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Abstract: We have performed Helium (He) ion implantation on InAs and 

performed post implant annealing to investigate the effect on the sheet 

resistance. Using the transmission line model (TLM) we have shown that 

the sheet resistance of a p
+
 InAs layer, with a nominal doping concentration 

of 1x10
18

 cm
−3

, can increase by over 5 orders of magnitude upon 

implantation. We achieved a sheet resistance of 1x10
5
 �/Square in an ‘as-

implanted’ sample and with subsequent annealing this can be further 

increased to 1x10
7
 �/Square. By also performing implantation on p-i-n 

structures we have shown that it is possible to produce planar photodiodes 

with comparable dark currents and quantum efficiencies to chemically 

etched reference mesa InAs photodiodes. 

©2012 Optical Society of America 

OCIS codes: (040.5160) Photodetectors; (040.1345) Avalanche photodiodes (APDs); 
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1. Introduction 

The infrared spectral region between 1.5 and 3.5 µm is of great interest for a number of 

applications including military imaging [1], gas sensing [2] and free space communications 

[3]. Recently InAs has been demonstrated to operate as an excellent avalanche photodiode 

(APD) over this spectral range with single carrier multiplication and low excess noise [4, 5]. 

However current commercial InAs photodiodes, for example the Judson J12 series, cannot be 

operated in the avalanche mode due to a rapid increase of dark current with bias. 

Previously reported InAs mesa APDs have been fabricated using wet chemical etching 

techniques [4]. While at room temperature the bulk current is dominant in these APDs with 

diameters above 50 �m, further improvement in the fabrication is desirable to suppress the 

surface leakage current in small area APDs, such as 25 �m x 25 �m or smaller to pave the 

way for development for InAs APD arrays [6]. In addition the surface leakage becomes 

increasingly dominant as the bulk current reduces at low temperature hindering the low 

temperature performance of InAs APDs. A potential method to reduce the surface leakage 

current and hence increase the device reliability is to fabricate planar photodiodes, as 

commonly employed in the fabrication of HgCdTe photodiodes [7, 8]. 

One way to achieve a planar device is through the use of Zinc diffusion to define localized 

p doped regions. This technique has been used previously on InAs to form a pixel matrix of p-

n junctions to detect alpha particles [9] and high speed photodiodes grown on GaAs [10]. The 

dark current of ~1 mA at −1 V was reported in Ref [9]. (but the device size was not provided) 

while relatively high current density of 5 - 67 Acm
−2

 at −0.1 V in was reported in Ref [10], 

although it was not clear whether the latter was due to the diffusion process or lattice 

mismatch with GaAs substrate. These suggest further optimization of Zinc diffusion is 

necessary to reduce the dark current. 

An alternative approach to fabricate planar devices is through the use of ion implantation. 

This technique has previously been used in wider bandgap semiconductors such as GaAs and 

InP to form planar devices and define device active regions in the fabrication of HEMTs [11], 

IMPATT diodes [12] and in defining buried heterostructures in laser diodes [13]. A potential 

advantage to using ion implantation over a diffusion based technique is the greater flexibility 

in the species to be implanted, as well as potential to achieve greater depths with good 

uniformity. The device active regions are formed either by the implantation of a dopant such 

as Si or Be to form n and p type regions respectively or via the implantation of a 

compensation ion (e.g. He, O or B) to create highly resistive regions [14]. A number of 

studies have been performed on the use of He implantation in GaAs to create highly resistive 

regions [15, 16]. In these studies it was shown that high resistive regions are formed through 

the creation of deep ‘mid-band’ traps which restrict the flow of charge. The influence of post 

implant annealing has also been investigated and was found to further increase the resistivity 

of such layers by reducing the number of shallow levels thus reducing hopping conduction. 

For narrower bandgap semiconductors limited work has been performed as a much 

smaller increase in resistance is expected due to the introduction of hopping conduction across 

the bandgap [17, 18]. For example Oxygen implantation into InGaAs results in resistances in 
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the range 10
4
 – 10

5
 �/Square [16], while Iron and Krypton implantation have both been used 

to increase the sheet resistance a further order of magnitude to 10
6
 �/Square [19]. 

Additionally investigation of proton implantation in InSb has been shown to result in n-type 

material becoming p-type, due to traps not being created in the middle of the bandgap [17]. 

To the best of our knowledge in this paper we present the first study of using He ion 

implantation to increase the resistance in InAs. We evaluate the effect of implantation and 

subsequent annealing on the sheet resistance of p-type InAs, before investigating the 

possibility of using this technique to create planar photodiodes. We perform He implantation 

in the area around circular p-i-n photodiodes to electrically isolate them and investigate their 

subsequent electrical and optical properties. 

2. Experimental details 

2.1 Growth and fabrication details 

An InAs sample consisting of a 2 µm p
+
 doped (1x10

18
cm

−3
 of Be) layer, grown on an InAs 

substrate by Metal Organic Vapour Phase Epitaxy, was implanted with He. Multiple 

implantation energies and doses were used to create a flat damage distribution of 

approximately 1.7% up to a depth of just over 2 µm. In total four implantations were used to 

achieve this with the following conditions 1) 36 keV with a dose of 1.3x10
13

, 2) 120 keV at 

7.4x10
13

, 3) 300 keV at 2.04x10
14

 and 4) 600 keV at 4.62x10
14

 ions/cm
2
. All the implants 

were performed, at the Surrey Ion Beam Centre, at room temperature and with the wafer at an 

angle of 7° to minimize channeling of the implanted ions. The implanted sample was then 

cleaved into various pieces which were annealed in a rapid thermal annealer before depositing 

TLM pads for subsequent resistivity measurements. All samples were annealed for two 

minutes and were sandwiched between two InAs carrier wafers to minimize any out diffusion. 

The p-i-n structure used was also grown by Metal Organic Vapour Phase Epitaxy 

consisting a 2 µm n doped layer (Si, 1x10
17

 cm
−3

), followed by a 6 µm intrinsic layer and then 

a 2 µm p doped layer (Be, 1x10
18

 cm
−3

). A set of reference pin diodes were fabricated using 

our standard wet etching recipes [4] of a 1:1:1 (phosphoric acid: hydrogen peroxide: de-

ionized water) etch, followed by a finishing etch of 1:8:80 (sulphuric acid: hydrogen 

peroxide: de-ionized water), to define the mesa diodes with radii between for 25 to 200 �m. 

For the ion implantation samples a layer of 2.5 µm thick SiN was deposited on a set of diodes 

with circular metal contacts of various sizes prior to ion implantation using similar ion 

implant conditions described above. Figure 1 shows a schematic of the implanted structure 

and an image of the fabricated devices. 

 

Fig. 1. (a) Schematic of an implanted p-i-n diode, indicating the He implanted regions and (b) 

representative image of fabricated diodes of various sizes. 
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2b. Electrical and optical characterization 

TLM and current-voltage (IV) measurements were performed using an Agilent B1500 

parameter analyzer, after correcting for the resistance of the system. The photocurrent was 

measured using phase sensitive detection techniques, in which mechanically chopped 1064 

nm laser light was focused onto the optical window of the diodes and the resultant 

photocurrent was measured using a lock-in amplifier. The wavelength of 1064 nm was not 

critical for conventional photodiode characterization but was selected to ensure the light was 

fully absorbed in the top p-layer facilitating pure electron injection into the intrinsic region. 

Pure electron injection is desirable for characterizing the potential of our diode as APD. The 

incident power was measured using an optical power meter so that the responsivity could be 

calculated. The ratio of this responsivity to the maximum theoretical responsivity at 1064 nm 

(0.86 A/W) was calculated to give the external quantum efficiency. For these measurements 

the excitation spot was focused to a radius of around 20 µm and centred onto devices with 

radii of either 100 or 200 µm, to ensure that the carrier lifetime in the He implanted region 

does not influence the measurements. All measurements have been performed at room 

temperature. 

3. Results and discussion 

Figure 2 shows the resistivity of the p
+
 layer, determined from TLM measurements, as a 

function of the annealing temperature. It can clearly be seen that upon He implantation the 

resistivity increases by 5 orders of magnitude compared to the as grown reference p
+
 InAs 

sample. After undergoing annealing a further gradual increase in the resistivity was measured 

up to a temperature of 450 °C followed by a rapidly reducing value reaching a resistivity 

value similar to the as grown reference sample at 700 °C. 

 

Fig. 2. Resistivity of the He implanted p+ InAs sample as a function of annealing temperature. 

The dotted line shows the initial resistivity of an as grown p+ sample. 

This result is similar to the resistance behavior reported for GaAs [15] upon He 

implantation. This may seem surprising as previous work on narrow bandgaps showed smaller 

increases [17], due to an increased hopping conduction. However it has previously be shown 

that the change in resistance can be highly sensitive to the implant species, implant conditions 

and the polarity of the target material. For example upon ion implantation in InP, sheet 

resistance values ranging from 10
5
 �/Square [20] (when using proton implantation at room 

temperature) to 10
8
 �/Square (when using Iron implantation at 77 K and utilizing subsequent 

annealing) [19, 20] have been reported under differing conditions. Therefore investigation of 

the dependence of resistance in InAs on differing implant conditions is a subject of ongoing 

work. 
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Fig. 3. Dark currents for various ‘as-implanted’ diodes with radii of 200 (circles), 100 

(triangles), 50 (squares). 

Our results show that the sheet resistance of p-type InAs can be increased through He 

implantation. To investigate if this technique can be used to fabricate planar photodiodes we 

have also performed He implantation on p-i-n diodes. Figure 3 shows the dark current density 

for a variety of radii for the ‘as-implanted’ sample, it can clearly be seen that the dark current 

does not scale with area. We believe that the He implanted regions do not have sufficiently 

high resistance to isolate neighboring diodes, leading to the poor current density agreement 

between different sized diodes observed in Fig. 3. 

 

Fig. 4. (a) Measured dark currents and (b) Forward current characteristics for ‘as-implanted’ 

(circles), annealed at 350 °C (triangles), 450 °C (diamonds) and 550 °C (squares) diodes with 

radii of 200 µm. The dashed line shows the dark current from a reference mesa diode 

fabricated using wet etching, while the solid line shows the dark current from a commercial 

Judson InAs photodiode (model number: J12-18C-R250U). 

From Fig. 2, it was concluded that post implant annealing could increase the resistivity of 

p-type InAs. Therefore to improve the voltage confinement within the active region we have 

annealed these He implanted pin diodes at various temperatures over a range between 350 to 

550 °C. The measured dark current densities are plotted in Fig. 4(a). The initial ‘as-implanted’ 

diode shows an increase in the dark current of around two orders of magnitude at a reverse 

voltage of 1 V compared to a reference mesa diode (dashed line). This increase in current is 

likely to be due to the increase in leakage current as the diodes are not fully isolated as 

discussed previously. This is further supported by the decrease in current observed at 

annealing temperatures of 350 and 450 °C, corresponding to increased layer resistivity. At the 

highest annealing temperature of 550 °C the current rises again due to reduced resistivity of 

the p
+
 layer. It is interesting to note that dark current densities in all the samples are lower 

than that of a commercial diode Judson InAs photodiode (model number: J12-18C-R250U). 
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The forward current characteristics are shown in Fig. 4(b). A large series resistance can be 

observed to limit the current above a voltage of around 0.25 V. Using standard diode equation 

in the forward bias we estimated the values of series resistance to be ranging from 400 to 600 

�. We believe that the origin for such a high resistance is due to the low silicon doping 

concentration in the bottom n-layer as it is present in the reference etched sample as well as 

the implanted ones. 

 

Fig. 5. Dark currents for samples annealed at 350 °C (closed symbols) and 450 °C (open 

symbols) with different radii diodes sizes (200 (circles), 100 (triangles), 50 (squares)). 

Figure 5 shows dark currents for different sized diodes annealed at 350 and 450 °C. The 

currents for these diodes scale with the area. This indicates that the resistance in the He 

implanted regions is sufficiently high to electrically isolate the diodes and prevent the voltage 

from spreading to adjacent diodes. Despite this good agreement between diodes of differing 

sizes indicating that the dark current is dominated by bulk current contributions, the dark 

current for the implanted and annealed samples is higher than the reference etched diode 

shown in Fig. 4(a). We believe that this increase in the bulk current may be due to He ions 

penetrating into the active region. Although the circular diode was masked with 2.5 µm of 

SiN, it is possible that some of the higher energy He ions have entered the diode active region 

as the He ions are extremely light. 

 

Fig. 6. External Quantum efficiency as a function of voltage at an excitation wavelength of 

1064 nm for the as implanted device (circles) and devices annealed at 350 °C (triangles), 450 

°C (diamonds) and 550 °C (squares). The dashed line shows the efficiency from a reference 

mesa diode. 

To further investigate the device potential we have also measured the external quantum 

efficiency at low voltages, as shown in Fig. 6. All the diodes show an increase in the 

efficiency as the voltage is increased from 0 to 0.5 V. The values obtained in the reference 

#162174 - $15.00 USD Received 26 Jan 2012; revised 4 Mar 2012; accepted 23 Mar 2012; published 28 Mar 2012

(C) 2012 OSA 9 April 2012 / Vol. 20,  No. 8 / OPTICS EXPRESS  8580



mesa diode as well as those implanted and annealed at 350 and 450 °C are similar. This 

increasing efficiency is attributed to the increase in carrier collection efficiency as the 

depletion region widens with bias voltage. The efficiency approaches 40% at high bias 

voltage. The ‘as-implanted’ and the 550 °C annealed samples show a dramatic decrease in the 

efficiency. The fall in efficiency in these diodes seems surprising, as the He was implanted 

into regions surrounding the devices and was not expected to influence the optical 

performance. 

We believe this low quantum efficiency may be qualitatively explained by the large RC 

time constant in the ‘as-implanted’ and 550 °C samples due to poor electrical confinement. 

Figure 7 illustrates the equivalent electrical circuit of 3 neighboring diodes. Each diode is 

represented by a current source, Id, in parallel with a resistor, Rd, and a capacitor, Cd, as well 

as a series resistor, Rs. A neighboring diode is connected by a resistor Ri which depends on 

the resistivity of the implanted region and the distance between the two neighboring diodes. 

For the standard etched reference diode Ri can be assumed to be infinitely large as the 

surrounding material has been removed. Therefore the RC time constant of a particular diode 

is controlled by Cd, Rs and the value of the load resistor. In the reference mesa diodes the RC 

values are sufficiently small leading to a sufficiently larger diode bandwidth compare to the 

modulation frequency of 185 Hz. Measurement of the diode bandwidth will require a different 

mask set with appropriate bond pads for microwave probing. 

 

Fig. 7. Equivalent electrical circuit for 3 diodes. 

For the implanted samples Ri will be governed by the sheet resistance. From Fig. 2 the ‘as-

implanted’ and 550 °C samples have low resistivities and therefore a low Ri is expected. 

Consequently all the diodes, on our 1 cm x 1 cm dies, are linked, producing a much larger 

effective capacitance than an individual diode. Our forward current-voltage characteristics in 

Fig. 4(b) suggest that the series resistance Rs is ~400-600 � which is relatively large due to 

the relatively low Si doping in the bottom n layer. If Ri is assumed to be zero, the effective 

RC time constant of a 1 cm x 1 cm die is a few hundred micro seconds leading to a bandwidth 

of a few hundred Hz, very close to the laser modulating frequency of 185 Hz. As a result, low 

responsivity was measured in samples with low implanted region resistivities. 
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Fig. 8. Photocurrent measured at 0.5 V when light is focused onto an adjacent mesa. 

The electrical isolation between adjacent diodes can also be investigated by measuring the 

photocurrent from a diode while the excitation spot is positioned over an adjacent diode. 

Figure 8 shows the photocurrent measured in a 200 µm radius diode when the light was 

focused on a similar sized adjacent diode, (the centre to centre separation is 600 �m) as a 

function of the annealing temperature. In the ‘as-implanted’ sample a high photocurrent of 13 

µA was measured when the neighboring diode was excited. However as the annealing 

temperature was increased this current rapidly falls, reaching a minimum of 0.3 µA at an 

annealing temperature of 450 °C. This result shows that there is a high degree of electrical 

connection between the diodes for the ‘as-implanted’ sample. Upon subsequent annealing the 

electrical isolation improves dramatically reducing the photocurrent. However at the highest 

annealing temperature the current rises again due to the reduced electrical isolation as the 

resistance of the He implanted regions reduces. 

 

Fig. 9. Simulated electric field for InAs mesa with He implanted regions and annealed at a 

temperature of 450 °C for a reverse bias of 1 V. 

The encouraging results in Fig. 6 have motivated us to evaluate these He implanted diodes 

in the avalanche mode. Unfortunately we could only apply a reverse bias of 1 V before the 

diodes showed catastrophic breakdown. We attribute this breakdown to local electric field hot 

spots due to a non-optimized implantation depth. The peak He implantation depth is only 

around 2 µm (coinciding with the p-i junction). Consequently a high electric field may form at 

the junction between the p-doped, intrinsic and implanted regions, which may result in 

premature edge breakdown. To investigate this further we have modeled the electric field in 

the device using the commercial software suite DESSIS. The material resistance cannot be 

modified within DESSIS so to model the implanted regions we have lowered the carrier 

mobilities by the same order of magnitude as the resistance was seen to increase in Fig. 2. The 
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simulated field for a sample implanted and annealed at 450 °C at a reverse bias of 1 V is 

shown in Fig. 9. High electric fields can be observed across the p-i junction, these fields reach 

peak values at the corners of the implanted regions. The peak electric field is ~150 kV/cm, 

which is well in excess of the value for the onset of tunneling currents and impact ionization 

in InAs [5] leading to a sudden and sharp increase in the current and potentially causing the 

failure of the device when stressed under this high current. These results indicate that for the 

development of planar InAs APDs either the implantation depth will have to be much deeper 

or inclusion of guard ring will be required to suppress edge breakdown. 

In addition to the optical and electrical characterization we have attempted to assess the 

diode reliability by performing repetitive reverse IV measurements up to 1 V. We observed a 

random and sudden breakdown in some of these devices after repeated operation; this takes 

the form of an abrupt switch in the IV characteristics from diode like behavior to a short 

circuit. At present the operation lifetime before this breakdown occurs appears to be random. 

Currently we cannot ascertain the origin of this failure mode since this behavior has not been 

observed in the reference etched device nor has any change been observed in the resistivity of 

the implanted layers used for the TLM analysis. 

4. Conclusions 

This work has shown that it is possible to use He implantation with InAs to produce highly 

resistive areas and that when combined with post implantation annealing, a sufficiently high 

resistive region can be formed to allow the fabrication of a planar photodiode. Due to the 

implantation conditions used in this work an isolation depth of only around 2 µm has been 

achieved despite the total device thickness being 8 µm. As such this appears to have limited 

the upper voltage limit that the diodes can be operated to due to the onset of edge breakdown. 

We have measured similar external quantum efficiencies for an implanted and 

subsequently annealed device as we would obtain for a reference etched device. These results 

also suggest that it may be possible to use implantation techniques to fabricate photodiodes in 

narrower bandgap materials such as InSb to allow the realization of long wavelength planar 

detectors. 

In summary we have performed He ion implantation into InAs and performed post implant 

annealing. From TLM measurements we have shown that the sheet resistance of InAs can be 

dramatically increased. By also performing implantation on p-i-n structures we have shown 

that it is possible to produce planar photodiodes with comparable efficiencies to reference 

etched diodes. 
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