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In this paper we shall consider the operation of system expansion

Introduction

in the case of linear and semilinear systems. The emphasis here is on
stability theory with particular attention being given to an extension
of the Popov criterion in Anderson's multivariable form (see Anderson
(1965) and Tokumaru and Saito (1965)). The latter condition is very
stron§in requiring the positive reality of a certain matrix function.
In the present work we shall seek to generalize this result by using
system expansions §o as to require only certain submatrices, which are
to some extent open to choice, to be pesitive rezl.
There are, of course, many papers on large scale systems, for example
Banks (1976), Callier (1978) where graph thecretic decompositions are
used Banks (1979) and Araki (1975) where nonlinearly connected subsystems
are considered. The idea of overlapping decompositions and system exten-
sion was introduced in many distinct areas of application: for example,
in traffic control (Athans, 1967), economics (Acki 1976) and power
systems Siljak (1978).
In Section 2 the basic terminology is introduced and in Section 3
the extension of linear systems is considered leading to a definition of
generalized extensions via 'expansive resolutions'. The notion of system
extension is generalised in Section 4 to the case of semilinear systems
where consideration is given to the multivariable Popov criterion.
Finally an example is presented, which illustrates the application of
system expansion to absolute stability.
Terminology |
Throughout the paper we shall use the standard state-space representations
of systems. However, in discussing expansions we shall introduce partitioned
matrices and vectors. In the case of the vector x = (xl,x ,...xn)e Rn,

we shall use superscripts to denote individual components of x, to distinguish



them from the subvectors of a partition of x, which will be denoted by
subscripts. For example, if x is partitioned into @ subvectors each of

dimension less than (or equal to)n, then we write

X = (xl,..-,xx).
Only when each X, is of dimension 1, i.e. a = n will we write
il n
== Hes s = ee o X ¥
x = (% xn) (x, )

these being no risk of confusion in this case. Similar remarks apply to
partitioned matrices.
In the following discussion, T will denote a matrix of full column
L
rank and T will denote its pseudoinverse (Nashed 1976). 1In this case,
I T =1 T
T =(TT) T
T . § G
where (.) denotes matrix transposition.

Recall (Anderson and Moore, 1968) that a matrix function Z(s) of a

complex variable s is positive real if Z{®)< «» , Z has a decomposition in

the form

2(s) = J + HT (sI-F) ‘g

where F,G,H,T are real matrices and

Z(jw) + ZT(—jm) Z o for almost all real w.
(i.e. the matrix on the left is non-negative definite for all real ,
apart, possibly, from poles of elements of Z(.)).

We shall also mention, briefly, the notion of Category, which is a
collection (class) of objects ¥, together with sets of morphisms [A,B]
for each pair of objects A,B 6”6, such that composition of morphisms
B is defined (if g € [A,B], g€ [B,C]) and

(i) 4 1, € [A,&] such that 18=8,71 =¥

for B € [B,A] ;v € I:A,B] (existence of identities)
(ii) (aB)y =0 (Ry) whenever both sides are defined. (MacLane, 1971).

An isomorphism in Lis a morphism g E[Aqﬁ] such that there exists an

inverse morphism g € [B,é] such that gg = lB' Ba =1
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Expansion of Linear Systems
Consider the linear system
. n
5: x = Ax , x(o0) = xoe R (3.1)

and introduce the expansion X of x by
X = Tx

where T is of full column rank. Then we consider systems

S: % = A%, x(0) = ;:Oe R (3.2)
where x = Tx , and
o o
= I
A=TAT + M (3.3)
2 |
for some matrix M € R, as in Ikeda and Siljak (1979). For a given

extension matrix T, it is desirable to have a characterization of the
matrices M such that

x(t;xo) =T x(t;x ) (3.4)

whenever io = TXO . (In other words, if the initial condition of system

S is obtained from that of system S by expanding with T, then the solution
of S may be obtained fromthat of S by applying TI). Such a criterion is
given by Ikeda and Siljak (1979) in the form

I i
T MT =0 for 1 <£1ig<n . (3.5)

However, this condition is not sufficient for (3.4), as can be seen by

considering the scalar equation

-

Xx=x , x(o) =x € R
o

and the trivial expansion

: I 2

¥ = (TT + MZ , x(0) = §O€' R (3.6a)
defined by T = (l,l)T. Then the conditions (3.5) reduce to the single
condition (since n = 1):
m +m. +m. +m, =0, for M = "m m \ € R4 (3.6b)
i 2 3 4 ! (1 2 : :
.m. m
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-satisfies the condition (3.6b), but

I\J|l—'

In particular, M

O K

1R

. I
and so the solution of (3.6a), when 'contracted' by T is

B
{exp(T T + M)t}x = 3 [pos %t - sin %t, sin Lt + cos 7£] if ﬁo =T x

T . . t t
T %(t;% ) =e x cos t #e x_=x(t "x).
o o Q ) o

A complete characterization of the matrices M is given in the next

result.

Proposition 3.1 The system 8 iz an expansion of the system S if and only

if
F b ] .
det M=0and T M T=0,1¢<1 < n-1. (3.7)
Proof: S is an expansion of S if io =T Xo implies that
T = -
x(t;x ) =T x(t;x ) , for all t > o,
o o -

which holds if and only if

At I At

e =T e T , for all t > o .
Now,
I At I (TaT' + M)t
T e T=T e T
I 1 I 2 2
= {Iﬁ+(TAT tME + 3, (TAT + M)t + ...} T

1 2 2
I +At +— At + ...
n 2

1 I I I I I2 2
+ (T MT)t + (T"TAT MT + T MTAT T + T M T)t

[\J|>—'

SAPT
. s At : .
If the right hand side equals e , then, by equating coefficients of t,
it follows that

T
TMT =20

2 I 2
However, the coefficient of t is now just T M T which must also be zero.

G o 3 ; ; - n-1
Continuing in this way up to the ciefficient of t , it follows that

TMT=0,1g<i<n-1, (3.8)



Now the coefficient of trm1 must be TIM?;T =("'1)K-1TI (det M)T, by (3.8) and
the Cayley-Hamilton theorem, and so detM = 0. The conditions (3.7) are
therefore necessary. They are clearly sufficient and so the result is
proved. O

The application of system expansion to the study of stability has

been demonstrated by Ikeda and Siljak (1979), where it is shown that if

the system \
A g
ty 11 Bim *1
s: S '
©oat B . /
VA - . A
Xm \"m1 mm \ xm }
T s n \
where x = (xl...xm) is a partition of x € R and A = (Aij) is the cor-

responding partition of A, is expanded to the system

BX fB s osm By ) %\
il {11 Im / I
g -| |
k. | \a- ... A -
\-Xm ml mm \-xm
then the stability of S (and therefore that of S) may be demonstrated by
a Lyapunov function
v .T
V= ) x H X
; 1 1 a
i=1
where Hi is chosen to be the identity matrix  in the transformed state
space where Ai is diagonal. (c.f. §iljak (1978)). It is also shown that
this method will work when that of disjoint decomposition due to Araki (1975)
does not.
The method therefore has genuine applications and it is natural to ask
if one may expand the system S further. Suppose then that

w I
2 AT + = A
S5 Tl 1 Ml

is an expansion of the system S defined by A, and



-
; Ti&TI+M—Z
2 2 2
is an expansion of S. Then
A=T, T AT TE 4T M T 4 (3.9
B R 1. 2 2 1 72 2 - -9)
Of course, if x =T x and X =T % =7 T x , then
o 2 2l
I - ~ T s %
i =T r = T I I
%t XO) ] X (t xo) Tl x(t xo)
and so S is a generalized extension of §S.
Proposition 3.2 IE
L I T
T =
(T2 l} Tl T2 (3.10)

holds for the expansion matrices Tl’TQ’ then S is an expansion of S; i.e.
A may be written in the form
= E
A=TAT + M,
Proof From (3.9)
= I
A=TAT + M
where

I
T=T, T , M=TMT + M.

271 21 2 2
1f the orders of & 5 S and S are I 4 n and n respectively, then we must
show that
I .1 ; g
T M T=0for 1zi<n-1 (3.11)
and
det M = 0O, (3.12)

by propeosition 3.1. Consider (3.11); for i=lJ

I
gPa Ty

=
=
—

I

TITIT M TIT T o TIT
e S e b R

Il

i I
M T ST g T
Tl ] 1 il
=0

.

The remaining conditions for i > 1 follow in a similar way by induction.



; ; I _i I i
To prove (3.12) note that since, in fact, 'I'l Ml T = 0 and T2M2T =0

Q far d, >

-

I 1
for all i, it follows as above that T M T =
Hyra ¥
Cayley Hamilton\ T det M T =

1 and hence by the

0O and so det M = 0 , O

. , T
Remark 3.3 A simple case where (3.10) holds is when T2T2 = I:for example,
with T2 = _il O o ] : For appropri ate identity
0 i‘I 0O
Iz 2
1
0 == 0]
B 2
LO 0 I3
matrices Irn For,
I i =1 i
T =
(T, l) ((T,T,) T,T)) " (T,T,)
= (T.T.T.T T
( 1722 l) (T )
T, =i, It B
= (T.T T
( 1 l) Tl 2
IT
= T
Tl 2T

that (3.10) does not hold for all matrices

It should be noted, however,

T ,T, of full rank. For example, if

1. "2
T =/1 o T o= (1)
2 SR Y B B
o 1 \ 2/
f
1 1 {
T 1 I7T 1. 1
then {T2Tl) = IZ-(l 2 3) , whereas TlT2 = (O,gugﬂ.

It has been shown in proposition 3.2 that a generalized extension of S by Tl

followed by T2 is equivalent to an (ordinary) extension of S by T Tl, provided

2

I I I
(Tle) = TlTZ' If (3.10) does not hold, then it may be advantageocus to con-

sider further extensions of S. We therefore introduce the following

Definition 3.4 ILet S be a linear system defined by the matrix A of order nxn.




Then, by an expansive resolution of S (of length %), we shall mean a

sequence of linear maps (i.e. matrices) Ti

n T1 % Ty Ty T, My
R ——= R —=R B wmews geeeetews B
where n < nl < n2 g oaan € n2 and each T, is of full rank, together with
3,

matrices Mi of order ni X ni such that

. o
det M, =0 , T.M)T, =0 for 1ls<3j<n -1, 1<ic<ay.
1 1 4 -~ & -~

In view of proposition 3.2, it is also natural to require in this definition

that
I I T
R
( i 1—1) 7 Ti—l Tl
for all i € {2,...,2}. The expanded systems with respect to this resolution

are given inductively by

I
A. = T A T + l < i <
1 1P T W a2 SRS

where A = A.
o
There is a categoryt:(cf.MacLane 1971) of expansive resolutions whose

morphisms are commutative diagrams of the form

M
piE n T n T T n n i n |
n i i ‘
A Lat 2, 52 3 kgt Py T |
, .
% Qll Qzl le Qil 2 | (3.13) |
¥ L ¢
S n S n S S n n, i n,
B tpt  Bom? A oKy R T———> R

(Lg£dix &)

Equivalences in this category are morphisms where Q,Qi,l £ 1 g £ are invertible.
To determine the structure of an equivalent expansion for a given expansion
let

X = A x
be a given system with expansive resolution

dly n by n 1! n
n 2
R _.hl‘) R 1 _...__.,.._.__32 3> R & SR W) ° &



and let (Q ,Ql,...,QJ be an isomorphism in ﬁ. Then
o

X, = T,A, T, x. + M x, ¥ T igd
i i i-1 4171 id

Eh 1
(where X, = x) is the i expansion and if we put yi = Qi xi then

we obtain the system

;o=glra T + o7ty Q
Y; = TR Ty e Mo

Lol 1. ol ol Y ol
=8 TR 0% 1R 09 09 5Ty Y Y TM e,

for 1 £ i £ 4. Then, by commutativity of (3.13) (with the roles of

~

S and T reversed), we have

i -1 I -1
= +
g = B0 0B g% TS Ry,
provided
-1 I -1
Q19 =T 1l

This condition will be satisfied, for example, if
T .
Q. =1 , osgicg (3.15)

i.e. all the matrices Q in the isomorphism are orthogonal, since then,

for any matrix H of full rank and appropriate size s

1

(50" = (ug,) mo) g

T P -1 T.T
(QiH H Qi) QiH

1l

-1 T - -1.TTT
o 'm Tl h 0,H

Il

1
=
i



_lo-....

T

T -1
(,m 7 ((9,H) 0,1 " (g 1)

TT -1 T.T
(H QiQiH) Hd.

(HTH) - lHTQJ.__ 1

]

i

Agd . Th i hism in the cat
57 i—lQi—l us, an isomorphism i e category

where Ai—l =0
U is a set of commutative diagrams of the form (3.13) for which (3.14)
holds and the expanded systems have matrices which are similar and
states which are related by the coordinate transformations yi = Qllxi.
This therefore gives us a generalisation of the classical notion of
equivalence of systems, namely those whose defining matrices are similar.
Clearly the main application to systems theory of expansive resolu-
tions is to ‘'unlock' certain properties of a lower order representation
and present them in a tractible form in higher order expansions. In
the next section we shall go on to discuss the expansion of nonlinear
systems, but before doing this we mention an elementary application of
expansions to instability conditions for certain large scale systems.,
We have mentioned above that the stability of an expansion 5 of a system
S implies the stability of §; it follows that any unstable system S can
only have unstable extensions. This allows us to generate large scale

systems which can be recognised immediately as being unstable. as a

trivial example consider the scalar system.

Consider the extension defined by T = (a B Y)T and M = 0.




= 1 =
Then
I T —=)].T
T = (TT) T = (aB )
2 2 2
a +8 +y
and
. ’a af  ay \
A=TaT + M= / 5 ; (3 ~16)
2
ﬁ +6 i iaB B By j
\a¥ gy 2/

and so any system of the form
X = A x
where A is of the form (3.16) is unstable. In this trivial case,

of course, it is easy to see that the eigenvalues of (3.16) are

2 .2
0,0, (a +B +y ). However by choosing, for example,
; _ .
M= [0 i)
fo =
i
i 0
E O m2
\o m o
where uml + Bm2 ymB = 0 , then we see that the system
~ \ £
3 = / o af + ml ay .\ X
[ 2 !
i e B+ om, By |

\or sremy v/
ay By +my vy

is also unstable and this is not so obvious without a tedious
computation of the eigenvalues.

Expansion of Semi-lLinear Systems

Having considered the expansion of linear systems, we now would
like to see to what extent this technique can be applied to nonlinear
systems. Suppose then that

S :x=2Ax (4.1)
is a linear system and let

S : x=2ax + f(x) , x(o) =x € R (4.2)



= T =

n n
be a nonlinear perturbation of S, where f: R - R is assumed to
satisfy sufficient conditions for (4.2) to have unique and (for
simplicity of exposition) global solutions for any initial value

xo. As in Section 3, let

(4.3)

e
Mo
1l
e
M

be an expansion of S together with a nonlinear perturbation

T :x=Ax+f(x), x(0) =x =Tx (4.4)
P o o

where the notations are as in §3. S and S will be called the lineari-
zations of Sp and ép' respectively. The next result gives a suffi-
cient condition for §é“to be an expansion of S

Proposition 4.1 Suppose that S is an expansion of S. Then S is an

= T & " o~
expansion of Sp (i.e. X, = T xo=% rE) =T 206} % i

W
.24
i
o
H
3
I

I-.
T £(T x), which means that the diagram

n £ n
- % R

I

T l T (4.5)
g _f . g8

is commutative.
T I
Remark 4.2 It should be recalled that T T = In, bBug 1T # Ig and
so the condition of preposition 4.1 implies, but is not implied by,
I~ -~ I~
the condition T'f (x) = £(T x) ; hence the right-hand vertical arrow
in (4.5) cannot be reversed.

Proof of Proposition 4.1 As we have seen, the linearized system S

. .. At I At
is an expansion of S only if e =T e T for all t > o. Now, by

the variation of constants formula, the solution of (4.4) is given by



= 19 =
the integral equation
~ t ~
” At - A(t-s) = =~
x(t) = e Xo + f e fer=] f(x)ds .
o
Hence,
I I At I A(t- 2
T x(t) =T e T X + f T e ( s)T £f(T x)ds
o

t

At Alt- I~

e xO + f e ( S)f(T x)ds
(@]

if X, = dk X However, by the uniqueness of solutions, it follows that
T w
x(t) =T x(t) for all t > o, which proves the result. o
Remark 4.3 We have seen that the solutions Q(t), x(t) of systems SP
T~ -
and Sp are related by x(t) = T x(t) provided x(to) =T x(to). One
could also consider the connection between x(t) and T x(t). In general,
of course, g(t) # T x(t) ; however, they are equal if MT = 0, since
x(t) = Ax + £(x)
and so
. i 5
Tx(t) = T AT Tx + T £(x)
. T I. "
since T T = I. Now, x(t) = T %(t) for any expansion, so
. i I -~
Tx(t) = (T AT )Tx + T £(T" x)
I ~
= (T AT )Tx + f£(x)
I ~
= (T AT )Tx + MTx + £(x) (MT = Q)
= A Tx + f(x)
which implies, by uniqueness of solutions, that

T x(t) = x(t). O

As an example of the condition (4.5) consider the expansion defined by

T=/1, 0o © , Tt = rIl 0 o o)
o} I, ©
o] 12 0 o] %12 %12 0
o} 0 I
0 o) o) ¥
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where the I's are identity matrices of various sizes, and partition

the states and nonlinearities correspondingly, as follows:

= (% % X% )T X = (% ,%_,%_,% )T
® Sas La - LS Rt
T - - T TINEVI
f(x) = (fl(x),f2(x),f3(x)) , E(x) = (fl(x),fz(x),f3(x),f4(x))
Then the diagram (4.5) commutes if
fl(xl,xz,x3,x4) = fl(xl,% M L Xy x4)
£ % % % r-“ = % x + " . %
f2(X1’X2’X3 x4) f2(xl,% %, L Xy x4)
s o o o @ _ s Lz o4 . -
f3(xl,x2,x3,x4} fz(xl,i %, L Xy X4}
= ~ ~ e ~ _ ~ o 1/“' i
fd{xl’X2’x3’X4) f3(xl’;§ X2 + 2 X3r X4) )

i.e. if each function__fi is in fact a function of the three variables
s
. - S . . ™
+ x_, d B2,
Xjr¥y T BgX, and £, Rty

As in Section 3 we can consider generalized extensions of the

nonlinear systems Sp, which will consist, as before, of an expansive

resolution
T n. T n T n
n 2 2
R —~—-]:-> R l_...%"gR s s =3 R

n.x n,
together with matrices Mi e R * for which

and also a sequence of nonlinearities f,, o £ 1 £ %, where fo = f,
i

such that the diagram

n o Is n
R - RO W
ot T
1 . 1
n 1 n
.l = g L
(4.6)
T T l
T T
2 n2 f2 n2 2
R ¢t A T R
; |
T
T3 T T
I ‘ i . ]
£ £, L [
o o
I e A

commutes.



w Tlly o

In studying the stability of a system of the form (4.2) it is

common to use a Lyapunov function of theﬁeneral type

ple
T
V = x Hx + f f(x")ax' ,
O

for some positive definite matrix H, where

X n
fo £(x')dx' = ig / £,(x)) dx} , x' = (x],...,x)

1

th
fi(xi), i.e. the i component function of f is a

provided fi(X')
function of xi only. This construction is well-known in the scalar
case, but its applicaEIbnAin the n-dimensional case requires the
following result of Anderson (1967).
Lemma 4.4 Let Z(.) be a matrix of rational transfer functions such
that Z(e) is finite and Z has poles which lie in Re § < O or are simple
on Reg§ = 0. Let {F,G,H,Z(w)} be a minimal realization of Z. Then
Z(.) is positive real if and only if there exists a symmetric positive
definite P and matrices WO and L such that

PF + F'P = - L L'

PG

H-LW
o
W W = 2Z(x) + 2Z'(»)., B
o ©O
Note that a matrix Z(.) is positive real if
(i) Z(s) has elements which are analytic for Re § > O
% ‘
(ii) Z (s) = 2(s*) for Re§ > O (4.7)
*
(iii) 2Z'(% ) + Z(s8) is nonnegative definite for Re § > O.
Then we have the following theorem (c.f. Csaki (1972)) :

Theorem 4.5 Consider the system defined by the equations

X

A x + B gle)

-ez=Cx (4.8)

Y
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n
where x(t) € R , A,B,C are nxn, nxm and mxn matrices respectively
which form a minimal realization of G(s) and suppose that, for some
60 > O there exist diagonal matrices R = diag [rl,...,rnn and

= di Feen such that r, > o, 9. > o, r. + > h
Q ag [ql 'qng = B Ty B a9, > 0, r; *+q, > o where

; , i =

—ri/qi is no pole of any one of the elements in the i b row of the

matrix G{s—éo) and the poles of G(s) are within the region

Re S < - 4§ . 1If
o

-1
= + - + +
I(s) = [R +0s] (-8 +s) +RK
is positive real, where K = diag [Kl,...,RaJ is such that
0 < gi(ei) < K-__"fl < 4 £,
e,
i

then the system is absolutely stable and its transients are damped
no slower than exp(—éot).
Proof. BAn outline proof of this theorem will be given for convenienc
We have
- =1
G(s) = C(sI-A) B

and

1

=i
2]

-
Il

(R + 0s)G(s-6) + RK

RC(SI—A—SbI)—lB + QC[(sI—A-dOI)+A+dOi][éI—A—GOI]_lB+RK

[Re + QC(A+5OI{][éI—A—aoﬁ]_lB+[RK'l+QCBJ.

Hence, the matrices

A+ 8§ I, B, RC+oc[a+ s 1]

form a minimal realization of Ho(s) - Hm(s), where

e.

-1



..16_.

It follows from lemma 4.4 that there exist matrices P,L and Go

such that
- T T
+ + + = -
p[a+ 6. 1] +[a + s 1] P B I
AL T
RC + oc[a + §_I] - 6L =BP
=L T T
2RK & OCB + B @ =G G
Q Q O O!-
Defining the Lyapunov function
e
T T
Vi) =xPx +2 [ g (e) Qde (4.9)
o
it follows that
. T .Iii,'i" Ty T
T(x) = -[x 1+ (e)G_] [L7x + Gog(e)]

= 2gT(e) R[e - K_lg(e)]— 260[xTPx + gT(e)Qé])

and the result is proved.

The condition of positive reality on the matrix function Ho(s)
above is a strong restriction and is unlikely to hold for an arbi-
trary system under investigation. However, using a judicious expansion
of the linear part of the system, the condition may be made to hold for
the diagonal matrices in the block structure of the expanded linearized
system A . We shall now examine the possibility of such an expansion.
Consideration will be restricted to (simple) expansions ép of Sp as
in (4.1 - 4.4), the results being easily extended to expansive resolu-
tions as in (4.6). Also, for convenience of exposition we shall assume
complete observation so that the system (4.8) takes the form of (4.2)
with B = I, C = I. Again, the more general version can easily be
obtained from the following considerations.

Suppose, then, that as above x and x are partitioned in the
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We shall also suppose that the corresponding matrices and nonlineari-

ties are similarly partitioned, e.g.

A= (Aij) , £ = (fi) s 1 2373 £ B

In choosing a Lyapunov function for the expanded system consider first

5
the term x Px in (4.9), corresponding to the linear part of the system.

For each matrix Aii on the diagonal of A we consider the transfer func-

tion \

G, (8) = (sI—A,.)_l i 9.2 4
11 11 *

IA
w0

where I is an identity matrix of appropriate size. Suppose that there
exist diagonal matrices Ri and Ki' matrices 5ii(not necessarily

i
diagonal ) and numbers &ousuch that the matrix function

il

i — g -
1l = + ~§_ + s} + RK ]
ots) [Pi Qiié]G( 50 s} + R, ; +1gixB

A

; — - i = rs iy
is positive real, and (Ai,L + 601 ; Qii[Aii‘+ GOI]) is an observable
pair.

Then, again by lemma 4.4, there exists symmetric positive

i
definite matrices Pi and matrices Go and Li such that

. . T
~ i i i T
B L& Il + |A, ., + iE , = L
1[ 11 6o ] L i s 1 60 ] Pi Ll 1
— ~ i iT T
R, + A, .+ 68 I|] - (G L. =P
i Qii [ i 60 ] ( o) i i (4.16)
_l [ 1
2R K. +29.. = ()T e
i x; 11 Q (o]

for i € {1,...,B}. We shall then take

dx

<
]
- 1T
ol
L
we
+
po
—
h
3
e}

as a tentative Lyapunov function for the system ép. Note that, in

order to bring S and ép in line with equations (4.8), we shall replace
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f(x) by £f(-x) and write

S : x
P

Ax + £(-x)
p:

This is, of course, merely a notational change. 1In the expression for

S

Ax + F(-%)

V,Q is a diagonal matrix which will be chosen later, except the diagonal

elements are assumed positive.If each fi is in the first and third xl
|
quadrants, then V is clearly positive. Now,
B B P
» il T ! -
vV = I %, Pox o+ z X, P.x, - 2 £ (-x)0x.
; i "ii ) iii
i=1 i=1

However, if we assume that M is chosen to satisfy MT = 0, then by

Remark 4.3, we have

- - I . "
since, as we have seen, x = Tx, x = T x for any solutions x,x of SP,S i
P

respectively,when MT = O holds. Here,

0= (T g,

Put

12 |

1]
—
e
'_l
wl

i
e
‘A
|_|

~
(o}
/A
~§B

Then,

]
o~
™
.
HPQ
.

o
-
|—r.

o~
1
L)
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B T e
-2 3 (-x)0.. £, (-x)
i#g=1
B ren R g om

% z X A, P.X, + z x,P.A X

g, I S gy A2

2V FL(-%)Q,. A % + E 5 F (-39, % (4.11)
- g 1V TR 5%k 4% by e T :

where @ = {1,3,k: 1 < i,j,k £ B, 1,3,k not all equall ,

However,

g . .
Z llﬁ ~ %, f(xﬂ = £'R [-xk E(-x)]

I

£ (-0 TR [-x - K 'T £(-0)].

=TT RT [ x - K'_lf(—x)]

Il
H

R'[-x - X' e (-n0],

-1 ~1 ~1
where R = diag {Rl,...,RB}, K ~ = diag {Kl yee-, K7} and we assume that

B
there exists a diagonal matrix K' = diag{k;,h.-,k;} such that
_l —_
K T=1TK'
Ay :
and R' = T RT. Suppose that all the diagonal elements of R' are

positive and let_Ré be the matrix obtained from R' by setting the

i i i
diagonal elements to zero. Then, if o <_fl(x Y /% < ki,

g

v < [fT(—x)Ré [ =- k"t £(-x)] |- 12 52 X, X,
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B ~p _ N .
£ (- f. (-
+2) NEIIE g 0]
B _ - .
PN REATRIEA]
o L - ~ -~ B fop o=
2] lepEo e A= + 2 ] 80 £ ¢xg; %, .
Q 1=1
{
Consider the terms |Iff(—i)l\; we have
o
and so
2T o) 3 ap T
 fr) = 221 £, (=) (2D

T
However, fg(—x) depends only on x_  and so

%
AT - & T i 5 T

HEea 1l < § g e lia® il L sl ah |l

o B

, T = T

- _Q,Z]_HK’Q‘HHT“Z]_(T )!mem| |||(T ),Q.lll

x 8 T T -

'

¢ 1L mglan e, i)l

Since each matrix Pi is positive definite, there exist numbers pi

such that

T - —
p.x 2o ||x ||
1 i i

X, P.x,
1L I

and so
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S I AT
+ 2k g bR T .| |% Q..

iFj=1 m=1 g=1 ™ ™ A3 4 13
+2 7 = ]]]]3 sHH T2y ERY

i#j=1

B —~
S X IIEAITTENTTIENTR o
3 I T
where g = max {J]K£||} and Ty = 2EIH{T )le[{|(T )Rill'

i
If the 60 can be chosen independently of i, then the third term on the

right of (4.12) is

~ L B ~ o — ~
26 £ (-x)0x-2¢ Z f?{—x)Q,,X.
° e = Y
I g g U
=28 f(x)Qx-26_ ) £.(-x)Q, .x
o o §gbgei 4 ij j
S Eemg, sl e | el 1113, 1115,
< |26 £ (-x)Q S 28 T 5 b e X
© i#j=1 * 41 4 1#] l m=1 "

The second term on the right hand side of (4.12) containing Ré can also
be written as a function of k and I|§i|| and so can be put in the form
of the remaining terms in (4.12). However, in the example we shall give
shortly, Ré = 0 and so, for simplicity, we shall omit this term. Of
course, in case Ré # O the term can be accounted for as above. It

follows, therefore, from (4.12) that V may be bounded as follows:

J

: B 4 ~ .8 B 5 .
V-2 ) Gy e GlIx T+ ] IE e 5l
i=1 i #1

L#j=1

— F(Kr| I};ll |) ; Say,

|
]
and this term may be estimated in terms of k and [|Qij|| as above.
for some functions Ei(K) + 0 as Kk -+ 0O and some numbers gij'



Let

E(c) = {% : Fe,||x,[]) < 0} v {o}

If we can show that E(k) contains some open set D containing the origin,
then the absolute stability of the system on D will follow and D will
be an estimate of the domain of attraction. Of course, whether or not
E(k) is empty will depend on the particular system and a judicious |
choice of expansion. We shall present next a simple example to illus-
trate the use of this theory. However, we shall first collect together

the assumptions made above and state the result formally (notation as

before) :

Theorem 4.6. Consider a nonlinear system Sp and an expansion Sp where
MT = O. Suppose that there exist diagonal positive matrices R, ,K.,
4 i

matrices aij (not necessarily diagonal, where 5-: (Qij) is of the form

T .I ; ;
(TI} QT for some diagonal positive matrix Q) such that
[R. +Q.s] G- + ) + RK
i ii o ii

(for some positive numbers 6;) is positive real, and satisfies the
above observability and controllability conditions. Suppose also that

. ) -1 =1
there exists a diagonal matrix K' such that K T = TK' and

i, i i .
0 < £ (x)/x < ki . 1 <ign.

Then, if there exists a number k such that E(x) contains a connected
open set containing the origin, then the system Sp (and therefore Sp)
is absolutely stable and E(k) is contained in the domain of attraction. ol

Example 4.7 Consider the three-dimensional system
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X = -1 a b x + £(x) = Ax + f(x)
O -1 (0]
e} d -1
J
3 3 3 i, 1 2 3 i i
where x €« R and £ : R —»R . Also, f (x ,x ,x ) = fl(xl) and
A
o(f.(x) % ke
A
X
Let
P (
T = 1 0 0 and M = (o] -a/2 a/2 0
o 1 o o -1/2 1/2 o
O 1 O 0 1/2 -1/2 0]
0 e} I e} -d/2 a/2 0
J
Then MT = O and
I 3
A=TAT + M= =] @] a b
@] -1 (0] @]

We shall partition the vectors x and x (=Tx) as follows:

1 2 3 P T
((=z ), (x),(x))" = {xl,x2,x3)

i
]

g~ e et 20T s m et

and consider the corresponding partitions of A, T etc. We have first

to derive equations similar to (4.10) for All and ﬁ22 (which are
identical in this case). Note that if 0<§ < 1, then
= -1 1
G, (s5=6) = ((s=8)T - A ;)" = 7%= I,
so for matrices Rl = diag (r,x), Kl = diag (k,k), éil = diag(q,q)
we have
1 r + gs
I(s) =———— 1I.
O( ) St1-g



= B4 =

2
Hence Hi(jw) ! (ni(—jw))T _ sy 4 o4 1

m2+(l—6)

and so Hi is positive real for any r and g provided § < 1. Therefore,
the equations (4.10) certainly have solutions Pl'P2 which we may again
take to be equal and moreover we shall find a diagonal solution

P = diag (p,p). Setting i=1 therefore in (4.10) (the solution for i=2

|
being the same) and dropping the indices i for convenience, we have

p(=1+8) + (~1+8) p = - £2
r + g(-1 +38) ~ gl =p
2r/k + 2g = g2
where we have set Li = diag (&,%2) , Gi = diag (g,q9).

In order to simplify matters (although these may not be the best
values, but will demonstrate the method) we shall take
r=k ,g=1.

Then,

and
2p(=1 + 6) = - &

k+ (-1 +8) -22 =p «

2
Hence, & + 2(k + (-1 + §)-22) (-1 + &§) = 0O,

and so

20 = (-1 + 8§) + VR(-1+8) ((-1+8) k)

Then,

P =k - 3(-1+68) + V/8(-1+8) ((-1+6) k)
Again, for simplicity choose § = 1/2 and let p be the larger value,

i.e. p=k+3/2+2 vk + 1/2



= 95

If Q = diag (1,4,1), then O = (TV) Tor"
and so

o0=1[1 o o o

F

In order to apply (4.12), suppose that a > b > o and ¢ > d > o.

Then ||ﬁ12[| £ s [|ﬁ2l|| < c. Also ||§;j[[ =1, kli,j and
¢ o P,
(te) = € L e [T e, 1D
= |3/2 1/8
172 3/2

Note finally that K = diag (k,k,k,k), K' = diag(k,k,k), R = didg{y ;¥ ,17)

and R' = diag(r,2r,r). We can now apply (4.12) to obtain

. 2 B 2 2
ve- ) oplIx " vk} Lo HE LT TR
i=1 * i#9=1 m=1 ™ B J
T N SRR ENIERT
+ 2k T | X I T .1|%
$25=1 met g=1 mi m L3 2
~ -~ 2 -~ ~ -~
N IR R S A IEN TR I TR
Q m=1
AR EL = ~ > 12 01 112
= pl 15y [ P45, 1D+ 2e3] (7)1 171+ 36015 12415, 115)
2 w: .l - . @ ol
w25 1P v a0 [z 1] Rl] + 3115012
4 p(a+c)r|§l|] [|§2|| + 2k(1/2+2c)||§l||2+2k(2a+2c+3|1§l[| |1,

+ 2k (2a + 1/2)|[§2||2.
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, ~
=(-p+k+3k +2k(l/2+2c))[|xl||2 - (12k+1ok2 + (4k+p)(a+c))(||£lll.[fxz]})

2 ~ 2
+ (-p+k+3k +2k{l/2+2a})|lx2lf s
Hence, V is negative definite if

3/2 > 3k2 +2k (1/2+42¢c) -2 vk+1/2

2
3/2 > 3k~ +2k(1/2+2a) -2 Vk+1/2
and

9
%z-m l6k4+(8a+80-—55)k3 + (—-% + l6ac - 21l(a+bh) - %é(a+c)2)k2

27 17, 0% 2 13 #
1 - —flate) - Zz(ate) Yk - T(ate)

+(6 - %{a+c)2) Yk+1/2 - k /k+1 (4+18 (a+c)+ g{a+c)2)

s Yk+1/2 > O.
Thus, if for example a+c < 2, then for sufficiently small k the original
system is absolutely stable.

This example indicates that although in many cases theorem 4.5 will
not be applicable, since the requirement that HO(S) is positive real is
a strong condition, the more general theorem 4.6 may apply if one can
find an extension T such that the diagonal submatrices of A have corres-
ponding positive real functions]Ii(s). The example has a particularly
simple form and, as we have seen, the relations (4.10) reduce to scalar
equations. In general, of course, one would not be able to achieve such
a simplification and estimates of fIPi||, l< i< B would have to be
determined from the nonlinear matrix equations (4.10).

Conclusions
In this paper we have discussed the effects of expansion of the

state vector for linear and semilinear systems. The basic idea of
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expansion is to separate out certain properties in the system which
are not readily apparent from the contracted form. The method is

particularly useful in nonlinear systems where we have shown that

Anderson's generalization of the Popov criterion can itself be extended

by removing the condition that the complete linear part generates the
positive real matrix Hg(s) and replacing it by the weaker condition
that diagonal submatrices of the extended linear part have correspon-
ding positive real matrices Hi(s).
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