 a
— — — — A =
e(l 8(2Al+A2) + 32(3A1+A2+6A1A2)) + 5—51n(m2 ) 0 (68)

2
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Investigation of the characteristic equation for this double mode
leads to the following stability criteria
+
Jll J22 < 0

J11922 7 91295, > © (69

where the Jacobian elements are given by

Jll = -g(1 - g(Aimz) + ——(A +A;l+4 AlAz)) - ?—J— sin(mlA) l
dyy = el %ﬂi * Ig{Ai * Ang))

3, = e (- %—3 " IE{A A2 + A ))\

Iy, = —e(l - E{A2 + A )+ ——(A + Ag ; 4A )) + Zsin(l) (70

2
For typical small values of € and o it can be seen that the double mode
remains stable only for low values of coupling delay A. This is consistent
with the concept of switching from a 'hard' to a 'soft' oscillator charac-
teristic with increasing delay, since two coupled third power oscillators
cannot support a stable non-resonant double mode.

2.2.8 Fifth Power Tubular Structure

The unperturbed solution for this case vields the same eigenvalues
and eigenvectors as for the third power tubular structures and these are

~given by (30) and (31). The equivalent linearisation is lengthy in this

case and is given in detail by Alian(SS). The averaged equation is given
by
: 1 b
U = — el - = =T 71
i Wiy -3 By gy 7L
where nij and Cij are given by the following relationships
3 @ n 5 1
S 2
n.. =5 I (i,3,k,8 - =1 i,5,1,
= kzl Ezl i b )Ak2 , mn(l j,l,j)Aij (72)




T .
. m n
5 _i* i 2 15 B 2
g 5 3 +  —
ti9 T8 Tun Arae Iy + g kzl le Ty (2r3 R
m n
1 *
* == Z Z I (k,8,1,3) v..v
4 kel b =1 mn ij k&

m n m n o
+ — E E y Z Imn(irjrkrzlrls)u

a 4 (73)
k=1 2=1 r=1 s=1

kll)rs

In (72) the values of Imn are identical to those for the third power tuber

*
as illustrated for the 3x4 structure in Table 5. The value of I is given
mn

by
" T .2 4. % .2 4
1 3k, = az_,l (p_,) (p_y) bzl (a0 (a )
* . * .
= Im(l,k)In(J,ﬂ) (74)

* *
Values of Im and,In“can be determined from the elementof the P and Q

*k

matrices given in (30) and (31). Similarly, Imn can be written as
* % . % . * %
T Ge3k.2,r,8) = I (i,k,x) I (3.8,s) . (75)
where
o T 2 2 2
I i =
- (i,k,x) azl B P 1P

* %

. 2 2
+ In (3,%,s)

e o
Zlquqbe s

b

which can also be determined from the P and Q matrix elements. For a

*

4(j,R) are given in Table 9. Use of

*
3x4 example values for I3(i,k) and I
*
these tables results in the complete Imn Table 10 which is used in
determining the mode stability as well as the stationary amplitudes in
(71).
Single mode stability has been investigated using the variational
approach and produces the following stability criteria
F..(i ,3) +H, .1 ,] )82 +H,.(i ,J)8 82 R > 0
- ’ : & .Y - R, .
il o Jo ij lo']o ij o'Jo i3]

o O

for i = l,2,...,mj j=l,2,...,n (76)
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where the F,H and R terms are given by
I (i,3,i 3)
mn o”o

F,, (i j =1-3
'](lO’]O)

1 I (i lj ri rjj
mn @] (@) (o] 5

¥ .
8 1 (i fJ o1 3 0)
R = m O "0 o "o
i z . .. .
T < N
m o o O "o
I (G ,3 ,1i .5) . ‘
B ,J) =% 3722 0 0 3% 5y 5
ij o "o ; ;B . mn o "o
I (l r] 11 r] )
m O "0 0 -o

3 (i ;j ri rj ) ' -
Q o O

mn o) Yok . )

T ~ 2 Imn(l,j,lo,jo)} (77)
T E 3 .4 .90

mn (@] (@] (@] (@]

Stability is thus determined by use of the two stability tables for
Imn and I;n to find the F,H and R quantities in criterion (76). For a
3x4 tubular example the following single mode stability conditions can
be determined

medes (1,1)(1,3)(3,1)(3,3) stable for 82 > 8

modes (1,2) (1,4) (3,2) (3,4) stable for 8.8889 < 82 < 16.
The remaining modes are unstable, and thus this particular case supports
4 stable modes in the pParameter range 8 < 82 < 8.8889, and 8 stable modes
in the range 8.8889 < 62 < 16. The corresponding stationary amplitudes
are given by

12(g +/8% - g

Yog = Uy =
Uu.,=U_,=7.2(8 + /52—8.8889)
12 14
/o
U3y = U333 = 8B +/87-8)
u.. =u = 4.8(g + 82—8 8889) (78)
32 34 S :

The manipulation of the characteristic equation for determination of
: ; ; ; . (55)
non-resonant double mode stable is also lengthy and is given by Alian .

The necessary stability criteria are summarised as follows
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J, . (L ,3) +4d (r ,5) <O
iJ o "o ¥ le]
o o o0
i i j - - J 'S i ] >
Ji J (lo’jO)Jr s (ro o) iJ (ro O)Jr S (lo'jo) H
fe) [o}e) o o [N
J,..(1,3) <0 (79)
3]

where the various Jacobian elements are given by

J. . (1,3) = - el - %1 (i,§,i ,5)v . -
lj( pj) E{ 128 mn(l.rjylorjo) i
Q
W8T (1,40 .5 JU $ 2T (4,4 Y e 4
mn O o r s 8 mn o Yo 1]
o O [elNe]
3 * ) 2 3 ** }
= T i, ;S 4 = T T L g )
8 mn(l ToX 8y 5 2 mn(l’j’lo s ro'so) b j ,gr o (80}
o 0 0" o odo
i : S = - - i j 7 .+
i (rO’ O) ef{ ;:Blmn(lo’jo’ro O)Ui §
o 0 o O
3 * ) 3 * 2 }
I i i +T 4,8 . + % I S 41,3 .
* mn (lo'jo' o' o’ Vi j Y% g 4 mn(ro o'lo jo)Ui J (81)
oo o o o o
and Jr < (io,jo) is obtained via interchange of suffixes in (8l). As for

o o
the case of a fifth power chain there is no simple analytical expression

for those stationary amplitudes,z and hence numerical methods must be used
to determine the stationary amplitude values before the stability criteria
(79) can be used to investigate the non-resonant double modes.

3. Coupled Oscillator Analysis via Harmonic Balancing

In parallel with the matrix linearisation mode analysis pioneered by
Endo and Mori and applied to many situations as summarised in the previous
sections, a number of further concepts have been elucidated using classical
harmonic balancing techniques . 1In many ways these studies have been

complementary to the Endo and Mori approach since they are capable of
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investigating situations which violate the assumptions of the matrix
linearisation method. Specifically, these assumptions include very
small non-linearity, equal frequencies for all uncoupled oscillators,
and complete synchronisation. It will now be shown that these restric-
tions can be relaxed using harmonic balancing.

Basically, harmonic balancing comprises the assumption of oscillatory
solutions containing one or more spectral components which may or may not‘E
be harmonically related. The assumed solutions are substituted into the
~governing equations for the oscillators, and time is eliminated by equating
terms of the same frequency. In this way, a number of noﬁwlinear algebraic
equations are obtained whose solution gives all the required information
about frequencies, amplitudes and phases. In all but the simplest cases
these non-linear algebraic equations must be solved numerically using
standard hill-climbing or equivalent methods.

An early paper by Linkens(6O) using this technique was motivated by
the requirement in gastro-intestinal modelling to have a chain (i.e.
ladder) of mutually coupled non-linear oscillators. In particular, it is
known that in the duocdenum section of the human (and other mammalign (small-
intestire synchronisation occurs. However, it is also known that the
intrinsic (i.e. uncoupled) frequencies are not equal, but have a decreasing
gradient. To analyse such a model using the matrix linearisation method
is not possible. It was shown that harmonic balancing could deal with
such a situation provided that care was taken in setting up the initial
conditions for a stable mode under equal frequency conditions. Subsequently,
parameter scans can be made varying the frequency gradient or the degree of
non-linearity using the results of a previous run as the initial conditions
for the next hill-climb. Using this approach, convergence to a correct
minimum is usually obtained easily. With frequency mismatch between

oscillators a non-zero phase shift occurs during synchronisation. This
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locked phase shift increasesrwith either increasing frequency mismatch
or decreasing coupling strength. In the limit it approaches the
theoretical maximum of 90O when synchronisation is lost altogether,
although for larger degrees of non-linearity maximum locked phase shift
bétween oscillators is about 300.

The majority of matrix linearisation mode analyses have involved a
low-pass structure (i.e. inductive coupling alone). 1In physiological
modelling, the equivalent circuits are usually based on coupling struc-
tures involving ionic conducténces and membrance capacitances. The
harmonic balance method has been applied to two coupled third power
oscillators with a parallel RLC coupling network(6l). For purely resis-
tive coupling only one mode is stable, whereas for inductive or capacitive
coupling, both in-phase and anti-phase modes are stable. 1In the case
of equal uncoupled frequencies and symmetrical coupling (assumed throughout
the matrix linearisation mode analysis) the algebraic equations have an
analytical solution; and stability can be determined via a perturbational
approach. Using this approach a stability space was determined for the
anti-phase mode for general RILC coupling. This is shown iﬁ Fig. 9 where
the zone between the two contours represents instability.

A similar analysis was performed for the case of general RLC coupling
together with a pure time delay. The physiological motivation for this
is that interactions between biological oscillatory subsystems such as
the respiratory cycle and the cardio-vascular blood pressure reflex are
mediated via neural pathways which involve significant time delay. Also,
the form of coupling may well include output and rate of change of output
terms, which is equivalent to RC coupling in equivalent circuit notation.
Again, in the case of two such coupled oscillators, mode stability can
be determined via a perturbational approach. Since coupling delay affects

the stability of both in-phase and anti-phase modes, two stability spaces
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were determined with axes comprising output, output rate and coupling
delay parameters. These are shown in Fig. 10 (in-phase mode) and Fig.
11 (anti-phase mode). A series of rotating planes is obtained as delay
is increased giving alternative mode stability, but with the areas
decreasing for very large delays. This indicates decreasing likelihood
of mode stability as delay increases. l
It was observed that the synchronised frequency varied cyclically
with increasing coupling delay with a sinusoidal type shape. As the
degree of non-linearity increaées (i.e. ¢ larger), however, the sinu-
soidal shape becomes increasingly skewed giving wider zones of delay for
which both modes are stable for fixed RC coupling. To analyse this
further requires the incorporation of odd harmonic spectral components
in the assumed solution. This is easily feasible with the harmonic
balancing approach, and has yielded ét interesting 'jump' phenomena( 2).
Variations in entrained frequency, amplitudes and phase shift with inc-
reasing delay are shown in Fig. 12 fore = 1. A hysteresis characteristic
occurs for delays near to 11.5 or 18.5. This causes a classic jump pheno-
menon whereby two possible anti-phase modes can exist at a given set of
parameters. The particular mode excited will depend on the past time
hisotry of the oscillators. Although not shown on this figure, the in-
phase mode is also stable at these values of coupling delays. Thus, in
the hysteresis region there are three possible modes which are stable.
The jump phenomenon has been verified via digital simulation, together
with the existence of three stable modes at one value of coupling delay.
These results were obtained using only a third harmonic extension to the

assumed solution, but the simulations verified jumps at the narrow hystere-

sis region at a delay of 11.5.
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Since the matrix linearisation method assumes only a fundamental
component in the oscillator outputs, symmetrical waveforms are considered.
In biomedical oscillations it is commonplace to find waveforms which are

.asymmetrical. Again, harmonic balancing can easily be extended to include
odd harmonics in the assumed oscillator solution to allow for asymmetry
in the time waveforms(63). A dc component was also allowed for in the
oscillator output, and results obtained showing the effect on harmonic
content and synchronised frequency as the dégree of asymmetry increased.
Digital simulation studies also showed that increasing asymmetry decreased
the likelihood of obtaining two stable modes.

In gastro-intestinal rhythms and other biomedical systems conditions
of complete synchronisation do not always exist. Thus, in the human small-
intestine, only the top end of the duodenum is completely entrained. In the
lower regions, conditions of almost-entrainment occur causing fluctuations
in amplitude (and/or frequency) referred to in the medical literature as
'waxing and waning'. Even in the top section of the duodenum periods of
regular amplitude fluctuations scometimes occur, and it has been hypothe-
sized that these might correspond to simultaneous double modes often re-
ferred to in the previous sections(64). Spectral analysis of these data
certainly suggest the presence of two frequencies, rather than the three
or more that would be expected from amplitude and/or frequency modulation.
Further down the small intestine, however, 'waxing and waning' appears to
be either a 'combination tone' or modulation phenomenon. In their early
work on forced weakly non-linear oscillators, Appleton and van der Pol(g)
had noted the experimental existence of combination tones and produced a
subsequent analysis of the condition. In this analysis, two components
are assumed to exist simultaneously in the oscillator output; one at the
external forcing frequency, and the other at the self (i.e. intrinsic)

frequency. A number of factors have encouraged the extension of this

analysis to include other effects.
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In a simulation study on mutually coupled oscillators under almost-
synchronised conditions it was found that combination tones only occur for
very small non-linearity and very weak coupling.For moderate non-linearity
and coupling, amplitude and/or frequency modulation conditions exist

. (65)
depending on the values of the parameters . It was observed that when

the oscillator spectrum contained 3 major components, the frequencies were

such that for two oscillators the assumed solutions could be taken to be

= + IS
X, Alcos(wBt al) + Blcos(wlt + Bl) = Clco (m2t + Yl)
= + +
x2 Azcos(mlt a2) + Bzcos(wzt + 82) + C2cos(w4t y2)
where w3 = Zml . mz
and m4 = sz = wl (82)

In (82) the frequencies wl and wz correspond to the predominant self-

components which may not equal the intrinsic frequencies. This is because

the oscillators are 'pulled' towards each other in frequency as the coupling

increases. Thus, Wy and m2 must be unknowns in the harmonic balance
equations, unlike the fixed values usedby Appleton and van der Pol. The
third additional spectral component in each oscillator is a sideband ref-
lected about the major component. Using (82) as the assumed solutions for
the two oscillator case produces a set of 12 non-linear algebraic equations
whose solution gives all the amplitudes and phases of the spectral

components. Using this approach, conditions of almost-synchronisation have

(66)

been analysed for varying nonlinear parameter, and RLC coupling parameters
An example of this is shown in Fig. 13 for varying resistive coupling.
From this figure it can be seen how the oscillator frequencies are pulled
together as coupling strength increases. 1In contrast, Fig. 14 which shows
equivalent results for capacitive coupling, indicates that instead of

being pulled together, the individual frequencies are diverging in this

|
|
|
-
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case. The frequency pulling or.repelling correlates with one stable
mode for resistive coupling and two stable modes for capacitive coupling.

A further extension to non-linear mode analysis has been made via
harmonic balancing for the case of sub-harmonic synchronisation of
mutually coupled oscillators. Although this condition had been analysed
for a single forced oscillator(67}, it is only recently that the more
complex condition of bidirectionally coupled oscillators has been invest- |
gated. In this case several components must bé assumed to exist in each
oscillator, for which extended h;rmonic balancing is suitable. For example,
in the case of 3:1 sub -harmonic synchronisation the lower frequency
oscillator can be assumed to contain terms in w and 3w, whereas the higher
frequency oscillator may contain terms in w(injected from the neighbouring
oscillator), 3w and 9y (third harmonic of its self-component) . An example
of the variations in entrained frequency, amplitudes and phases for inc-
reasing output coupling strength is shown in Fig. 15, which was obtained
using hill-climbing on the non-linear algebraic harmonic balance equations.
In the case of 3:1 sub-harmonic synchronisation it was found that the
assumed solution mentioned above was insufficient to describe the spectrum
in certain regions of the coupling space(63). Under these conditions,
further harmonic components would be required to obtain accurate results,

leading to a larger number of equations for solution via hill-climbing.

4. Experimental investigations

A wide range of experiments has been conducted on coupled oscillator
models for the structures considered in this paper. For gastro-intestinal
modelling alone, ladders, arrays, rings and tubes have all been studied
using a number of different individual oscillator dynamics. Mention will,
however, only be made here of experimental studies which relate to, and
support, the non-linear circuit mode analysis described in this paper.

In this area, two approaches have been made. One is via computer simulation,
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either in analogue form for earlier studiea or in digital implementation
for more recent work (particularly those involving time delays). The other
method has been via electronic implementation, using diode circuitry and
operational amplifiers to approximate the polynomial negative conductance
terms in the van der Pol equivalent circuit. Fig. 16 shows the circuit
diagram for one implementation which allows for the fifth-power conductance
approximation. Fig. 17 shows a 16-oscillator experimental rig which has
been used to investigate some of the mode behaviour previously considered
analytically. Each oscillator can be tuned in frequency using a variable
inductor, while the degree of non-linearity can be adjusted via a
potentiometer. An 8-bank switch on each oscillator allows selection of
3rd power/5th power characteristic,rggistivg loading, and RLC coupling
components in two dimensions. Use of external patch cords allows struc-
turing of oscillators into ladders, arrays, rings and tubes. Oscillator
read-out onto a multi-beam oscilloscope is facilitated via a 1l6-position
switch which selects a read-out pattern of any oscillator plus its adjacent
four neighbours.

Using an electronic emplementation, nonresonant douﬁle mode behaviour
has been verified for a 3-oscillator chain(49). Similarly, the degenerate

49
mode condition was observed in a 3x4 array structure( ). The irregqgular

1
been observed in a 4-cscillator r:i_ng(5 ). This condition had been observed

previously in an analogue computer simulation in colonic electronic activity

(4)

modelling - These irregular degenerate modes were not observed in an

electronic implementation when coupling delay was introduced via a dleay

time(53). It was suggested that this was due to approximations involved

in the circuitry representing the mathematical equations,
Analogue and digital computer simulation studies have verified nearly
all of the theoretical predictions reviewed. This includes the existence

2)

\
degenerate modes peculiar to a ring with a multiple of 4 oscillators have

. ; . (5
of double modes in a fifth power 2-oscillator structure , and good
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correlation found between analytical and experimental values for mode

and
frequencies{spatial amplitude distribution for most of the structures
considered. Stability zones under parameter variations have also been
verified, giving good agreement with theory for non-linearities of €
=0.1 in the normalised van der Pol equation. One aspect of mode behaviour
not covered in the analysis is the relative ease with which certain modes
can be excited. This is of particular interest in gastro-intestinal
modelling where different rhythms occur in the colon for varying periods,
which have been quantified as percentage activity(57)- To investigate
likelihood of mode occurence, analogue simulations have been performed to
determine regions of attraction planes for a two-oscillator structure with
the two variables being the initial conditions of the oscillator outputs(69)
These planes were established for different types of coupling (i.e. R,L
or C), different dynamics (i.e. 3rd or 5th power) , and varying degrees
of asymmetry. It was shown that the likelihood of particular mode inci-

dence is strongly affected by these factors.

5. Conclusion

Knowledge about mutually interacting oscillatory systems has been
_growing steadily during the past few years. One strong motivation for
this is the interest in such non-linear structures for a number of bio-
medical applications. A particular case is the electrical activity of the
gastro-intestinal digestive tract which can be modelled as a set of inter-
coupled non-linear oscillators. Chains, arrays and tubes are all of
interest in this particular field of application. It has been shown in
this review paper that all of thes structures have yvielded to theoretical
studies via the method of non-linear mode analysis. Pioneered by Endo and
Mori this approach uses a two-stage process comprising matrix decoupling
followed by equivalent linearisation based on the Krylov-Bogolioubov

classical approach for a single oscillator.
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Non-linear mode analysis has revealed a complex pattern of mode

behaviour involving numerous types of mode behaviour
unquantified before. Thus, prediction amd experimental

verification has shown the existence of single modes, non-resonant double
modes, regular degenerate modes and irregular degenerate modes. This
review paper has briefly expounded all of these conditions for all the
structures mentioned above, giving the necessary eguations and criteria
from which mode amplitudes, spatial distribution and stability can be
determined for any order of system of coupled oscillators of this type.

The parallel development of an application (i.e. gastro-intestinal
modelling) giving the motivation, and a theoretical technique (i.e. matrix
non-linear mode analysis) illustrates the way in which scientific advances
can be accelerated when both components are present. It is noteworthy
that such advance has been characterised by a multi-disciplinary research
effort involving different groups of workers in different countries working
in the areas of electrical circuit theory, systems engineering and
biomedicine.
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. 1 2 3 4
4
1 V2-2a vV 2- ¥V 2a V2 Y 2 + vV 2a
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Table 4_ Angular fregquencies mij of the tube oscillator system
with m=3 and n=4.
1 2 3
1 /2-2a V2-a V2+a
2 V2 V2+a ¥24+3a
3 V2+2a ¥2+3a V2+5a
4 V2 V2+a V243a

Table & aAngular frequencies m-ij of the tube oscillator system

with m=4 and n=3
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8/, we/, 21/, 8/ we/y ey 8, we/, 2y, 8/, v/,
ve/ 8/p e, v, 8/, e, e, 8/, e,  vel, 8/
T P /A T TP TR TR TA TS
® ~ - ® ~ ~ ) o — @ ~
b o 2, 5 = & il o o 2




N=2
1,72 1/2 JT1/4 1/4
[gi.]: [hi.] =
I hy2 1/2 J 1/4 1/4
N=3
1/3 1/3 1/3 . 1/9 1/6 1/6
[gij]= 1/3 1/2 1/6 [hij] = 1148 128 §/i3s
1/3 1/6 1/2 1/9 1/12 11/36
N=4
1/4 1/4 1/4 1/4] [1/16 3/32 1/16 3/32
1/4 3/8 1/4 1/8 1/16 5/32 1/16 1/32
_ [he.] =
(9550 =174 174 1,4 174 i3 1/16 3/32 1/16 3/32
L1/4 1/8 1/4 3/8] l1/16 1/32 1/16 5/32
B2,1,3 = P4,1,3 = 1/16, P1,2,4 = B3 5 4 =1/32

Table 8. Fi{:"k Power Sf‘a‘oi\il'g Ferncs '?cy N=2,3,4




-

E;lr—n

1 1 1
3 & 3
1 11 1
9 36 6
1 1 1
9 % 3
S /.
LIJS (L, k)
11 1
E 16 B
1 1
7 15 °
1 1 1
8 1 B
1 1
O 3 3

P (k)

Table 4

B 1 1 1 1
9 6 6
1 1 1
9 4 36
11 u
y 9 12 36

] = -
1 3 1 3
16 32 16 32
1 5 1
16 32 16 32
1 3 1 3
16 32 16 32
1 1 1 5
16 32 16 =

gy (s
4y

Stability Table fo+ wm,n =3,4




"290) © wol p=u pue g=w waya(T*N‘[‘T) :w;_mo

sanTeA ayg

Q] @1qel

8/S
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8/¢€ v/t 8/¢€ /1 ve/1 9e/1 ve/1 9€/1 9/1 6/1 9/1 6/1
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Fig. 1 Tube structure with an arbitrary rumber of oscillators

in cach ring and an wrbitrary nuvnber of rings
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nondegenerate mode Wi=/i-d
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irregular degenerate

mode wi= wy=flsd
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L.% X, X,

nondegenerate mode ws={1+3d
(<)

:h .2... The phase diagrams of stable modes for a four-coupled oscilla-
sa tor ring.

fo T S P PRl I8

nondegenerate mode wia/l-d

(a)

-V
regular degenera1:§ mode
wo, =1+ d-2dCOS(27/5)

(b)

regular degenerale mode
Waa=y/ 1+ d - 20COS(4TL/5)
(c)
?9 3. The phase diagrams of stable modes for a five-coupled oscilla-

tor ring. (b), (c) A right-handed rotation. Of course, a left-handed
Tolation is also stable.
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Figure 10. In-phase mode stability boundaries for a parameter space of
output, output-rate and time-delay. NB. Solid line denotes advancing boun-
dary front. Dotted line denotes receding boundary front.

Figure 11. Anti-phase mode stability boundaries for a parameter space of
output, output-rate and time-delay.
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PHASE BB1 rad(x 1)

AMP B1 (x 1)

AMP Al (x 1)
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