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Summary

A general transfer-function matrix (T.F.M.) expression is derived
for the composition dynamics of ideal packed columns that are statically
symmetrical but are dynamically asymmetric: i.e. having a nununity
vapour/liquid capacitance ratic, c¢. For the special case of ¢ = o,
the system T.F.M. is derived completeiy anélytically to produce a
parametric T.F.M. resembling that for c = 1 previously derivéézﬁg the
authors. The result is successfully tested at high-and zero-frequencies
againstthe initial and final values of the system step-responses deter-
mined (a) analytically and (b) b; time-domain simulation. Complete

inverse Nyquist diagrams are presented and compared with the ¢ = 1 case.

It is noted that (whereas for c 1, the system response, for long
columns, is nonminimum phase), for ¢ = o, the system behaves in a non-
strictly-proper fashion with an abrupt initial negative response of
magnitude similar to the nonminimum phase dip produced when c = 1.

We conclude that the variation of ¢ does not greatly influence the

general response characteristics of packed columns.
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Introduction

; 1,2
Previous analyses

3 . ;
have produced precise, parametric transfer-
function matrices for ideal packed columns that are symmetrical stati- |

cally and dynamically. Static symmetry demands equality of the geometry

and packing characteristics of the rectifier and stripper and nominal
vapour and reflux flow rates chosen to produce even loading throughout

the column. An equilibrium curve, symmetrical about the —450 line and

these two lines are also prerequisites for static symmetry. None of
these assumptions are grossly unreal and indeed represent ideal operating
conditions. They have frequently been used explicitly or implicitly
in analytical studies by previous workers4’5’6'7

Dynamic symmetry implies equality of terminal vessel capacitances,
which is not too sericus a restriction, and, more importantly, equality
of vapour- and liquid-capacitances in rectifier and stripper (and vice
versa). Whereas these conditions can be approachedB (or even attained)
in real columns, the assumption was made by the present authorsin the
interests of mathematical tractability of the system T.F.M. The assump-
tion permits the ready diagonalisation of the system matrices and this
eases analytical solution very considerably. The model predicts non-
minimum-phase behaviour (- a novel result for distillation columns)
although most other aspects of behaviour predicted agree clnsely with the
findings of other researchers: approximate - analytical and empirical.

The present report outlines an approach to T.F.M. calculation from

mixed liguid/vapour feed compositions located at the intersection of
the system partial differential equations (p.d.e's) that reduces the



labour of calculation for any given system. With the aid of this
method, it has been possible to calculate the T.F.M. for zero vapour-
capacitance in the column. This is clearly a condition far-removed
from the equal capacitance assumption and is closer to the condition
at which most columns actually operate. (In tray-type column analysis,
vapour-capacitance is usually set to zero). The results show that
either assumption leads to substantially similar transient response
predictions so demonstrating the excellentlrobustness of the model
previously derived by the author$.

General T.F.M. description

1,2
Previous reports '~ have shown that the composition dynamics of
a statically-symmetrical column may be described, after double Laplace

transformation, as follows:
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where v and x' denote small disturbances in vapour and liguid compesition
in the rectifier and stripper respectively, Y and xe' their associated
equilibrium values, z. and 22 are related to perturbationsv and ! in

1

vapour and reflux rates thus

. & (4)



where G 1s the steady-state composition gradient and Vr the nominal
rectifier vapour rate. The initial slope of the linearised equilibrium
curve is o, p and s the Laplace variables for transforms w.r.t norma-
lised time 1 and distance h, related to real time t and distance h' by
T =t k/H and h = h'k/vr (5)
where H is the stripper liquid capacitance p.u. length, and k the
rectifier evaporation rate p.u. length P.u. composition departure from
equilibrium. h is measured from an origin at the ends of the column
(bent into a conceptual u-tube) so that yv(o), x'(o), Xé(o) and ye(o)
denote the composition variables entering or leaving the terminating
vessels. Superscript ¥ denotes transforms in pand s w.xr.t =t and h
whilst -~ denotes transforms in p w.r.t. 7 only.
Parameter c denotes the ratio of rectifier-vapour to stripper-
liquid capacitance (= stripper-vapour/rectifier ligquid capacitance!}
and it is the effect of varying this parameter with which the present
report is principally concerned.
The terminal boundary conditions are
.0 ) = [y
%é(o) w x' (o) J (6)

Py

h
h h = i
where e(p) 1+ Tp (7)

where T is the normalised time-constant of the end~vessels so that from

(l);(2) and (6) we obtain, upon inversion to the h,p domain

y (L) . [ 1 ] 1 0 gl Y
+ y(2)Q(L) 1 + R(L) L =0 (8)
ye(L)J o heJ 0 o J Z5 J
25 =1 (
and Xe(L) - e ( o he " ’ o 0 ( zl}
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where L is the normalised length of rectifier and stripper and

O
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é(s) =}fhg(h) . RI(s) =£h5{h)

N * ~ *

g{—s)=ihg (h) 5(-S}=jh5 (h) (10)
where

~ 1= ~ -1-

R(s) = s Q(s) and R(-s) = -s Q(-s) (11)
Now the feed boundary conditions are

v(L) = xé(L) = (E/2)zl | (12)
and x' (L) = ye(L) + (E/2)22 ‘ (13)
where E =a -1 (14)

and on eliminating the feedpoint wvariables from (8) and (9) using (12)

and (13) we finally obtain the important result

1)

1 a h y (o) 1 o . la o]
R ’ € - |R(L) + R L —%

~ T i~ ~=T
In principle therefore a T.F.M. between [y(o), x'(oﬂ and Lzl,zﬂ can

*
be obtained, for any given c, by calculation of QIL), Q_(Lh R(L) and

*
R (L). (via (3) and (10)), forming the p-dependent coefficient matrices

on the left-and right-hand sides of (15) and cross multiplying the L.H.S

matrix.

The task is reasonably straightforward for ¢ = 1 since, because of

their symmetry, both left-and right-hand-side coefficient matrices rea&”j

¢ h n 1 x' (o) 0 a 0 }.J o

~ - T
diagonalise by choosing cutput and input vectors [y(o) - x'(o), y(o) + x'(oﬂ

and [El+%2,él¥2; L leading to the same diagonal T.F.M. produced somewhat

more laboriously in previous reports.

Special Case of Zero Vapour Capacitance (c=o0)

If we define complex variable g such that

2

then we obtain after transform inversion and lengthy but elementary

algebra

* 2
Note the different definition of g (=p +2p) in previous reports zased

on c = 1.0,

2 *
g =p/4+p (16)
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and because of the symmetry of the R.H.S of (17) this diagonalises fairly

readily to give the expression

_1 -
1, 1 ta he—l)(q/P)sinh gL - (1/2) (a lhe+l)cosh alL . B
=i -
1, -1| [0, =(a "n *D) (p/4q)sinh q L + (1/2) (a "h_-1)cosh q L
-pL/2
1, -1| |e » 0 (= R.H.S. (17)) (13)
1, 1| |o ' epL/2

The similarity of the expressions in the diagonal matrix to the
denominator expressions for the ¢ = 1 T.F.M. in previous reports '~ is
striking but the extraction of the diagonal, post-multiplying delay-
matrix must not be ignored in this case (¢ = o). The diagonalisation
achieved clearly leads to a great saving in effort in finding the final
T.F.M.

The R.H.S of general equation (15) is somewhat more tedious in
its evaluation and does not diagonalise by choosing simple input output
combinations. After careful inversion of their constituent Laplace
transforms)expressions given in equations (20) and (21) are obtained

for B}L) and Ef{L)
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Now from equations (17) and (19) it is clear that for c = o,

equation (15) may be expressed in the form
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From (22) therefore we obtain the T.F.M. relationship
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where T.F.M. G'(o,p) is given by
( e O\

|
|
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and in terms of 'tilt’' and 'total' composition changes we cbtain

- x! (o 4+ z )
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= Glo,p) | i

| |
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J
The problem therefore reduces to that of calculating matrix S

*
(egn. 23) from E(L) and B‘(L) (egns. 20 and 21) from which T.F.M'

(27)

to
&

(29

G'(o,p) and then G(o,p) may be quickly determined. It is convenient

to express S thus



and as a stepping stone towards finding S from egn. (30) 1ts non-
diagonal constituent matrices, derived from (20) and (21) are given
in eguations{(31) and (32). {In simplifying the coefficients of
equations (20),(21),(31) and (32) considerable use is made of equation
(16) relating g and p.}

Thevlements of T.F.M. G'(o,p) may be finally obtained from §,

dl and d_ in the form given in equations (33) to (35):
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L/ 2 epL/2}_
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Zero- and High-Frequency Checks

There is of course enormous scope for error in the algebraic
manipulation leading to the results given above and it is necessary
to apply whatever cross checks are available to guard against such
errors. Fortunately, the results for zero frequency will be independent
of capacitance ratio c and this result has already been obtained and
tested for the case of ¢ = 1.

Zero-frequency T.F.M.

The limit
g..,{a,0) , g . .lo,0)
Lim G'(o,p) = Lim G(o,p) = ( L1 ke (37)
- - (
P =+ o0 P e} L qu(O’O) , q21\o,oj

*
and on taking the limits of the R.H.S's of equations (33) to (36) it

is found that

2 I
af{l” e- L(a+l) - e/2} ;
- = 3
gll(o @) 2¢L + o + 1 \38)
glz(o,o) = ng(o,O) =0 (39)
and
_ of{e/2 + (o+l)L}
(3'22(0,0) = e (40)

these results being identical to the ¢ = 1 caseprevicusly derived, so
giving some confidence in the model derivation. A high frequency check
provides the additional corroboration needed for full confidence.

High-frequency T.F.M

Now from (16) we deduce that
0.5
g = (p/2) (1+4/p) (41)
so that g~ (p/2)(1 + 2/p) =p/2 + 1 , as |p| > @ (42)

Setting p = jw therefore, from (29) we obtain

( coswL , . wlL

*2— r J 81N "—2‘
G(jw) = G'(jw) (43)

Jj sing&_, cos wlL

2 2

*
Note that g + p as p > o
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and using results (42) and (43) we quickly deduce from (33) to (36)

that

-1 £ |1 -L _-JoL |-
Lim G(jw) _ (ce =l = L.SEe L) ! i EE.L e ¥ ol (44)
w —+ %« 2 1 1 : 1 =1

The four Nyquist loci thus converge to small orbits of radius

_L wt " _2
e e /4 about the real point -(1+1.5ce L -0 e L)/2.

Now a result for the initial response of the ¢ = o system to
input steps, v and &, £is quickly cbtainable directly from the system
p.d.e's (1) and (2) and equation ,(3):

In response to a sudden step in v and £ the liquid composition
changes, ¥, and x', will be zero initially because of the liquid capa-
citances in the rectifier and stripping sections. Furthermore, output
changes ye(o) and xé(o) from the accumulator and reboiler capacitances
will likewise be zero initially. 1Insertion of these results in (1), (2)
and (3) gives simply the vapour-change equations:

(1 -8y = -3 -2 /s (45)

and (1 + s)xe =- z_/s (46) |

1

These may be quickly solved in conjunction with the feed boundary

equation (21) to give

plhel = PLE & 8 P L w e"ZL)El (47)

which may be expressed, knowing that x'(o) = O initially, in the 1
matrix form

y{o) - x'(0) st oL, 1 1 z, *z,
— - JE : a e (48)

y(o) + x'(0) 11 z, * i |

Apart from the small orbital terms of equations (44) therefore the |
initial unit step response obtained from (48) is identical to Lim G(jw)

as w -+ », as would be expected. This evidence, together with that of



the zero-frequency analysis of Section 4.1, thus validates the accuracy
of the T.F.M. expressions (33) - (36) wvery thoroughly indeed.

Computed results and discussion

Fig. 1 shows transient responses of v(o,T7) - x'{(o,7) for a unit
step input in z, + Z, (with z2) "2, = 0) computed from the system
p.d.e'2 and boundary conditions for variocus values of ¢ in the range

© < ¢ <« 1.0. The system parameters are L = 5, € = 1, (a = 2), T = 5,

It is interesting to note the persistence of the non-minimum phase

behaviour of the system with changing c and that the initial wvalue

of the response for c¢ = ¢ is identical to that predicted by eguation
(44) {obtained from the T.F.M. G(o,p)} and equation (48) (obtained
analytically from the p.d.e's directly). The final value of

y(o,7) - x'(o,7) is found teo accord with the eguation (38) for gll(o,o)
{alsoc obtained from gjo,p)}, as does the response of y(o,1) + x'(o,1)
(not given here) for a unit step in By~ By (with z, -+ By, = Q).

The similarity of the ¢ = o and ¢ = 1 cases is demonstrated by

*

; ; ; 1 ; ‘ a
the inverse Nyquist loci (o,3w) for the two cases given for

9
L=5,e=1, T=5 1in Fig. 2. The high-frequency tail on the ¢ = 1.0
case, not present with ¢ = o merely inidicates the rapid but finite
(negative) rate-of-rise of y(o,T7) - x'(0o,7) in the presence of vapour
capacitance. The finite negative destination of the locus for c = o
merely indicates the abrupt negative nature of the system's step
response in this case. The general features of the loci for these two
extreme cases are otherwise very similar.

We may therefore conclude that setting c=].0 is not too important
a limitation on the applicability and robustness of the T.F.M. model

L 23

previously derived by the authors and the advantage of its relative

simplicity may be safely exploited in control system studies.

*
Obtained from equation (33) and reference 1 respectively.



