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Introduction L

In this paper we shall consider the optimal control of a chemical
reactor which consists of two concentric tubes, the inner of which
contains the reactants and the space between contains the coolant.

The directions of flow of the reactants and coolent will be assumed here
to be parallel (the co-current model) since the rate oé reaction has its
maximum value at the inlet of the reactor, and so the maximﬁm rate of |
heat transfer should also occur at the inlet. The controls can then

be either the flow-rates of thereactant and coolant or inlet concentra-
tion and temperature.

The dynamical model of the non-adiabatic tubular reactor in the

form of a set of partial differential equations is obtained by making

the use of mass and energy balance and is based on the following assumptions:

(1) Heat loss to the surroundings is negligible

(2) The heat conduction takes place radially and not along the
axis of the reactor.

(3) The system states (i.e. temperature,reactant concentration etc)
are dependent only on the axial coordinate and are uniform
throughout the cross-section of the reactor. Also, the flows
are sufficiently turbulent to cause effective heat transfer.

(4) Specific heats, heat transfer coefficients, densities and rate
of reaction are constant with respect to temperature and
concentration variations.

(5) The metal shell is sufficiently thin and its thermal capacity
is negligible so that all the heat loss from the reaction is
gained by the coolant.

The equations describing a chemical reactor are well—known(l’z)

and can be written in the form
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where
X+ = mole fraction of product
Tl = absolute temperature of the reactant
T2 = abscolute temperature of the coolant
Fl = feed flow rate of reactant
F2 = feed flow rate of coolant
k = reaction velocity per unit mole fraction of reagent

A_,A_= effective cross-sectionnl areas of the reactant and

172
coolant respectively
AH = energy per mole of produce replaced by reaction
a1 thermal capacity per unit volume of the reactant
ch = thermal capacity per unit volume of the coolant
pl = molar density of reactant
Py = molar density of coolant
and
k = k(t) = koe_b/Tl, B o=
o = RleTtd(FlFZ}O'S
o. e
RlFl - + R2F2 B
where E = activition energy

o
Il

gas constant



ko = reaction rate constant
Rl = heat transfer coefficient from reactant to coolant
R2 = heat transfer coefficient from coolant to reactant

F F
To simplify the analysis, we shall assume that lS/Al= 2s/A2,
F
and, in fact, we shall normalize ls/Al to 1, where the subscript
s refers to the steady state. (This assumption can be removed at

the expense of more notational complexity).

Putting Tl = Ale 5 T = Ale Py where H = ¢ H = C
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Using elementary linearization techniques, we arrive at the equations
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where we have again denoted steady-state values with a subscript s.

Hence,
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where F = = = 1 (by assumption)

F = F
lS/Al 25/A2

(Note that, in the above linearization, we have written

X=x+X,606,=¢, +6, ,F, =f, +F, ,i=1,2)
S 1 1 1S 1 L 1ls

These equations are now in the standard control form

X = Ax + Bu,




although the data x is now an element of a Banach space. This will
be discussed further in the next section.

We first mention some existing literature on the control of
chemical reactors. First, Fjeld and Ursin(3) investigated a plug-flow,
empty tubular reactor with a low-order state-variable model approxi-
mation, by dividing the cooling jacket of the reactor into a finite
number of sections and assuming that the heat transfer coefficient of |
each segment can be varied independently of one another. The flow rates
were chosen as control variables. ©h and Schmitz(4) studied a plug-flow
recycle reactor using a conventional PID controller to stabilize the
reactor.

(5:8,7 studied the control problem of

Georgakis, Aris and Ammundson
an empty rubular reactor with uniform wall temperature. A state-variable
model was derived by means of orthogonal collocation in space and a
Luenberger cbserver was used to estimate the unavailable concentration
measurements. Recently Boniun et al(B) have considered the dynamic
behaviour of an autothermal tubular reactor with internal countercurrent
heat exchanger. The system of partial differential equations governing
the problem was again discretized by the method of orthogonal collocation.

In this paper we shall avoid the use of such discretizations by
considering the reactor equations as ordinary differential equations in
an infinite dimensional space. This will also obviate the difficulty
encountered in frequency-domain methods when the coefficients of the

spatial derivatives depend on the spatial coordinates.

Notation and Terminology

In this paper we shall consider the system dynamics to be defined
by an ordinary differential equation

ax

= -+ = 2.].
. Ax Bu , x(o) X ( )



whose state x(t) belongs to a Banach space for each t. The operator
B is bounded, but the operator A will be unbounded and so the operator
exp (At) may not be defined by the usual series representation. Instead
it is possible to define a semigroup T(t) of bounded operators which
has similar properties to the exponential, namely

T(o) = I (identity operator)

T(t

+t2) = T(tl)T(t ) (tl,t > 0)

1 2 Z2 = \

lim+ T(t)x = x , for all x € X

t+o

Ax = lim+ %{T(t)—l)x, x & D(a) (the domain of 1a).

t=o
T(t) is said to be generated by A and the solution of (2.1) is given by
the variation of constants formula
t
x(t) = T(t)x_+ [ T(t-s)Bu(s)ds , x_ e D(a). (2.2)
o
Note that (2.2) is well-defined even when X € X\D(A) and so any solution
of (2.2) with x € X may be regarded as a generalized solution of (2.1)
called a mild solution.
The state of our system will be represented by a triplet ¢ = (x,¢l,¢2 )
of functions each of which is an element of the Hilbert space L2(Q),

where ) is the spacial domain on which the system is defined. The space

2
of all such Y will be denoted by L” (n; R3) which has the inner produck

T 2 3
<Y, > = é v (2, (2)dz gy, LO(QRD)

2 3
It is clear from this definition of the inner product that L (f;R)
3
2
is naturally isomorphic to @ L (;R) (i.e. the direct sum of three
’ i=1 5 3
identical copies of L (2;R) and so a basis of L°(Q;R) may be represented

in the form
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where {ei}i>l is a basis of L2(Q;R). The basis in (2.3) will be

denoted in the sequel by {E;}i> for a fixed basis {ei}.

2
(

1

3 *
Finally, if B is a bounded operator on L°(Q:R”), then B will

denote the adjoint operator of B defined by

* 2 3
h = " h_,h L ;
<B hl, 2)> <hl,Bh2> 10, (OiR)
For a more complete discussion of the above, see Yosida(g), Curtain,
Pritchard(lo).

The Linearized System

As we have seen, the linearized model of the reactor may be

written in the form

90X X

= = - 2= g + b+
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where the coefficients are defined in the introduction. These equations

may be expressed in the compact form

_.E,lp = -—aibf_;. Aw + B u, (31)

at dz

T .
where V= (x, ¢l:f%) 11 = (fl,fz)T and the A and B matrices (which
depend on z) are, of course

A = i = = 0O
@015, 5x3 (B3 =23, =0
B = (b (b__, = 0)

U)Kﬁ3dsﬁ2 12



We shall suppose that equation (3.1) is defined on the interval

Q= [b,IJ, in the spacial z-domain. On the boundary, { is given by
. 3

some fixed value } € R, and so we introduce the operator P defined

by

2 3
where P is defined on the subspace D(P) of L (O;R”) given by

3

D(P) ={w £ LZ(Q;R ): dy/dz € Lz(Q;R3),w(o) = E-}. Of course,

in (3.2), the derivative is defined in the generalized sense; also

3
D(P) is (isomorphic to) Hé(Q;R‘). (Lions, Magenes(ll), Adams(lz)

(9)

).
It is well known Yosida that P generates a semigroup defined

by

(Ttw)(z) = Y(-t + =) (3..3)

2 3 2/ 3
for any ¢ € L (]—W,EJ; R ). DNow, regarding A as an operator on L LLGnL];R )

it is clear that A is bounded and so the operator

HA=p +2

L3 ; .
generates a semigroup St (see Kato{ )) given by the integral equation
£
s =T + AS u ds.
two two f Tt—s St o
o

The solution of this equation is given by the series

8. Y= Z u (t) (3.4)
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Writing u explicitly in terms of the spacial coordinate z, we have
t

u (t,z) = fo A(z-tts) u__ (s,z-t+s)ds

By induction, it follows that

t 1 n-1
- ~-t+ -t+ =]
2 Mo = f f L f Az t+sl) Alz-t sn)uo(sn,z Sn)dbn
n
o o o
] s s
= I n-1 n
u_ (t,2) =) e f (1 A(Z_t-'-si})(TS v )(z—t+sn)dsn. ds
o o o i=1 n
t Sl Sn—l n
=g J e f (I A(z-t+s,)ds_...ds ) y (z-t).
1 n 1 o]
o] o o i=1
Writing o &
co el 1 n-1 n
alt,z) =1+ ) [ [ ... (T Alz-t+s;))ds ...ds,
n=1 o o] o i=1

it follows that

(St wo)(z) = qg(t,z) wo(z—t),

2 3
where we can regard St as being defined on L” (Q,R7), by defining,

2
for wé e L (Q;RB)

v(2) = )9

é(z) if z 2 o

N if z < o

We therefore have a well-defined solution of (3.1) given by
=
2 3
7 = + B Vi
Y(t,z) (s v5) (2) fo (S,_gB W (2) ds for y_ e L°(Q;R")

|

. .ds
1
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In the next section we shall define an appropriate quadratic
cost functional for this problem and see that a Riccati equation for
the optimal control may be derived.

The Optimal Control Problem

Having obtained the general solution to the linearized equation,
the only remaining point is to define the cost functional for the
control problem. Since a linearization has been made about the equili-

brium solution for x, ¢l, it seems reasonable to choose the functional

I =< YT =M -yt >,

T
S AT BN TN CI A E uR Y S
o] e 052)

2
where M is the operator defined on L (Q;R3) by
T
M IP = (X,d)lro)

2
for ¥ = (x,¢l,¢2)T e L (Q;RB), and R is a positive self-adjoint matrix
. 4
in R .
; : 2 5

We therefore have a tracking problem defined on L (f;R ), the

. . . ) . (10)
solution of which can be found in Curtain and Pritchard . In fact,
the optimal control is given by

_l * -1 *
u (t) = - R "B Q(t) ¥(t) - R B S_(t) ,

where

*

T *
s_(t) = - U (T,u)My' - [ U (p,t)My’ dp
=

oo

with Q(t) satisfying the inner product Riccati equation

g—-< Q(tYh,k > + < Q(t)h,ﬁk > + <J&h,Q(t)k > + < Mh,k >

dt

_ *
= < Q(t)BR lB Q(t)h,k > (4.1)



_ll_
on the interval [O,Tq with the final condition
Q(T) =M (4.2)

and U(t,s) satisfying the equation

&
oo *
u(t,s)h =5 h - f S._, BR 15" () ula,s)hda (4.3)
S

2 3
for any h,k € L (2;R7) .

To solve the Riccati equation (4.1), introduce an orthonormal

2 3
(;R) as in section 2. Then,

basis {eh}ha € D(A) of L

>1

< Q(t)e,,e, > + < Q(t)é ,Re. > + <dke ,0(t)e. > + < Me.,e. >
1 ] 1 J i J 1 J

* i

-] -
= < Q(t) BR B Q(t)ei,ej >

or,
(s o] co [eo} o l
- T_.
4.+ Ya..a, + Ja.a =) Ya bR baq. -m, (4.4)
ij k=1 13 jk Koy 13 ik 1=1 k=1 ik—j —* 23 ij
where,
0
oY =L 5 g
=1 "ij J
sKe, = ) a, e
i 11 ij 3
Me, = ) m, e
i g vy
and
*—
Be, =Db, € R2
i —i
The final condition for equation (4.4) is Q(T) = M or
q..(T) =m,, (4.5)
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Equations (4.4) and (4.5) define an infinite dimensional nonlinear

system of ordinary differential equations which are difficult to solve

numerically. To alleviate this problem, replace the operator M by the

. . , 2 3
operator PLM, where PL is the projection onto the subspace of L° (Q;R”)

generated by the basis elements Ei,_,., EL. In terms of the cost
i

functional, this means that we are requiring only the first L Fourier

coefficients of the error Y(t) -y' to be minimized. Provided L is

sufficiently large, this should be satis¥ actory.

The equation (4.4), which as a unique solution, can therefore be

seen to reduce to the system

L L L T T 1 Wl
a5 * Jaa + Ja.a, = ] ] q bR b g, -m lgi,jsL (4.6)
17 k=1 13 jk kel ik ik 4=1 k=1 T3 ~% i3 J.jr
|
( J
LAT) = .
i3 ) i3

This equation can be solved numerically for Q, which can then be used

in (4.3) to determine U(t,s). In fact, let

Il o~18

u(t,s)e. =
1

u, .(trs)g. i
g By j

L

then, putting h = E; in (4.3), we obtain

oo . . t —l*
'z uiét,s)ej(z):a(t—s,z)ei(z—t+s)~f S._gBR "B Q(B)

j=1 s i

Il ~18

u  (a,s)e.(z)dp
;13 3

_ t © L L
=a(t—s,z)e_(z—t+s)—f s
i -

s TPy 4=1 k=1

o L L

t
_ T ~1
= q(t—s,z)ei(z—t+s)—f a(t-g,z) Z X y uij(s’s)qjk(B)EQR Ek

s 9=1 4=1 k=1

and so
L

Li 'k Lo
T -1
u, . (£,8)=BE(i,j,t-s)- ] ) [a (B){ ] bR b E(L,3,t-8) }u . (B,s)dp
I m=1k=1"s ™ g% i 1

T -
LI Jues)ay (BIb)R

h
Ekeg(z)dB

R(z—t+8)d8

(4.7)
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where E(i,j,t) = < u(t,z)gi(z—t),ES(z) > . Let u, (t,s) be the

column vector consisting of u,.(t,s) for 1 & j« L. Then (4.7) is
i

clearly an integral equation for Ei(t,s) (for each i 2 1) which can

be solved by standard methods. Then, Soc is given by

© L T o L
s (t) = - z X u,.g1 < w',gl > = f Z X u,,(p}t)g: < w',g: > dp
© i=1 =1 *7 * J t i=1 j=1 ™I * J
t
o L o . _
= - z E {uij(T,t) + f uij(p,t)dp} e, <Y ,ej >

i=1 j=1 t

and the optimal control is

L L
== =1
(t) = - < t), e, > g, .(t)R b,
" jzl 121 WL By %3 -
CS) L T -1 .
= .-(Trt) + ..( rt da ]' R b < '1 .2 # (4-8)
izl jzl {ulJ ft u13 frekldp —1 v e]

It is therefore seen that the only on-line computation which has to be

done is the evaluation of the Fourier coefficients of the state P(t)

and the summations involved in the expression for u (t). Of course,

this assumes that a measure of the state y(t) throughout the reactor

is available. If y(t) cannot be measured everywhere then the application

of an optimal filter to give an estimte w*(t) must be considered. $*
would then be used in the expression (4.8) instead of the (unknown) true
state Y (t). The evaluation of w* will be considered in a future paper.

5. Conclusions

A theoretical study of the optimal control of a chemical reactor

has been considered from the viewpoint of distributed parameter theory.
It has been shown that the optimal control may be derived from an

infinite-dimensional Riccati equation without the need to take Laplace

transforms in t and z, which has been applied in previous studies of
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this problem. The latter approach, of course, is only applicable when
the coefficients in the differential equation are independent of the
spacial variable z. 1In the general situation, however, this is not

the case and approximations must be made to apply the transform integral.
The infinite-dimensional approach does not require such approximations
and thus is more general than the transformation theorf.

The cost functional chosen in this paper is the mean squared error
of the actual and eéuilibrium states. Since the dynamic equations are
obtained as a linearization of the true nonlinear dynamics about the
equilibrium states, this would seem to be a good functional to choose,
since large excursions from the equilibrium state would mean that the
linearized equations are no longer valid.

As stated earlier, the problem of optimal eségtes of the actual

states and the implementation of the control will be considered in a

future paper.
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