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Abstract

The receding horizon principle is generalized to distributed
parameter systems of the wave and diffusion types. This leads

to a nonlinear control law which improves on the classical linear

gquadratic solution.
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Introduction

In multivariable linear systems theory, the use of nonlinear
controllers is well—knownfl’z) Such a controller, if correctly chosen
can be made to respond quickly to large errors, while only responding
slowly to small errors which may be due to noise disturbances in the
system. A general method for deriving an appropriate nonlinear con-

A)
a4 and in

trol law has been called the receding horizon principle
this paper we seek to generalize the principle to certain distributed
systems - in particular to systems defined by wave~ or diffusion -
type equations.

The basic idea in the finite-dimensional case is to produce a
linear controller whose effective 'time constant' is a function of
some variable time tl' corresponding to the length of the time interval

over which the current minimization of a guadratic-type cost is being

calculated. By allowing t, to depend on the current state error vector,

1
a nonlinear control is obtained which has the desired properties.

In the next section we shall discuss the notation and basic semi-
group theory for the convenience of the reader, and in section 3 the
theory of receding horizon control will be presented in the infinite-
dimensional case. It will be convenient, for technical reasons, to
consider the group case first and then to indicate the generalisations
necessary for the semigroup formulation. Two examples will then be
given in section 4 to illustrate the theory; these will be the wave
and heat equations, which are representative of hyperbolic and parabolic

systems.

Notation and Terminology

We shall make use in this paper of the standard theory of Hilbert
5)

Spaces and semigroups as presented, for example in Yosida . It will be




useful to give a brief summary of the basic semigroup theory which we

need. Suppose, therefore, that H is a Hilbert space jthen a strongly
- +

continuocus semigroup is a map T(t) from R to Y(H) (the space of

bounded linear operators on H) with the properties

(1) T(t+s) = T(t)T(s) r St 30
(i) T(o) = I
(1i1) ||T(t) h -h|| »0ast+0" , ¥ hen.

(In general, when denoting the norm of a vector in H we shall use the

notation I|.|| when the space H is clear from the context, or by |I.]|H

when we wish to indicate explicitly that the norm is with respect to H.)
Note that we shall sometimes denote a semigroup by Tt.
The generator A of the semigroup T(t) is the operator defined by

Ah = lim -

L © (D) - Dh,
t-+o

with domain D(A) equal to the set of all elements h e H for which the

limit exists.

Specific examples of semigroups with which we shall be dealing

are those related to the wave equation and the heat equation. The former

is generated by the operator

where Al is the (unbounded) operator defined on szb,l] by

2
o G F - -
@& fx) =—x , feDbA) , £(0) =£(1) =0

&

1 -
Then A is an operator on the space 3. D(Af) X L2[O,1J with the inner

product

< > =< z > +<y,y >
W, W 3t Al zZ Aiz L,ZEO,l] Yy L2[O,l]

and domain D(A) = D(Al) X D(A?). The semigroup generated by A is given

by



: 1
= 2 + i
T(t) w1 Z{<wl,¢n >H cos nm t (nm) "< w2,¢n> H81n nﬂt}¢n ,
W, Y{- nmr <w,r¢ >, sin nrt + <W, 19 >, COS nnt}q;n
for |w, edt, where ¢n(x) = Y2 sin nrx.
2

The semigroup related to the heat egquation

zt = zxx i RBlot) = z(l,t) =0

is
o 1:

(T(t)z) () = z 2 exp(—nzw%ﬂsin nmrx f sin(nﬁp)z(p)dp
n=1 o

for z ¢ Lz[b,l], with generator
XX

Az = z , z €D(a) = Hz[o,lj n Hé [0,1].

Note finally that if T(t) is a stron y continuous semigroup on a

*
Hilbert space then the dual operators T (t) have the properties:

* *
(1) T =1 =1
o
. * * *
(ii) Tt+s = Tth # t,s > o
*
(iid) llmt+o+ Tth = h in the weak topology
. B s * * -
(iv) limt40+ ( t ) h=Ah , for h € D(A ) , again in the weak
t
topology.
;o Receding Horizon Control

3.1 The Group Case

We shall consider first the standard linear quadratic problem for
the system defined by the input-output relationship

t

%(t) = T(t—to)xO + f T(t-s)Bu(s)ds , o g tO £ E= tl < o

ty ' (3.1)

where the output x(t) belongs to a separable Hilbert space H (for each

t) and the ihput u(t) belongs to a Hilbert space U. The group T(t) is




generated by the operator A with domain D(A) dense in H. The cost

functional for this system is taken to be
E <+t
o 1
J(uit_sx ) = <x(t +t.),Gxlt rt)> + jt {<x(s) ,Mx(s)> + <u(s) ,Ru(s) > }ds
o
where M,G ¢ ZAH) and R.g_ﬁ(U) are self adjoint, non-negative and
[ 2 \ _ i
< Ru,u > 2 a||u|1 : V u ' U and some o > 0.
(¢) G {

-

Then, it is well-known that the optimal control u , which minimizes J
subject to the dynamics (3.1), is given by

_l*
g (8) = =R B @lthx(t),

where Q(t) satisfies the inner product Riccati equation

%€< O(t)h,k > + < Q(t)h,Ak > + < Ah,0(t)k > + < Mh, k > (3.3)

_l * %

=< Q(t)BR "B Q(t)h,k > on [ty bo t, ]
olt,+t) =6

for h,k € D(A), and that the optimal cost is given by

+
J =< x rQ(t Ime & 4 x = x(t)
6] 0] (@]

We can write (3.3) in the form (taking M = 0),

- * _1 *

Q+A Q+0A=0BR BQ (3.4)
provided the derivative @ is interpreted in the weak sense of (2.3). Let
us write the optimal control in the open-loop form; this can be done by
noting bhdl 3f the optimal control above is applied bo the systenm, then
the state satisfies the eguation

. —1 #

x=Ax~-BR B Q=x (if x_€ D(a))

L
and so

" -1_*
0x = OAx - QBR B QOx

< *
=~ 0Qx - A Ox

where again the derivative is interpreted in the weak sense. Hence,




and so

*
Ox(t) = T (-(t-t ))Q(t )x_

*
where T is the dual group of T. It follows that the optimal control

can be written

* __l * * |
u =-R BT {to—t)Q(tO)xO . {3:5)

In order to derive the receding horizon control, it is convenient
to put G = oI in the initial condition of the Riccati equation above.
Consider also the equation

* o *

W(t) =AW+ WA - BR lB , W(to+tl) = (3.6)

2]H

where (3.6) is again interpreted in the inner product sense of (3.3).
This equation has the unique solution
: *
t) = T(=(t,-t + t t + T (-(t, -t +
W(t) T((l 0))W(D tl) ((tl to))
t.~t4t
o

1 * %

o+ T(-1) BR B T (-1)dr. (3.7)
@]

We therefore have the following result:

Proposition 3.1. The solution Q of the Riccati equation (3.4) is an

invertible operator on [to'to+ti] for o > O.

Proof: Let T a{to,to+tl]. Then

a _la
rrei S el ]t .
| & cwion, 9o ks (d— <W(t)h,0( t)k>]
dt ¥ t=T kdt Jt T

<A (T)h,Q(D)k > + < W(T)A*h,Q(T)k >
._1 *®
- <BR "B h,Q(1T)k >

-<W(Dh,0(T0Ak> -< Wé’t)A*h,A*Q(r)k >




-6 -
*_l‘ *
+ < W(t)h, Q(T) BR "B Q(T)k >

= < Q(W(D)A TN,k > - < A 0(D)W(T) h,k >

I
A

=1 *
OBR B h,k >
_l*
+ < QBR BQWh,k >
for h,k € D(A). For a fixed solution Q(t) of equation (3.4) this is
a linear inner product equation in Q(7)W(t) with final condition

(QW)(tO + tl) = a I.I = I. Hence it has the. unique sclution
Qlt)W(t) = I, 7T ¢ t:'to+ti1' Similarly, W(t)Q(t) = I and the result
is proved. O

We would now like to let o -+ « ., thus forcing the final state
x(to + tl) to zero. In order to do this we must first define exact

controllability.

Definition 3.2 The system (3.1) is exactly controllable on [to’to+tij

; ; : ; P
if, given any points x ,x, € H, there is a control u €L (to,to+tl;U}

1
(for any 1 < p < =) such that

x(to) = X x(tO + tl) = xl

where x(t) is the controlled state.

(6
Then the following theorem can be shown to follow' };

Theorem 3.3 The system (3.1) is exactly controllable if and only if
there exists a y > O for each tl > 0 such that

v 8™ (onl] = Ll

7B 5 U
L7(0 tl

' (3.8)

1 * E
where E—+ é‘= 1 and we have identified H with H and U with U.

Hence we have

Corollary 3.4 If (3.1) is exactly controllable on [to'to + ti], then
the solution W(t;a) of (3.7) (denoting the dependence on a explicitly)
converges to a well-defined operator function W(t;=) as o = « which is

invertible except at t = tO + tl.




Proof: That W(tja) » W(t;x) (uniformly) as o - O follows directly

from (3.7 _)- Also, t —t+t
1 o

=N "l**
W(tse) = f T(-t)BR B T (-r)dr
(@]

Hence, for each h ¢ H,

T SRHE
1 o 1 * *
< W(tio)h,h > = [ <T(~t)BR "B T (-1)h,h > dr
@]
tl—t+t
e * % 2
>rf [|B'T (~0)n| | b
o}

= x| [8"T" (-0)n]|?
2 *
T [o,tl—t+to—U]
3 2 2
221088
by theorem 3.3, for som r > o and y » o (the latter depending on t),

since R is positive definite. (Note that theorem 3.3 applies here

since T(t) is a group and controllability in forward time is equivalent

¥

to controllability in reverse time.) O
However, we have seen above that Q(t;g)*W(t;a) = I for all g > o

(again denoting explicitly the dependence of Q and W on @), and so

Q(tia) = W " (t;a)

By corollary 3.4 and the continuity of the inverse, it follows that

1
Q(t;e) = W " (t;w) exists for all t ¢ [to,tO + tl}. The optimal control

which drives the state to zero in time tl is therefore
* -1 * *

= - = & t: ;o . B

u R BT (to )O( 5. )xo (3.9}
The basic receding horizon philosophy is now to argue that, at each

time t, we should apply the open loop control (3.9) as if we were
beginning a new control interval of tl seconds. This amounts to re-
placing tO by t and X by x(t) in (3.9). Hence, the feedback control

now becomes




3

_8_
* _l*
U = -R B Q(to;w)x(t)

=7 *
= -R lB W l(to.-w)x(t) (3.10)

where i

l _l'k*

W(to;w) = f T(-7t)BR "B T (-1)dr (3.11)

o

The Semigroup Case

We have considered above the receding horizeon principle for systems
which are defined by a group of operators {T(t)!. The fact that the
system generates a group was necessary in order to define expressions
such as (3.7). We shall now show that the theory can be extended, in
certain circumstances, to the semigroup case. Suppose therefore that
{T(t)} is now a semigroup of operators defined on the Hilbert space H.
Then, for each t > o, we may write

oo
T(t)h = T(t) { } < h,e.> e}
jacs i B I

X < h, ei >H f(n,i,t)en
o n=o

il
Il o~1 8

i

where {ei}is an orthonormal basis of H and £(n,i,t) = < T(t)ei,en > 5

By Parseval's theoremn,

o

. 2
E z < h,e > EA{n ;T 1) < ™
. i H

n=o i=0
However, we may consider formally the functions £(n,i,t) for t ¢ [-tq,o).
Let Hl(t) (for t ¢ [—tl,o)) be the subspace of H consisting of all

elements hl such that

[ee] <o
2
V) o< h,,e, > f(n,i,t) < o (3.12)

n=o|i=o

and define the inner product on Hl(t) by




co o0 o]

< hl'h2 > = Z {'z <hl’ei>Hf(n’l’t)}{,Z <h2,ei>Hf(n,1,fﬂ.
Hl(t) n=g i=o i=1

(3.13)
Then we assume that Hl(t) is a Hilbert space, i.e. H1(t) is complete and

we define the operator T(t) on [}tl,o) (using the same notation as for

the semigroup) by

co [ee]

T(8)h) = ] ] <h e gt (Bl tle o te [t ,0),h e B (1)
10 N=o

It follows that T(t) is a bounded operator from Hj(t) to H, for each
*

t e [rtl,o). Hence, the dual operators T (t) are also defined and,

* * *
T(t): B >H(t) , te [Ltl,o).

= = *
In the following discussiof W& shall identify H with H under the usual
isomorphiém. However, since Hl(t} is a subspace of H we must be careful

*
not to identify Hl(t) with Hl(t). Then, we have the sequence of spaces

* *
H = .
H (8) ¢ B cH ()

* %
Of course, Hl (t) can be identified with Hl(t) in the canonical way,

and so the operator W(t) defined in formally the same was as in (3.7) is
*
a bounded operator from Hl(t) to Hl{t). It will be convenient to
*
introduce the spaces H2{t), t e [—t,o) such that T(t) maps Hl(t) into

*
H2(t}. Then the sequence (3.14) 1is expanded to the sequence

*

*
1 (8) € H,(t), (3.15)

*
Hy(t) cH (t) CH=H CH
and again, we have

W(t) : H,(t') > H and W(t) : H + H;(t') ,

where t' = _ti + t - to. In a similar way, we can restrict the operator

A: D(A) ~ H to an operator A: D(A) A Hz(t) -+ H2(t) or A :D(A) n Hl(t) e < Hl(t),




_lo_

*
or extend A in an obvious way to an operator on Hz(t) with domain
D2(A;t), so as to retain the standard properties

dT(t)h

o = AT(th = T(t)an, te [~ ,0)

for h € D(A) N Hl(t) , for example. It is now easy to see that W(t)
satisfies (36) as before, provided that the inner product is replaced

by the appropriate duality; for example, W(t) satisfies the equation

* - *
g—t<w(t)h,k>=<AWh,k>+<WAh,k>—<BRlBh,k>

*
in the H2(t'), H2(t') duality, for h e D(A) , k € D(A) N H_(t").

2
Now

T(t) : H —» Hl(—t} t > o.
Hence, from the integrated fovm of (3.4) it is easly to see that Q(t)
is also smoothing and, in fact,

o(t) : H = H2(t') ¥ tD & k= tl + to ‘
where again t' = —tl + t - to.
We can now conclude that proposition 3.1 is still true and the proof is
as before, provided again that the inner products are interpreted in
the appropriate duality pairings. 2n analogue of theorem 3.3 is also
necessary, but we shall not assume exact controllability in the semigroup

case. In face, we shall assume that the system is approximately control-

lable in the following sense:

Definition 3.5 We say that (3.1) is approximately controllable on
Eo,tl] if
Range (G) = H,

where
t
1

Gu-= f 'I‘(tl - s) Bu(s)ds,

(o}
mruslyﬁmﬂﬂ.




w 10 =

Then we have

Theorem 3.6 If the system (3.1) is approximately controllable on
[b,ti], then

e *
Range (G') = Hl(_tl)

where
o

= S *
G'u = f T(~tl~s)Bu(s)ds : [—tl,o;tﬂ -+ Hl(—tl),
_1-1 z
*
and the closure is taken in the topology of Hl(—tl). Proof: Suppose

that Range (G") is not dense in'HI(étl). Then there is a point x and a

ball B " of radius ¢ and centre x in HI("tl) such that
£ "5 4

Range (G') ny B€ =0

Let X € Range (G) be chosen so that L[xO’]H is sufficiently small in

£

g

order that ||T(- This is possible since T(—tl)

tl)xoilﬁz(—tl)

H » HI(_tl) is continuous. Since the system is approximately control-

lable, there is a control u which takes x" ¢ H to X, s where

x' € B / x(note that HI(_tl) is dense in H). Hence, reversing time,
(]
T(-t))x_ - [ ) T(-t,~s)Bu(s)ds = x
i
Now,
o
| |x- f T(-tl—s)B(—u(s))dslIH*(wt)
—tl L

3 - xll,Hi(—tl) " I]T("tl)on]HI(—tl)

Hence, G'(-u) ¢ BE and we have a contradiction. @I



3.3
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po ok (6)
However, it is well-known that

Range (G') = HI(-t )

1
is equivalent to

ker (G'*) = {o},
and since

G'#z* = B*T*(—tl—s)z*
it follows as in corollary 3.4 that W(t;=) is invertible, for

< W(tim)h rh

1 7By Hi(t(}'Hl(t') > r||B*T* (-1)h

A &
1

y R T 1 ol o i o
i o'u

for hl £ Hl(—tl) and the right hand side is zero only if hl = 0.
We cannot conclude that W(t;») has a bounded inverse, however. But
if W(t;») has closed range Rt(W) then W(t;e) has a bounded inverse
for £ e [to'to+tl) and so Q(t;o) converges to Q(t;m) on Rt(W). We
can therefore state that the feedback control in the semigroup case
is as in (3.10).
Stability

Having obtained the receding horizon feedback control we would

now like to prove that the system (3.1) with the control (3.10) is

stable, thus justifying the use of this control. 1In fact, we have

the following result, which will be proved first in the’ case of a group,

to avoid the technical difficulties initially:

Theorem 3.7 The system (3.1) with the control (3.10) where T(t) is

a group is stable and the function

Vix) = < x(t), W_l(to)x(t) >

is a Lyapunov function. (Note that we are now denoting W(t;«) by

W(t), for simplicity)




= T =

Proof. Suppose first that x, € D(A) . Then, the solution x(t) € D(A),
and

V(x)

< %(t) ,w"l(to)x(t) > + < x(t), W‘l(to)ic(t) >

=< Ax(t) - BR_lB*W_l(tO)X(t),W_l(tO)X(t) >

1

+ < x(t),W ~(t ) (A - BR_lB*W_l(t ) }mi(t) >
(o] o

Il
A

._l r=
Ax(t) ,W (to)x(t) > + < x(t),W l(t JAX(t) >

@]
=1 - -1,
-2 <W (to)x(t),BR lB*W l(to)x(t!_>

= < B W(EDW T(E)x(E), W (e )x(t) > + < W S(E )x(t), A0t W (e )x(t) >
(@] (@] O O Qo Q

“ B W_l(to)x(t}, BR_lB*W—I(tO)X(t) >

g % W(t) W_l(t Yx(t), W_l(t Jx(t) >
dt o o

I

- W_l(to)x(t), BR_lB*w_l(tO)x(t) >

by the inner product form of (3.6). However,

—W(t) = —T(—t)BR_lB*T*(—t)

is a nonpositive bounded operator, and so

ﬁ(x) =g W_l(to)x,(§§jto) = BR—lB*)W_l(tO) X > (3.16)
dat

for all x € H. Moreover,

-

Vi) <@ , X & H;

~
and the result is proved. 04
Suppose that V(x) = 0, then by the non-negativity of - dw(t) /dt

-1
and BR "B*, we have

dw (t)
dt

-1
0=-¢< V.y > = < T(-t,)BR "B*T*(-t,)y,y >

> r]|B*T*(—tl)y|[2

=

for all y € H, where r is as before. Hence}if the system is controllable
on any interval [ﬁo,fg+t£] r by theorem 3.3, y = o, i.e.

y = W_l(to)x = 0 and so x = O.
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We have therefore shown that

ker(dw(to}/dt - BR“lB*) = {o}

LAt ) ~1 % -4
Iet S = Tt + BR B* = T(—tl)BR B*T*(—tl) + BR B* and define
ok L
Sl = S°. Then ker S° = {0} and

V(x) < —|]S%Whl(to)x|[2.
We cannot show in general that the system is asymptotically stable, i
Alikbigngh W&  San. say Hhak allnos ker 8 = 4},

[1xl11= 11s™ =l|
is a norm on H and ' ‘

2 1 = f 154
Vix) > Cl]|X|f My e 2|||X|I|

IERE
for some constant Cl, and

’ 2
vix) g - ¢y []]x]]]

for some constant Cz. Hence the system is asymptotically stable in

B is invertible), then é% exists and is bounded (on Ra S%) and so

. However, if S35 has closed range (in particular if

the norm |]

v < - o ]x]|?
.- 3

for some new constant C3, and the system with receding horizon control
is stable in the original norm.
Consider now the semigroup case. We define the function V(x) by

i

V(x) =<x(t), W (to)x(t) >H =< x(t),Q(tO)X(t) P

The formal computations in theorem 3.7 again go through and we obtain
(3.16). The only remaining probleﬁ is to interpret the inner product
in (3.16) in the correct duality. However, if we assume that our
semigroup is sufficiently smoothing so that Hl(—t) € D(n) for all t > o
(e.g. in the case of analytic semigroups), then it follows easily from

(3.7)that the operator




_]_5_
-1 aw -1 -1
S(a) =W (to,a)(aE (to.a) - BR "B*)W (to,a)

is a bounded operator on H, where we have again inkroduced the dependence
of Won a. Also,we have S(qg)x converges for each x ¢ H as g+» and so
by the uniform boundedness principle S(x) exists and isa bounded linear
operator. Of course, S(») is also nonnegative and so S%(w) exists and
the same comments made above apply here with Sl replaced by S%(m).
Similarly, if S%(m) has closed range then the system is again asymp-
totically stable.

In the above discussion the length of the control period t) has

been fixed throughout. We now wish to vary tl so that the control law
responds quickly to large errors but much more slowly to small errors.

In order to bring out the dependence of W on t, explicitly, put

i1

W(t) = W(t=(t_ -t )).
1 o

Then,

W(tl) = W(t).
An obvious choice for tl is ||x||;P for some p 2 1. The norm in H may
be replaced by another norm if we require the control to respond quickly
to, say, large gradients of the state. We therefore have, finally, a
nonlinear control with the desired properties. The theory will now be
applied to two example$in the next section.
Examples

We shall now present two examples to illustrate the theory. 1In
order to compare the classical linear-quadratic solution with the re-
ceding horizon control, the examples will be the simple cases of the
wave and heat equations, where analytical solutions can be obtained.
Example 4.1
(6)

Consider first the controlled wave equation

z + u(t,&) (4.1)

et~ e
glo,t)y = 2L, = 0, 2{&8) = ZD(E), zt(g,o) = zl{g),
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with the cost functional
1
I, 2 Ll 2
J(u) =% f (ZE(E,tl)+zt(€,tl))dE + f f (%Zt(gft)+u (E,tﬁdEdt (4.2)
o o o

The system (4.1) is, of course, exactly controllable. On the Hilbert

space M- D(A%) x L, (0,1) introduced in section 2, (4.1) become

2
: 2] ( . /O
w(t) é( =T [® ) + [ 'Ju(s) ds
zt(t)) tiz) fo t-s(I :
and (4.2) may be written &
1
T(a) = (e)) wie))s +IO Gt w(e) ywle)>, + -<11,U>L2(O,l))dt

with M

0o o
(O I)' The inner product on H is given by

< wW,w> =< wl,w >H+ <W,w >

(2), 7= (B). e x = 00
for w = 2} W = (WQ , Wwhere H = 5 0,

w
Then, if
i Ql(t) Qz(t)
2 0,(6) 0, (1)
and
o] o0 'Q’
%= izl jzl 5 %° ¢j>H' L5 &g

where ¢i(E) = /2 sin ( TiE), it follows easily that the Riccati equation
has the unique solution given by
2 3 4 d; g

a = g = 0 o' = q = -
nm nm " nm nm 2 pm

Hence,

o) = ;-(I O)
0O I

I3
and the optimal control is u(t ,&) = - 7 zt(t,E).



R

Consider now th% receding horizon control for the cost functional
1 1 5
J) =[ [ uwi(gt)Edt

o o
Instead of solving the inner product Riccati equation (3.3) as was

done above, it is easier to determine W(to) from (3.7) (witha = o) and
then invert this operator to find Q(tg = W—l(to). Now the group for the

wave equation is

1
W <W > _cos nyt + — <w sin nrvt
2{ 1'¢n H " nn< 2'¢n>H mtl ¢n

-NT<W > si t + < > Cos t
¥ ‘ E{ ¥ l'¢n H o S w2'¢n)H nmt} ¢n

w
for [wl] e . Recall that the inner product on ¥ is given by
2 |
1 B 1 B
= W (B)wy (E)dE + fo W, (£)w, (E)dE

o

<w,w

=
H*

Using the facts that B* = LO i], R=TIand T = T , it follows easily

E -t
that
2, -1 ‘ o
] ¢i sin imt¢, — (§7) T cosjmrsinimTé .
- T ¢j ~iWSiniﬂTcosiWT¢i o+ cos jﬂr¢j
Hence, if
W W
Wit ) (=w(e)) = * 2
o L
) W
% W3 4

then each Wi has a diagonal matrix representation given by

2 sinZimt sin2irt
(im ) 1 1
= —_— t - ——— r W l.=—1{t
(Wl)ii 2 il 24im ( 4%1 2

. 1
1 or i

1
] = wa 1 — l
(W2)ii (W3)ii p (cos 21ntl )

Since W(t ) is invertible, it follows that
; Wt (—wowtw sw T Wt (W W Tw. W B
g B hhy iy W TH, p Wy =W W, W T,

-1 w] -1 -1
- + -W. W +W
( W1W3 w4 Wz) ( W, 1 W, 4)




s TR w=
provided W, and (W, W, - W W )W are invertible. It is an elementary
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exercise to show that, in the present case, these operators are inver-

tible provided tl > 0 and itl is not a positive integer. 1In the latter

case it follows that the receding horizon control is

wr = - RSB (e w(t)
TR +W)lz‘(t)+(wwlw +w) e 0)) |
13 "a 3 1" 4 t
= - - + -
(=W, W, w3w2) {WBZE(t) let(t}}.
and so
Sin22iwt
<u*,¢,> = 2 (in)z{t - ————~———l-) - l-(cos2i'nt - 1)2 _lx
iH . 4 L
4(im)
1 5 sin2imt
E{cos 21ﬂtl—l)<z€(t)’¢i>H—{lﬂ) (tl- ——EE;*——J<Zt¢i>H

If (itl) is a positive integer, then

2
< u* > == =4¢<z -
937y g, &t ® '

and if tl = 4, then the control is - % zt(t,E) as in the linear quadratic

solution. It can be seen therefore that the receding horizon control

gives much more flexibility than the linear quadratic case, and by

-1
ez 11

=1
the control will respond quickly to large values of |l(z'zt}||9t but
more slowly whew the latter is small.

|
|
choosing, for example
Exampleh.2

(6)

Consider the controlled heat equation |

z, = zEE + u(t,r)

zg(o,t) = 0 = zg(l,t) ; z(g,0) = ZO(E} (4.2)

together with the cost functional
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1 t

2 2T 3 2

g = [ 25,08 + [ (f 27,8 +u (t,0)d0)at .
o o o

The system (4.2) is only approximately controllable.

Let ¢i = /E_COSﬂiE L= 1256000 ¢O = 1 be a basis of Lzﬂj,il. Then

the solution of this linear-quadratic problem is known to be given by

the operator  such that

O(t)h = izo qii(t) ¢ <h,¢i B YV hesn

where each qii satisfies

-a, (t-t.)

a, (1-b,) - b, (1-a)e &
)y = .
93 () T (e (4.3)
(1-b,) - (l-a,)e =
i T
where
/4 4
ai = 2vV7 i +1
2 2 4 4
a, =-7m.i —-vmi + 1
5
2.2 /

bi =-mTi <+ w4i4 G I CE

The optimal control is u(t) = X ui(t)'¢i = - y g,,(t)z, (t)é,,
i=o i=o * *
where the state z(t) of the system is given by z(t) = z zi{t)¢,. The
i=o

controlled state therefore satisfies

z (t) = -qg (t)z (£) = -z (t) (4.4)

o] 00 (o] o

. L2 .

z,(£) = =(mi) "z _(t) - q, . (t)z, (t) . iz 1

i i ii i

Consider now the receding horizon solution and let




- 20 =

J(u) = f ug(t,E)dEdt

be the appropriate cost functional.

Then solving (3.3) as above, with final condition Q(tl) =a and M = O

we obtain the unique solution

=1
= -t +
q_, () (b, =t +%)
Q’rr212(t1"h) =i
I i 1
9 (8 = |G+ 57 )e - T332 1z 1
2m i 2m i

qij(t)=o,i¢j- ‘ |

(Note that since the equations for W and Q are time-invariant, we can
solve them over the interval [O,ti] rather than [to'tl+t;]') In order
to identify the spaces Hl(t)’H2(t) introduced in Section 3, we first

identify H = Lz[O,i] with 12 in the usual way, i.e.

< > .
X e L2 <« { x,e, 1 i3 o0 e 22

Of course,

2
|< X,e.> < o
1

Il ~1 8

Now, let H2(—t) be the space of sequences of real numbers {xi} such that

2 3

E a, (t)x‘? < @
: + 1
1=0

oo

together with the inner product <{xi}, {Yi} 2 = z aixiyi ¢ Where
i=o

2.2
ai(t} = exp{2r i"t}.

Then, clearly H2(—t) is complete and H2(—t) 3_22 since ai + ® ag i *>

for t > o. Identifying Q(t;a) with an operator on HE(_tl+t) in the
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~

obvious way, then we have Q(t;a):HE(t—tl) =+ 22, for t € [O,tl).

Note that 5 g
1 1 2r7i (tl—t) 1
Wii(t;a) = ((a‘+ >3 Je - 3 ) wi® 1
21 2m i
W (t;g) = t.-t+ -J:-
00 1 o

and so W(t): £2 > H;(t - tl) as we expected from the general theory.
Also, we have for the semigroup T(-t);

T(-t):2,. > H;(—t), t> 0

2

where Hl(-t) is the space of sequences {xi} such that

v 2
E ai(t)xi <o,
i=1

Now, as g -+ «, we have

Wii{t) = ) e

00 1

and so W(O):Q,2 -+ Range (W(o)), where Range (W(o)) is the space of

sequences {xi} such that

7
© X,
3 e
i=o b,

i

2.2
2 2 -2m i tl
where bi =21 i e .

Since Range (W(o)) E»HS(_tl)' with continuous injection, W(O;a) ~ W(O;m)
(=W (o)) in i(QZ,HE(—tl)). However, it is easy to see that Q(0;a) = Q(O;wm)

in the space f.(Range (W(o)), 22).
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The feedback control is now

u(t) = - J éii(O) z, (t) ¢,
. s

and the controlled system equations are

y 1
Zo(t} = = . Zo(t) (4.5)
1
D)2
" _ ey 29 1 |
Zi(t) = —(ri) Zi(t) = ; 2 Fel 5

{exp(2ﬂ2i2tl) -1}

and all that remains is to choose tl as a function of the state. The
differences in the control laws obtained from the normal linear-quadratic
solution (4.4) and the receding horizon solution (4.5) are now readily
seen. For example, the zeroth harmonic in the former case is controlled
to zero with time constant unity, whereas in the latter case z, converges

to zero with 'time constant’ tl. Hence if, for example, lzo| is large

1
initially and we choose tl = [z 1, then the large initial values of Z
o
will be reduced much more guickly. Consider the high harmonics as
i > «; then
2.2 2.2
g, 2 2n i ,a, -2 i ,b, =0; ab, =1,
i i i ii

Hence the value of : in (4.3) approximately
i

- -21212 - exp(-2m21(t-t.))

2
= 2ﬂ2i exp(2v212(tl*t)) + 1

if t # tl and i is large. Hence in the case of linear optimal feedback,
the control has little effect on the high harmonics, at least for times t

th
which are small compared with tl' Hence the i harmonic will converge to
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=2
zero with time constant (mi) =, in accordance with the natural unforced
dynamics. However, in the receding horizon case, the value of qii is
2.2 2.2 il ; 22 -
2r i {exp(2r’i tl) - 1} and, if tl is chosen to be (21 i) l, for

1

2 .2 - :
example, then qii(o) =21 i (e - 1) and lzil decreases much faster

then before.

It is clear, therefore, that by choosing tl to be a suitable
function of llz[| the nonlinear feedbéck law will respond quickly to |
large values of f|z[| but more slowly to small values of ]|z][.

If one required the control to reduce large spatial gradients of the

state quickly, then t. could be taken as a suitable function of

1

= Z - + z 2 g
I'ZI]Hz 0. 13 {II lle[b,l] |] EI|L2[O’l] }

Conclusions

In this paper we have generalized the receding horizon principle
to certain distributed systems. If the operator of the system generated
a group then the generalization is straightforward, but in the case of
a system defined by a semigroup it is necessary to introduce the spaces
H1(~t), Hz(—t) as we saw in Section 3. However, when the operator A is
self-adjoint and has a discrete spectral resolution, the feedback control
can be found explicitly as in the two examples above. The control has
been shown to have the desired property of reacting more quickly than
the linear quadratic solution to large error states but more slowly in
the presence of small disturbances.

The operator Blin this paper has been assumed to be bounded. 1In
the case of boundary control B is unbounded and it would be interesting
to see whether the theory can be generalized to cover such types of
control. This will be examined in a future paper. 7
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