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SYNOPSIS
Starting from familiar assumptions for dynamic analysis, a transfer-
function-matrix (T.F.M) model for long, symmetrical, binary distillation [

columns is derived completely analytically. The model relates twin output

composition changes to perturbatiors in the internal liquid and vapour flow
rates. The model is intended for use in controller design and, being

expressed in terms of plant parameﬁéré and operating conditions, should

provide useful common ground between control engineer and plant designer,
Though derived precisely for a symmetrical plant, it is expected that the
model should apply more generally as a good approximation. Experimental
data is given supporting this claim.

Inverse Nyquist loci are generated in precise and approximate form
and shown to compare favourably with computed step responses. The responses
accord broadly with previous, part empirical, part numerical research
results,

The paper is the first of a companion pair, the second being devoted

to packed-column analysis.
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List of Symbols

o =~ initial slope of equilibrium curve approximation

& = g~

F - molar feed rates of ligquid and vapour

G - normalised spatial composition gradient in steady-state

G —- transfer function matrix (T.F.M.)

EA - approximation T.F.M.

gll'g22 - diagonal elements of G

gAll'gAZZ - diagonal elements of G

HE'HQI : - liguid capacitances p.u. length of rectifier and
stripper

Ha'Hb - capacitances of accumulator and reboiler

h' - distance along column measured from top and bottom

§h ~ tray spacing

h - normalised distance (h'/8h )

x - unit diagonal 2x2 matrix

L - normalised lengths of rectifier and stripper

Lr,LS,E - molar flows of liquid in rectifier and stripper and

small changes therein
el - Laplace variable for transforms w.r.t. T

vector of difference and total of vapour and liquid

e}
]

composition changes

S - Laplace variable for transforms w.r.t., h

t - time

T - normalised time (=tVr/aH£6h')

Ta'Tb - normalised time-constants of accumulator and reboiler

(= T where identical)
u - vector of total and difference in vapour and reflux

rate changes



v (=V),V ,v
o (=]

molar flows of vapour in rectifier and stripper
and small changes therein

liquid compositions (mol fractions) in rectifier
and stripper

small changes in X and X'

vapour compositions in rectifier and stripper
small changes in Y and Y!

feed liquid composition

feed vapour composition

superscript denoting Laplace transforms w.r.t. h
and ¢

superscript denoting Laplace transforms w.r.t.T
only

transfer-function matrix

partial differential equation

ordinary differential equation



2. Introduction

*
The accurate calculation of transfer-function matrices (T.F.M's)

for the composition dynamics of columns, by completely analytical methods,
has not been achieved hitherto despite several decades of column research
worldwide. Transfer-functions have been obtained either entirely experi-
mentally or part-analytically, incorporating approximation or empirical
data to overcome_difficult steps in the analysis. As a result, the range

4
of application of existing T.F.M. models to varying plants and operating |
conditions remains limited. It is common experience that different columns
differ enormously, yet inexplicably, in their behaviour, especially if trials
are allowed to run for the full settling-time.

The difficulties arise from the complexity of the expressions which
develops quite early in the analysis of even the simplest hypothetical system.
This comes about partly from nonlinearity and the spatial distribution of the
variables, but more importantly,from the two-stage construction of columns and
the associated boundary conditions. To simplify the equations:the analyst
usually begins to neglect apparently small terms but this can be disasterous
because their effects cannot be properly judged a priori since column dynamics
are driven by small differences in large terms. Other, late, approximations
may involve lumping of spatial variables and relaxation of boundary conditions
(assuming these were correctly formulated in the first place). Predictions are
sometimes tested against experiment but, whereas reasonable agreement has been
achieved in trials on one-off plants, it can be difficult to tell whether
success is due to the quality of the analysis or the incorporation of empirical
data derived often from the same, or similar plant to that used for final

model validation.

*
We stress the distinction between (a) the accurate calculation of T.F.M.'s

and (b) the calculation of accurate T.F.M's. The authors believe that in
attempting (b), by reducing initial approximation, results may be obtained
that are inferior (through enforced approximation later on in the calcula-
tion) to those achievable by simplifying initially and thence proceeding
accurately, i.e. as (a).




Irrespective of the guality of existing transfer-function models,
however, the case for seeking parametric T.F.M's by pure analysis remains
very strong, since few would argue that the full range of parameter space
has been comprehensively explored. One of the authors' initial motivations
for the analytical research at Sheffield was the failure of an existing,
apparently general, model to predict the separation/vapour-rate relation-
ship observed on a pilot column installed there. This point is considered
in the companion(l) to the present paper. The case for analytical study is
enhanced by the fact that the rival approach, viz computer simulation, is
expensive and fraught with numerical accuracy and stability‘problems where
column equatiéns are concerned,

One important purpose of a parametric T.F.M. is, (a) , to provide a
useful test of an initially doubtful simulation before using this on a large
programme of experiments. Another is, (b), that of providing a basis for
control system design, or, (c), of validating a grossly simplified T.F.M.,
itself to be used for controller design. A fourth purpose, (d), is to
indicate, simply by inspection of the T.F.M. formulae, the broad effect, i.e.

the approximate trend, on behaviour of plant-parameter change, noting that

in a linearised model of a nonlinear process such as this, the term plant-
parameter embraces gquiescent operating conditions. This allows useful dia-
logue between plant-designer and control-system engineer,

For all these purposes, (a) - (d), a parametric model based on primary
effects alone should be adequate, particularly where no such model existed
previously., In this paper (and a companion devoted to packed columns) the
authors derive and examine T.F.M's describing the main thermedynamically-
driven, mass-transfer effects alone, i.e. those relationships which make the
column distill, rather than the secondary effects, such as hydrodynamics,
heat~loss etc., which cause its behaviour to deviate from the ideal. We

make idealising assumptions entirely at the outset and then proceed without




further approximation. This is in important contrast with most previous
work where many secondary relationships are included initially (for the
sake of apparent generality and practicality) but where subsequent approxi-
mation is made as the mathematical difficulties iricrease. In Section 3 we

consider our initial approximations (or, preferably-idealisations) which we

believe to be no more restrictive than those used to introduce steady-state
R . . (2) . . - . %
distillation in text books . Indeed we believe such simplifications to be
illuminating rather than confusing and particularly justified in dynamic
column analysis which is still in its infancy when compared to steady-state

analysis.

3. System Equations and Idealisationg

3.1 Egquilibrium assumptions

We approximate the mixture's equilibrium curve by two straight lines

shown in Fig. 1, these being

(L - X) = o(l - Ye) , rectifier (1)
and Y' = g Xe' , stripping section (2)

vapour

where, for the lighter component, Ye is the equilibrium/mol-fraction associated
with a liquid of mol-fraction X in the rectifier, whilst Xe' is the equilibrium
liguid mol-fraction associated with a vapour of mol-fraction Y| in the stripping
section. The constant slope parameter o (> 1.0) is related to the relative
volatility and the symmetry of the relationship about the - 45° line in Fig. 1,
like that of an ideal mixture's true equilibrium curve,is noteworthy. Piecewise
linearisation in this manner has often been used in dynamic analyses attempted
in the past and notably in the pioneering studies of Wilkinson and Armstrong )

and by others. In tray columns it is usually assumed that theoretical trays

operate in equilibrium so that

*
Wilkinson and Armstrong's work was,however,directed at the analytical

determination of time-domain responses,necessitating considerable
approximation in the later stages.



Y(h}t) = Ye(h'J‘t) (3)
and X (hjt) = X! (h't) (4)
where Y and X' are the actual mol-fractions of vapour and liquid in the
rectifier and stripping sections at points distant h' from the top and
bottom of the tower respectively. As in introductory texts al on steady-
state design, each tray is here taken to be an ideal, or theoretical, tray.
Non-ideal behaviour from the non—attainmeﬁt of equilibrium can have impor-

' (1)

tant dynamic results that are examined in the companion paper .

3.2 Heat—-and mass-balances

The main column variables and parameters are indicated in Fig. 2. As
regards heat balance, we neglect sensible heat changes, mechanical work
assocliated with vapour compression and all heat loss from the plant other
than via the condenser and outflows. This is again in accord with intro-
ductory steady-state analyses designed to yield insight rather than to
generate detail. We are therefore left with only latent heat transfer and,
if the two components have equal latent heats per mol, the overall rates
of evaporation and condensation on any given tray will always balance so
that the vapour and liquid flow rates Vr'vs'Lr and LS will be independent
of h' and depend on time t only. (Fictitious molecular weights may be
introduced to accommodate unequal latent heats if necessary as Stainthorp(4)
has pointed out). This independence of flow-rate and h' is the so called

5 7
constant-molar-overflow assumption used in many previous investigations( )'Eg;'ggg'
L 14

along with the linearised equilibrium curve assumption.,

As is usual in tray column modelling we here regard vapour capacitance
as being negligible in comparison to the molar ligquid capacitances Hgéh and
Hﬁéh of each rectifier and stripping section tray. Taking mass balances
on the lighter component on a typical tray in the rectifier therefore yields
a simple differential equation involving finite differences w.r.t h' to

which Taylor's theorem may be applied assuming a large number of trays at



small spacing §h. This operation together with the use of equations (1) and
1
(3) to eliminate X(h',t) in favour of ¥Y(h,t) gives the partial differential

equation (p.d.e):

9 (H Y) 2
o L ) Y 2

—_— = - = e h +% L + B h

5T 6h (oaLr Vr) TR $ 3 (o & Vr)(ah,)z(é ) (5)
whilst for the stripping section we deduce:

3 ‘H'X'") 2 i
‘ v 2

—— sh=(z_-av) X sh o+ nm +0v )X 6n (6)
at s s ah! _ s (8h‘)2

The Taylor expansions have been taken to second‘powers of dh only on the
assumption that we are dealing with many trays in total, i.e. long columns
The criteria for a so-called long column will be investigated in Section 5.

3.3 Linearisation for small perturbations

As p.d.e's (5) and (6) are nonlinear (the flows being variable controls),
linearisation is essential at the ocutset if T.F.M's are to be derive:s, If
we confine attention to linearisation about the steady-state, i.e. about the
condition 3¥/3t = 9X'/3t = O, then, irrespective of hydrodynamics* causing
variations in Hg and Hgi’ on implicit differentiation of (5) and (6) we obtain
the following p.d.e's relating small variations y and x' in Y and X' to small

perturbations v and ¢ in the circulating vapour and liquid flow-rates, viz:

3
z 2
o Zsn=o o -v) & shty o +v)I2Y  (sn
L 3t r ~ 't 3n 2
(dh")
5Y 3%y 2
- ope Shag = ) + % 2= (8h) “(ag+v) (7)
(3h')
dzx’ ax’ Bzx' 2
H' ——8h = (L - qV ) = 6h + 4(L + qv ) X (6h)
g 3t s s’ B s @
(3h")
3x' 2 2x 2
+ 5= 8h(e - av) + 52X )Y + av) (8)
Ry (3n*) 2

Provided v and { are kept sufficiently small, steady-state values may be
substituted for all the variables in (7) and (8) represented by capital

symbols thus yielding linear relationships between y,x' and v,Q.

*
Hydrodynamics have in any event been shown by Armstrong and Wood( )

be basically a cascade process essentially decoupled from the composition
dynamics which may therefore be separately analysed.



3.4 Choice of operating conditions and plant parameters

Solution of p.d.e's (7) and (8) is eased considerably if they and the
boundary conditiors (yet to be derived) are rendered symmetrical by approp-
riate choice of plant parameters and quiescent operating conditions. Choosing
equal lengths, L’and equal tray spacings, 6h for the rectifier and stripping
section are the first obvious steps towards symmetry as is setting

aHg = Hé (QH) (9) k
A symmetrical equilibrium curve approximation hés already been assumed
(equatiors 1 and 2).
Inspection of the steady-state large-signal equations, obtained by

setting 3/t = O in (5) and (6) reveals that by operating at

oL, =V and oV =L (10)
r r s s

then steady state compositions are governed by

2 2 2 2

0 ¥Y/(3h'") = 3"X'/(dh") =0 (11)
so that the quiescent composition gradients are constant, giving uniform
loading throughout each section. Equal tray loadings throughout the entire
column is clearly the best practical operating condition (in view of
equation 9) and, for this,further symmetry is needed as the steady-state
solution, given in Section 3.7)reveals. The required conditions for

%*
- 9Y/0h' = 3X'/3h' = G = constant > O (12)
A

are Vv =L (=V) , vV =1 (13)

E S S r
and equal proportion of liguid and vapour in the feed so that

F =TF (= F) (14)
yielding equal output rates, Vr o Lr and LS = VS = F at top and bottom.
Finally to avoid pinch effects at the feedpoint the feed mixture should
be in equilibrium as regards both sections, i.e. its vapour and liquid

*
The - ve sign indicates that Y increases as h' reduces as expected since

h' is measured from the top of the rectifier downwards towards the feed.



compositions y and z should reside at the knee of Fig. 1 so that
z =2 and z = e (15)
1+a 1+a

Solution is thus confined to a range of special cases but this should
not be regarded as unduly restrictive because, in many respects, this is
a range of ideals for which practical design should strive. The even tray-
loading condition is but one attribute of this special case range, and 1is
a condition which has often been assumed explicitly or implicitly in column k
studies (5),(6),(7),(8),(9), both dynamic and steady-state. Other attribufes

will become clear when the steady-state solution is considered in more detail.

3.5 Normalisation

Inserting the foregoing operating conditions in p.d.e's (7) and (8) and

normalising by setting

h=h'"/sh ,1 = t/Tn (1o}
where base time Tn is the time for ligquid to travel base-distance 6h
i.e. T = gH = h 7
i.e N ochSh/V Hﬂd/Lr (17)
we obtain the greatly simplified forms

2 2
9y/3t =3 y/Ah" - (G/V) (v - q1) (18)
] 2 1] 2

and ax'"/ot =3 x'/ohT + (G/V) (1 - qv) (19)
Their solution of course requires not only knowledge of inputs v(r) and 2 (r)
but also steady-state composition gradient G(see Section 3.7) and the process
boundary condition considered next.

3.6 Boundary conditions (large-signal)

3.6.,1 Accumulator and reboiler Denoting accumulator and reboiler mol-fractions

by ¥(o), X(o) and ¥'(o),X'(o) respectively and taking mass balances on these
vessels yields

3{H X(0)} 3Y | éh - X(0)}

a i - = =
S 1 aadig vr{Y(ah) X (o)} Vr{Y(o) +ahl

1=
or, writinge = g~ 1 (20)

3{ H_Y (o)}

—————— o i +
03T Vr{E eY(0)

9y Sh
gh'
h'=0

(21)




- 10 -
which, after normalising becomes
3{T_Y(o) }
a Y
g B e{l - Y(o)} + = (22)
h=o
and
o{H X' ({o0)}
b _ ; . sl .2 ' X"Ish - v' (o)}
s L, {X'(6h) - ¥'(o)} Ls{x (0) + =

h'=o

which normalises to give

B{TbX'(o)}

3T (24)

where Ta = Ha/H2 §h and Tb = Hb/HGh (25}

Ha and Hb being the molar capacitances of the accumulator and reboiler. The
R.H. terms in equations (21) and (23) have been obtained by applying first-
order Taylor expansions to the finite differences Y(dh)— Y (o) and X'(&h) - X' (o)
which is valid for a sufficiently small &h.

3.6.2 Feed-trays A mass balance on the rectifier feed tray yields

BHQX(L}
——— Sh=Fz+V Y (L -V Y(L) +L {X(L - 6h) - X(1)}
ot s x ¥
X

= + y! - - =
F z vS (L) vr Y (L) Lr S5 - (26)

on applying a first-order Taylor expansion, Now from symmetry conditions
(10), (13) and (14) we deduce that

F=¢gvV (27)
so that substituting for F and z in (25) gives, after normalisation

Y (L) 2 ; _ _ o
5o = - X (L) + {1 - v(m)} B . (28)

and, similar treatment of the stripping section's feed tray yields

DML 2 yiiry - {1 - w(m} + X

g
ot o+l oh (23

Sh=L



= 11 =

The symmetry of (22) and (25) and of (27) and (28) is noteworthy.

3.7 Large-signal steady-state solution: justifying symmetry

Having formed the large signal boundary conditions, (22), (24), (28)

and (29) and setting 9/8t1 = O, the large signal steady state-equations (11)
for our symmetrical plant may be readily solved to produce the linear solution
for Y(h) and X'(h) graphed in Fig. 3. from which we note in particular the
constant value of slope G, i.e.

G =2 ¢e/{(a+l) (2eL + o + 1)} ‘ (30)
and the fact that

X'"(h) =1 - v(h) (31)
The results are necessary for substitution in the solution to our linearised
small-signal model (18) and (19) but have a strong practical appeal in them-
selves. The constancy of G, leading to even tray loading, has already been
anticipated and discussed but equation (30) represents another important attri-
bute of the special case we have adopted. The result indicates that, having
started from a 50/50 mixture of components (z + 2 = 0.5)i.e’as disordered a
feed mixture as possible, the choice of a symmetrical plant and operating
regime has produced top and bottom products that are equally pure, nominally,
in terms of light and heavy component respectively. Now in a truly twin
product control problem, both product purities will ideally have equal priority,
and any shift in importance from one to the other represents a shift from a
2x2 to a single-input, single-output problem i.e. a simpler problem. Control,
in its widest sense, is achieved (a) by plant design initially and (b) by
automatic requlation thereafter and wé have so-far ensured that stage (a)
yields products nominally in accord with the ideal 2—input;2—output control
problem. In cases where the feed composition were richer (weaker) then, to
avoid pinch effects, this would be entered nearer to the accumulator (reboiler)
so approaching a single-stage situation, capable of easier analysis(lz). We
believe therefore that in considering a symmetrical plant, we are investigating

the most thoroughly 2-intput, 2-output, 2-stage . process. This need not
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restrict the validity of the resulting T.F.M., or indeed the steady-state
solution above, to precisely symmetrical processes for, hopefully, the
results will be sufficiently robust to apply, as good approximations, in
the presence of considerably deviations from symmetry. The stretching of
the region of validity is really no different philosophically to the
extension of linearised models from infinitessimal, to moderate perturbations:
a universal practice in control and process engineering.,

As a final justification for proceeding with the symmetrical case,
we would emphasise that static symmetry has often been assumed by previous
researchers, but implicitly rather than explicitly. Shinskey's empirical
relationship (24] between separation and vapour rate, for instance, approaches
mathematical accuracy most nearly for symmetrical systems. Rosenbicck's
simulation observations(7), confirmed by McMorran's frequency-domain studies
relating composition~tilt to vapour-rate and average composition to distillate-
rate are again most apt in the symmetrical case. Nearly equal composition
gradients are a frequent feature of approximate analysis whereas in other
cases, e.g. Armstrong and Wood(lz) interaction between the two stages has

been neglected by artificially fixing the feed tray composition.

3.8 Small signal boundary conditions

These are derived from the large signal boundary equations (21),(23)
(26) (and a similar equation for the stripper feed tray) and the assumed
(symmetrical) operating conditions. For the accumulator for instance we get,
on implicit differentiation:

byio) . v {-Y(o)e + & + (44

a
h} + - + =+ | éh
aH_ = | 8 } v {- ey (o)

oh'|. ,_
h'=o h'=o

the first-term of the R.H.S. being zero in steady state so that normalising

we get simply

9y (o) _ _ 3y
Ts Bt == eyla) * 9h o

(11)
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whilst for the stripping section we obtain

ox' (o) _ . ax'
Tb . ex' (o) + h ~ (33)
h=o

For the feed tray, from (26) we get

L )
H_ d&h Bxlm)_ v{¥'(L) - Y(L)} + 2aG + V_ y'(L) - V_ y(L) - L, == | Sh (34)
L ot s ¥ r dh'
h1=LI
From the steady state solution we find that
Y'(L) - Y(L) = -G(a+l)/2 (35)
and hence the rectifier feed condition is:
dy (L G +1 d
o7 )= = {—(EMH)V + all - 2L + x'(L) - y(L) (36)
at v 2 dh
r h=L
and by similar means we deduce the stripper feed equation to be:
+ ]
a6 {-av e ey 3D gy (37)
T Vr 1h=L

4. Solving for the T.F.M.

The small signal behaviow of the symmetrical column compositions, given
the flow disturbances v(t), £(t) is now completely specified by p.d.e's
(18) and (19) and boundary conditions (32) ,(33),(36) and (37), the sym-
metry of which, with our chosen outputs y and x', is striking. This leads
to the ready diagonalisation of the system if we adopt the following output
and input vectors, viz

vyl 1) = %' (h,7) v(t) + (1)

_ (38) and u(r) =
am =+ x (1) v(t) - &(1)

(39)

<@

Laplace transforming (18) and (19) in S w.r.t. h and in p w.r.t. T and adding

and subtracting the resulting equations gives

(s - p) é_— s éﬁo) = &(o) c e ﬁ, (40)
- O o+l

where é}s,p) is the double transform of g(h,T), é}o) is the transform of
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g(o,t): w.r.t 1, u that of u(r) and g(o) that of 3g/dh at h = o. The end vessel

conditions (32) and (33) yield, if Ta = Tb =T,:

T p (o) = - eqlo) + alo) (41)

so that eliminating (o) gives

£ (0] S
(42)

=
]
O

2 o ~ =i
(s -p)g - (8 + g-Tplg(o) + s o —(a+1)

and inversion back to the h,p domain, and setting h = L therefore yields

(1) - 9, (1)g(o) - 9, (L = 0 (43)

where 0, (h) = (ifrh)_l {(s + ¢ + Tp)/(s2 = BFE I
= {/p cosh /p L + (¢ + Tp)sinh v/pL} 1/ /P (44)
and - 0
N i
9, (h) = (& ! — o o+’
s(s -p)

= (45)

where I is a 2x2 unit diagonal matrix. Now the feed boundary conditions

for g(L), i.e. equations (36) and (37) may be expressed thus:

j(h)l =

- 3 &
9, a(L) + = Q. u (46)
3 oh lh:L =4
P+ @] 05 0]
where Q_ = and Q, = (47)
o, p - 0 ~0.5(3a+1) |

allowing unknown g(L) to be eliminated between (43) and (46) giving

(0) = G(o,p)u (48)

ha o

where T.F.M. G(o,p) relating end compositionsto flow rates is given by:
=1

821 892

Glo.p) = 1959 + 5= 9 ~ &% "5 bes]

Since all the matrices on the R.H.S. of (49) are diagonal, G(o,p) takes

the diagonal form



_15 —_

G(o,p) = L35)

g22 (O rP)

and from the known expressions for Ql ...0  we quickly obtain the

4

individual transfer functions

_ e{(p+2) (coshv/pL - 1) /p + (sinh/pL)/Vp + 0.5}

g..(o,p) )
L {(1+m)p + 2 + elecosh/p T + {(p+2) (e + T) + p}(sinhvp1) /¥p
and (51)
g (0,p) = - (a+l) (cosh/p L - 1) + (a+l) (sinhV/pL) /¥ + 0.5(30+1) -
22 {p(1+T) + el}coshvp I + /Efl + e + ﬁp)sinh/g L
the limiting values for p = o being:
2
gll(o,o) =eg(L” + L + 0.5)/(2el + a + 1) (53)
and
9,y (0s0) = - {(o+1)L + 0.5(3a + 1) }/e (54)
5. Behaviour Predictions
A completely analytic T.F.M. model relating the behaviour of y(o,T),
x'(o,17) to v(t), £(1) has thus been derived in terms of normalised complex
frequency p and normalised column length L, both readily converted to
real frequency p' and real length L' by the formulae
I = ¢h
p P Lr/(HE ) (55)
and L' =L &h (56)
The real time constant T' of the end vessels is obtainable from its
normalised wvalue thus:
I
= ' = L = L 57
i T H, ah/Lr Ha/ " Hb/ ¥ (57)
In terms of y,x,v and &, the model may be expressed:
y(o,p) - x'(o,p) 1 g, (©/P) of |v(p) - 2(p)
=GV ) 3 (55)
y(o,p) + x'(o,p) 0 g22(o,p) vip) - £(p)

where G is the steady-state composition gradient readily obtained from

; ; ; : ) :
o and L via (30). Certain deductionsconcerning the systems dynamic
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behaviour are immediately obvious from this model whilst others require
a deeper examination of the formulae for gll and Iog- Of the former,

we note that, over the entire frequency range, composition-tilt,

y(h,t) - x'(h,t) is driven noninteractively by average circulating

flow {v(t) + 2(1)}/2 whilst composition-total y(h,t) + x'(h,T) is
driQen purely by take-off rate v(t) - &(1). We note also that the tilt
gain gll(o,o) is positive whilst g22(o,b) is negative and that for low-|
relative volatility mixtures (e << 1.0) requi?ing long columns

(L >>1.0 - see steady state solution) , then lgll(o,o)l << |g22(0,o)|.

7)

These findings accord well with say, Rosenbrock's simulation experiencé
: : (13) g ; o (10)
Rademaker's, deductions and Shinskey's empirical data .
They, however, reported that separation is influenced predominantly by
v(t). The conclusions are clearly in close accordance, particularly for
the low-relative volatility case where large reflux ratios are needed so

allowing l(v + 2)| >> |v - 2.

5.1 Inverse Nyquist ILoci

Typical loci of gii(o,jw) and g;;(o,jm) computed from (51) and (52)
are illustrated in Figs. 4 and 5 for o = 1.1 (e =0.1), L=10, T= 1.0
(corresponding to a separation 2 GI = 0.46). Their substantially vertical
nature over a wide range of w, indicating a substantially exponential step
response as confirmed by the simulation results of Figs. 6 and 7. Their
steady state gains ( = 2.6 and - 225.0) and time constants (= 25 and 140)
accord closely with those predicted by the loci (i.e. gains of 0.37'“l and
—0.0048_land time constants of 0.04—1 and 0.0077_1).
The straight vertical nature of the loci, and hence the broadly first-
order lag nature of the responses, may be deduced analytically from (51)

and (52) however, without recourse to precise computation, by examination

of the expressions for 911 and 95, at large p: Considering the band
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1.0 5> |p°7] >> 1/L (56)

which is a wide band for long columns, it is clear that cosh/Ei and

sinh/pL -+ 0.5 exp(/pL), (>> 1.0), since

/p = (o.iw)O'B(l +3) ., p=Jw (57)
Because of the upper bound on p set by (56), only the lowest powers of
p outside the hyperbolic functions need be retained so that

g, (0/p) » e{2/p + 1/VpY /A2 + e + 2¢/Vp) (58)

and (0,0) - (a*1) (1+1/Vp) /{p(14T) + & + V/p(Lte+ B)}  (59)

922

the exponential terms all cancelling out. Now for mixtures of low

relative-volatility, (requiring L >> 1.0 for adequate separation)

g wg 1.0
so that _l(o ) = (1l+a)p/2
911 100P aIp/ee -1 0.5
1 } L~ << |p 7] << 1.0 (60
and 922(o,p) = - ap/(l+a)

The system is therefore predicted to tend to an integrating process
over a wide range of frequency as observed, though its behaviour does

becomes more complicated at higher frequencies. The band considered

; : =L 0.
is wide however since in the region, L << W 2 << 1.0
|g—l(0 jw) | = w/e and |g_l(o jw) | = w/2 (61)
1177 g2

and these values are large compared to the static inverse gains
|g_l(o o)| = 2/1. and |g_l(o o)[ = /20 (62)
11 22
The near first-order lag nature of the systems responses is thus pre-

dicted guantitively,for any long column without computation. The predic-

tion accords qualitatively with previous experience and approximate
analyses. The more complex behaviour predicted at very high -w should
not be ignored however.

5.2 Effect of terminal capacitance

It is noteworthy that the parameter T drops out of the high frequency
analysis above from which we may predict that only the final portion of
the step-resonse is influenced by changes in T. This ig indeed confirmed

by the simulation result of Fig. 8 for ¢ = 0.1, L = 10 with T = 1,20 and 50.
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6. Approximate multivariable first-order lag model

One of the motivations for deriving G(o,p) has been to validate simpler
models. Because the system is class-0 and tends to an integrating process
over a wide frequency range, the multivariable first-order lag approximant,

14
gﬂ{o,p) of Owens{ ) would appear to be a suitable candidate where

=1
= -+ -
§A (o,p) éi Eb P (63)
= |
A, = Lim g_l(o,p)
jogae
and
. -1 =1
A = Lim {p "G (o,p)} (64)
Jp[ - o©

1

- 5
In our case, however, we should strictly replace [pl + o by L << Ipo | << 1.0

but the approximant should still apply as a basis for controller design

provided excessive gainsare avoided. Now A

and A are readily derived
1 =0

analytically in this case. Ei merely involves solution of the small-signal

spatial differential equations obtained by setting 3/31 = O in (18) and (19)
yielding static gain formulae (53) and (54) far more easily than by full
p.d.e solution and setting p to zero subsequently. 50 can be estimated

even more simply from (18) and (19) by ignoring after transformation all

but the p-dependent coefficients of the dependent variables giving
-1
] T E g o £ 4 (®]
- p g = u and hence A = (65)
= - ~1
o, a+l e 0 ,  ~{a+l)

which agrees closely with the more accurate form

(l+a)e_l/2 y g

= (66)

2. -1
0 —-a (o+1)

derived from the full solution for G(o,p) via equation (60)
-1
The straight vertical loci thus obtained for the elements gAll(o,jm)

il —E ,
and g (0,jw) of GA (0,jw) are shown alongside the corresponding elements

AZ22

of G (o,jw) in Figs. 4 and 5. The agreement for controller design is

clearly more than adequate over the very wide frequency range considered
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Unfortunately, for packed-columns such approximants are revealed in the
companion paper to be far from adequate in some important situations.

It is interesting that éo unlike éi has not required use of the boundary
conditions for its approximate determination above. This indicates that
boundary conditions affect only the low frequency behaviour of the system,
in accordance with our observations and deductions concerning the effect
of terminal capacitance in Section 5.2.

Controllers designed on the basis of the m.v. lst-order lag derived
from simulated asymmetric, tray-column step responses have been successfully
tested in simulation by Edwards and Owens{ls) for gains which increase the

speed of response by up to five or six times.

7. Correlation with pilot plant data

Although the paper is intended primarily as a theoretical contribution,
brief mention of a preliminary correlation of the model's predictions with
experimental data would seem appropriate. Step-tests carried out on the m,
15 kw, 12-tray, water-ethanol pilot column at Sheffield produced the compo-

sition changes, shown in Fig. 9, measured on trays 1 and 10 with a liquid

I

|
feed F 8.8 mole/min @ Z = 0.16 into tray 6. The vapour rate changes from
5.0 to 8.0 mole/min at a constant reflux ratio of 2:1 making v = 3.0 and

2 = 2.0. Steady-state output compositions of 0.52 and 0.08 vield an average

figure for 2GL of 0.44 and hence G = 0.0367, from which an effective

value of ¢ = 1.88 (o = 2.88) is obtained via equation (30). (This suggests

an effactive relative volatility of about 4.0 which produces an ideal equili-

brium curve coarsely approximating the true ethanol/water curve). Now for

v =23, ¢ = 2 we deduce from our linearised model that

o
|

= 1= lop, [+ 5lgy, 1672V
and

x'= {— |g22| - SIglll}G/ZV
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and calculating the steady-state gains from (53) and (54), therefore predicts

12

% contributions nearly cancelling one another) and

zero (the 999 and gll

X -0.069: in remarkably close accordance with the measured change.

The pilot column has large terminal capacitances of some 330 moles
1
yielding a non-normalised value for T = 62 mins. Now where end-capacitances

dominate it is readily shown from (51) and (52) that

. " |
Lim {p g ,(o,p)} = == and Lim {p'lg22(o,p)} = -

L=lsspss>Tml BE L™lsspssm-

(a+1) L
T

and from this latter formula and the static gain g22(o,o),a‘time constant of
42 min is predicted for the x' response. The predicted near-exponential
response for x' shown in Fig. 9 ié clearly most encouraging as is the very
small deviation of the y-trace, in accord with prediction. The transient
initial reversal of this trace is not unreasonable since, in the near counter-
balance situation between the effects of 971 and Togt it is quite possible, with
slight parameter-change, for the high-frequency response to differ in sign
to that of the ultimate response.

Clearly a large programme of trials is necessary, involving parameter
variations as well as input-change, to validate all the many predictions
from the parametric model. The experimental findings given are an encouraging
beginning to this exercise, particularly in view of the wide departures from the
symmetry and the small signal assumptions made in the model derivation.
8. Conclusions

It has proved possible to derive completely analytically and precisely,
a transfer-function matrix relating composition changes y and x' at the
column output to changes v and ? in internal vapour and liquid flow-rate.
The model parameters are readily related to plant parameters and nominal

operating conditions. Its intended purpose is for controller design but
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permitting a closer dialogue between control system designer and plant
designer at an early stage in a project. The model is derived from
initial assumptions frequently made in earlier dynamics studies either
explicitly or implicitly, these being a piecewise linear equilibrium
curve, spatially independent internal flow rates, constant tray loading,
zero vapour capacitance and trays operating in equilibrium. Hydrodynamic

\
effects ontray holdup are largely eliminated by concentrating onperturba-

tions about the steady-state. (Previous researchers(7'12) have in any event
shown shown little loop interaction between composition dynamics and
hydrodynamics which may therefore be treated separately).

The additional starting assumption is that of symmetry between rectifier
and stripping section and a 50/50 feed-mixture, leading to nominally equal
take-off rates of top and bottom product. The model is thus derived for a
special case believed to be particularly relevant for twin product control,
the symmetry leading to ready diagonalisation of the system matrices and

comparative ease of solution. The model should, however, be sufficiently

robust to apply ,as a good approximationlto situations deviating from symmetry

to a reasonable degree and a preliminary experimental test has confirmed this
claim.
. T - T
The model predicts the T.F.M. between Ey - XV ¥ + x'] and Lv +L, v —2]
to be completely diagonal. The individual transfer-functions are shown to

approximate first-order lag behaviour over a wide frequency range for long

columns and a rapid method for determining such approximants has been demon-

(3,4,7,8,9;10,

strated. These findings are in general accord with earlier research 11,12)
; 4

More complex behaviour at very high frequency is, however, predicted. 1In a

: il ) . ;
companion paper on packed columné ) it is shown that first-order lag behaviour
it is not always a safe assumption however. Terminal capacitance is proved

to affect only the low-frequency end of the system's frequency response.
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Many more predicted effects of parameter variation may be made using
the model and naturally this suggests a wide range of tests for its complete
practical validation. Being a parametric model however, this makes the task
of planning a full exploration of parameter space (including operating
conditions) a much more systematic exercise.
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Fig. | Vapour/liquid equilibrium curve and its picciwise linear approximation
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