The
University
W Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Teaching Programming to Engineers-The Choice Language.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76164/

Monograph:

Morris, A.S. (1981) Teaching Programming to Engineers-The Choice Language. Research
Report. ACSE Report 168 . Department of Control Engineering, University of Sheffield,
Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

TEACHING PROGRAMMING TO ENGINEERS

— THE CHOICE OF LANGUAGE

by

A. S. MORRIS

Dept. of Control Engineering,
The University of Sheffield,
Mappin Street,

Sheffield. S1 3JD

U.K.

RESEARCH REPORT NO. 168

This is a review paper, assessing the programming
education needs of engineers and the attributes of
the various programming languages which are usually
considered in choosing a suitable language for
teaching,

‘ b9 &

® e

5 06927DI0

1
LR Ilrll

TEACHING PROGRAMMING TO ENGINEERS -
THE CHOICE OF LANGUAGE
by
A, S. Morris, B.Eng., Ph.D., C.Eng., M.I.E.E.*

Abstract

The paper examines the merits of the majof languages presently available
for teaching computer programming to engineering students. Consideration %f
the ultimate application of programming by engineers is given prominence in
this evaluation, which it is hoped will fill a gap in the information presently
available to planners of engineering courses, Recommendations about the best
language are made from engineering considerations, and offer an alternative to
the much less application-orientated criteria typically adopted by University
Computer Science departments, who are the traditional source of expertise in

such matters.,

1. Introduction

Some knowledge of computer programming is an essential part of every profes-—
sional engineer's education and as microcomputers proliferate in industrial
applications, this becomes of ever greater importance. However, planners of
engineering courses always face a conflict between the amount of material which
should ideally be taught and what can be reasonably fitted into the timetable,l
and the usual outcome is that programming instruction is limited to one language
only. The normally accepted sources of expertise in the best language for
teaching computer programming are University Computer Science departments.

There is a tendency in the latter however to treat programming as a science in
itself rather than as a tool, and languages are recommended on the basis of their
goodness ingtructured aspects etc., with insufficient regard to application

limitations. It is the purpose of this paper to take an engineering viewpoint in

*Department of Control Engineering, University of Sheffield.

unravelling the pertinent considerations in choosing a suitable language

for teaching programming to engineers.

2. Choice of language —~ the pertinent considerations

The first consideration is to try to anticipate the programming require-
ments which an engineer will meet in industry and to choose a language which
will best meet those demands. The minimum level of programming involvement
which an engineer’ is likely to meet is to have to occasionally read programs
written by other people for data analysis purposeg etc,, and perhaps to write
small programs or modifications to existing programs himself. It is for this
relatively large group of engineers with spasmodic involvement in programming
that correct choice of language in programming teaching is most important.

The chosen language should be that which such engineers are most likely to meet
in industry, as it will be neither time nor cost effective for the practising
engineer to have to start learning languages other than the one he has been
taught, where the needs for such knowledge are infrequent. There are of course
other engineers whose work involves a heavier programming content, ranging from
writing off-line data analysis routines to on-line computer control algorithms.
For such engineers, the criteria for choice of their initial training language
are different. To such engineers, an initial teaching language encouraging
good program design techniques is most approriate, as their heavier programming
involvement will justify the cost of subsequent retraining in languages neces-
sary for particular applications; The programming education needs of these two
separate groups of engineers are substantially different and complicate the
task of choosing a suitable language for programming training.

The speed at which programming skills can be assimilated is another
important consideration in the choice of language, particularly in view of
the lack of space in engineering timetables. This favours interpretive rather
than compiled languages. In interpretive mode, each line of a program is
executed immediately that it is entered from an interactive computer terminal,

by an interpreter resident in the computer memory.

3
This means that any syntax errors are immediately rejected by the inter-
preter, and a working program is achieved much more rapidly by a novice
programmer. The serious disadvantage of interpretive languages outside
teaching applications is the slow speed of program execution, which is a
direct result of the interpretive mode of operation. A compiled language,
on the other hand, is more tedious for a novice programmer, as the whole
program has to be entered before compilatioﬁ, and it is only during this latter
procedure that syntax errors are flagged. Program development thus becomes
an interative procedure of compilation and editing until an error free version
is obtained, This can be a relatively lengthy process during the early stages
of learning to program. However, such a compiled language is often vastly
superior in practical application, as the machine code generated executes at
a much higher speed than interpretive code.

The qualities of the programming skills being taught are also very important.
Programming is essentially a human-computer communication and the purpose of a
high level language is to facilitate the communication to the computer of an
algorithm which the programmer wishes to have evaluated. Compiled languages
vary in their efficiency at doing this, both in the size of the object code
produced for a given algorithm and also in the execution speed of the code.

The other aspect of communication which a programming language should facilitate
is human-human communication related to the program. In the case of long
programs, it is often convenient to have several programmers working in parallel
in developing separate parts of the program. These separate parts need to
subsequently fit together with as few problems as possible, and the success of
this is a measure of the quality of the language. Program readability is a
prominent factor in this, and also very important to maintenance of programs

and further development occurring at a later point in time than that when the
program was initially written. It is in such realms of human~human communica-

tion related to programs that structured programming languages have particular

4
advantages. Structured languages also encourage a manner of programming
which minimises logic errors and tends to minimise program development time,
which by itself has important cost benefits. Structured languages constrain
the flow of control in a program to predermined forms of looping and conditional
branching, discouraging any arbitrary change of control such as allowed by the
GOTO statements of unstrucgured languages. Furthermore, a problem solution
is perceived as a series of identifiably séparatg steps, some small, some
large, rather than a long list of single instructions, that is to say a
structured language is very modular and thus easy to read.

The three languages commonly taught to engineers at present are Basic,
Fortran and Pascal. There are of course very many other languages available
which qualify for consideration in engineering software training. However,
none have anything like the universal availability on most computers enjoyed
by Basic, Fortran and Pascal and so are not considered here for that reason.
An exception to this is ADA, which although not presently available, promises
to become a major engineering language in the future and so deserves some
mention.,

3.1 Basic

The acronym BASIC stands for Beginners All- purpose Symbolic Instruction
Code. It is an unstructured language which is available on some computers
in both interpretive and compiled forms, although only as a interpreter in
many manufacturer's implementations. Because of this lack of general avail-
ability of a Basic compiler, this discussion will be restricted to consideration
of Basic as an interpreter, as this will be the restiriction applicable to
many users, Without commenting on the quality of the programming skills
imparted, Basic in its interpreter form offers the fastest way of teaching
programming, being more like plain English than any other high level language.
The simplicity of the limited instruction set is a positive advantage in

teaching, and this, together with the general advantages of an interpreter,

_5..
makes Basic a language which quickly produces students capable of writing
programs of moderate complexity.

In engineering applications, Basic has achieved some popularity for
programming in many microcomputer - controlled processes whose time constants
are such that the slow execution speed of a Basic interpreter is not a dis-
advantage, and this application has seeded the growth of many extensions to
the standard instruction set to allow file.handling, floating point arithmetit
and string variable manipulation etec., albeit at an elementary level, This
usage has arisen largely because of the much smaller memory requirement of an
interpreter compared with a compiler. However, as memory hardware costs
are falling, and the addressing handwidth of microprocessors increases, this
advantage of Basic is being rapidly eroded.

The disadvantages of Basic in engineering applications are considerable.
Apart from the problems of execution speed already mentioned, the limited
instruction set of Basic starts to become a difficulty in problems of any

complexity, Whilst it is true that extensions to the standard instruction set

have gone some way towards overcoming these limitations, such additions have
generated a further problem of non-portability, There is now a proliferation
of Basic dialects, each extended in different ways, and conversion of programs
from one form to another to allow portability between computers can involve
a very considerable amount of work. Compounding these difficulties are the
general deficiencies of all unstructured languages.
3.2 Pascal

Pascal is the newest of the three languages commonly taught and is the
only one of the three to be structured. It is a block structured language
developed in 1971 by Prof. Niklaus Wirth in Zurich and intended, at least
originally, for the needs of the academic teaching community. The first

definitive textl on the language became available in 1974, though the

6

language has yet to achieve an internationally agreed standard. Whilst
the International Standards Organisation has published a draft standard,
this is not compatible with the UCSD version (University of California at
San Diego), which has already been adopted by several computer manufacturers.
These developments do not augur well for Pascal to ever achieve a universally
agreed standard.

Both sequential and concurrent versioﬁs ofiPascal exist, although in
many computer manufacturers' implementations, only the sequential version
is available. Concurrency is a particularly useful feature in real-time
control applications and describes Pascal's ability to handle multi-tasking
within the same program. Each separate process within the controlled system
exists as a separate process within the one Pascal program, and these processes
are executed in parallel with any necessary coordination and critical timing
being handled by Pascal. This offers significant advantages over sequential
versions of Pascal and other languages such as Fortran, where multi-tasking
execution is the responsibility of the operating system, with each single
process being written as a separate program.

Pascal consists of a relatively small instruction set of simple and
easily understood data types and control structures, Particularly useful
features are the facility of user-defined data types to suit the special needs
of the task being programmed, and also the ability to limit the allowable
range of scalar variables, Portability has been a major consideration in
its design throughout. In common with most structured languages, code is
automatically checked at compile time, avoiding many of the errors which
do not emerge until execution time in other languages.

The advantages of Pascal's simplicity as a teaching language become its
main limitations in engineering applications. There are no facilities for
random disc access and dynamic array dimensioning , and no support for real-

time input/output interfaces. Where language extensions allow these facilities

7

the extensions are non-standard and so the problem of non-portability is
introduced.

Another deficiency of Pascal is the lack of availability of libraries
of mathematical algorithms and functions which are essential in engineering
application programming. This is largely due to the relatively young age
of Pascal and may be put right in time. Several Pascal compiler versions
allow linkage to Fortran libraries and whiie such implementations allow access
to the necessary mathematical algorithms, we are again in the realm of compiler
extensions and non-portability. A further disadvantage of Pascal at present
is that it is not universally available on all computers, and very importantly
not on IBM machines.

3.3 Fortran

Fortran stands for FORmula TRANslation and emerged in the late nineteen-
fifties as a means of giving a form of organisation to an otherwise clumsy
list of machine code instructions representing a mathematical algorithm.
It thus represents in many ways a 'first attempt' at a high level language,
and many of its undesirable features ensue from this. The standard for the
Fortran 4 version dates from 1966, and in this form the language is very
unstructured. Since 1966, the language deficiencies have been comprehensively
analysed by committee and out of this has evolved a new standard, Fortran 77,
published in 1978, This has several new features, particularly an IF-THEN-
ELSE construct, which allow programs to be written in a more structured way,
although admittedly this structuring does not have the elegance of Pascal.
A very important point about the new standard Fortran 77 is that it is upwards
compatible with programs written in Fortran 4 and so no software conversion
work is necessary to existing programs when adopting Fortran 77.

Where Fortran gains over Pascal in its language features are its

comprehensive I/0 facilities, its random disc access capabilities and, in

8

Fortran 77, the string-handling functions. Probably the biggest advantage
which Fortran holds over Pascal though is the wealth of engineering support
subroutines and program packages which have been developed over the last twenty-
odd years., This software will take a very long time to translate to Pascal,
even if the advantages of Pascal make it cost~effective to do so, and in the
meantime the existence of this software investment will continue to favour
Fortran over Pascal in the choice of langﬁage for industrial applications. !
Whilst it is true that, recognising the need to access this software invest-—
ment, the facility now exists in some Pascal implementations for linking into
Fortran subroutine libraries from Pascal programs, this feature is by no means
universal.
3.4 Ada

The initiative for the development of Ada came from the United States
Department of Defence (DOD) in 1975, who were concerned at high software costs
and wished to standardise on a language which would improve programmer
performance and aid program compatibility and portability. Four years were
spent in defining the requirements of the language and Ada was finally born in
specification form in 1979. It was named after Ada Lovelace, a colleague of
Charles Babbage. Ada is a highly structured language, and in essence it can
best be described as a substantially expanded version of Pascal, overcoming
many of the deficiencies of that language in engineering, particularly real-
time, applications. Whilst it has been hailed as a very important advance
in computing by many commentators, it has also been condemned in some quarters
as misconceived, poorly specified and over-complicated”,

No compilers are yet available, though a version conforming to the DOD
specification is expected from Intel in Mid-1982. The anticipated size of
the compiler is in excess of 500K bytes6 which is likely to prove a major

disadvantage of the language in both application and teaching environments.

_9..
Further comments on its suitability as a teaching language must await a
future time when compilers.become generally available and the qualities of Ada

in serious use can be assessed.

4, Language Evaluation

Published evaluations of these languages is scarce. Rundle2 has carried
out an evaluation in the form of a questionaire to industrial users, and in
each of the categories of 'ease of use', 'éffic;ency' and 'overall satisfaction',
the ranking was Fortran top, Pascal second and Basic last. A more numerate
comparison between Fortran and Pascal has been carried out by Anderson3 using
a benchmark devised by Curnowa. This showed Fortran to be approximately
10% better than Pascal, both in terms of object code size and execution speed,
with the same level of run-time support. If the better run—time debugging
support of Pascal is included, execution speed is made even slower and object
code size becomes even larger.

Ada has to be ruled out immediately as no compiler is yet available.
Pascal and Basic are similar both in the facilities offered by their instruct-
ion sets and in the rate at which the language can be learnt. Pascal 1is
vastly superior in terms of the structured programming skills whichit gives-
thg novice programmer., In the past, Basic has enjoyed an advantage in respect
of its. lesser demands on computer memory, but this now carries little weight with
present—generation microcomputers. These facts provide good reason for
favouring Pascal over Basic as a teaching language.

The choice then remains between Fortran and Pascal, where only one
language can be taught. However, this decision is not clear—cut in anything
like the same way as between Basic and Pascal. Strongly in favour of Pascal
is its structured approach, whereas Fortran gains in terms of its extra
facilities in input=-output and random disc access. Fortran also appears to
be superior in terms of the efficiency of the object code produced, and it

has a large advantage in respect of the past software investment in subroutine

libraries. Additionally, the newer Fortran 77 has some pseudo-
structured features, whilst retaining upwards compatibility with programs
and libraries written in Fortran 4. For these reasons, Fortran is likely
to continue to be the language most generally used in industry for some
time to come.

5. Conclusions

Section two outlined the pertinent considerations in choosing the 5
best language for inclusion in the computer programming aspect of engineering
courses, These considerations are to a large extent mutually exclusive,
and the problem becomes one of deciding on suitable weighting factors for
these considerations in order to arrive at the best choice. It is felt that
the heaviest weighting should be placed on the requirement that the chosen
language should be that which engineers will be most required to use for the
forseeable future in industry. This therefore leads to the recommendation
that, where timetable restrictions limit programming instruction to ome lan-
guage only, that language should be Fortran, but in the Fortran 77 version
which encourages some form of structured programming.

The conclusion ignores the considerable advantages in teaching a properly
structured language, but is felt to be the best compromise at the present
time within the normal timetable restrictions. Should the timetable be
able to cope with teaching two languages, however, then the recommendation
would be that Pascal should be taught first, in order to instil good struc-—
tured programming skills, followed by Fortran to fulfil the need of indus-
trial engineering applications.

Finally, it is very important to stress that this analysis only applies
to the present time. Developments in the computing field are rapid, and
reassessment of the position should be made annually in order to judge the

continuing validity of the arguments used in making the present recommendation.

..11
References

1s JENSEN, K. and WIRTA, N. 'Pascal user manual and report',
Springer-Verlag, 1974,

2. RUNDLE, A. Mic rocomputer analysis, Nos. 3-5, 1979.

3. ANDERSON, R.E. et al, 'Computer language evaluation'. U.S. Department
of Energy, Lawrence LIvermore Laboratory, Internal report.

4, CURNOW, H.J. and WICHMANN, B.A. 'A synthetic benchmark', The Computer
Journal, 19, 1, 1975, pp.43-49.

B THOMAS, M., Systems International, Aug.1981, pp54-56. {

6 Infomatics, . June 1981 p.6.

ey LY.
3 ‘r?"‘:— U.- C,‘Ll
S““if'.u' E Sg‘%\;’\\\l

C g

