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Abstract

In this paper we give definitions of basic concepts such as symmetries, first integrals, Hamilto-
nian and recursion operators suitable for ordinary differential equations on associative algebras,
and in particular for matrix differential equations. We choose existence of hierarchies of first
integrals and/or symmetries as a criterion for integrability and justify it by examples. Using
our componentless approach we have solved a number of classification problems for integrable
equations on free associative algebras. Also, in the simplest case, we have listed all possible
Hamiltonian operators of low order.
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1 Introduction

In the classical theory (Lie, Liouville, etc.) of ordinary differential equations (ODEs) there are
remarkable results which relate the property of integrability of ODEs in quadratures with the
existence of continuous symmetries and first integrals. Symmetries and first integrals may serve
as a solid mathematical foundation for an algebraic theory of integrable equations. In the case
of integrable partial differential equations (PDEs) such a theory does already exist and proved to
be extremely efficient [1, 2, 3, 4]. The key property of integrable PDEs is the existence of infinite
hierarchies of local infinitesimal symmetries generated by a recursion operator. Characteristic
features of integrable Hamiltonian PDEs are multi-Hamiltonian structures and hierarchies of local
conservation laws. These properties are well described in the fundamental monograph by P.Olver
[5] where references on original publications are well presented.

A straightforward generalisation of these ideas to the case of ODEs is impossible, since the
number of independent commuting symmetries and first integrals for a finite dimensional dynam-
ical system is finite and bounded by its dimension. To overcome this obstacle we propose to study
an intermediate object, namely, equations on free associative algebras. Here we are going to show
that such equations are quite similar to PDEs. In particular they may have infinite hierarchies
of first integrals or symmetries and there are plenty of reasons to choose these properties as an
algebraic definition of integrability.

If we are given a matrix differential equation with no restrictions on the matrix dimension
then we can treat it as an equation on an abstract associative algebra. For example, equations
for the classical Euler top in n-dimensional space can be written in a matrix form

Ṁ = [M, Ω] . (1)

Here M, Ω are real skew-symmetric n × n matrices of angular momentum and angular velocity,
brackets [ , ] denote usual matrix commutator and

M = JΩ + ΩJ , (2)

where J is a constant diagonal matrix of moments of inertia. The problem of integration of the
general n dimensional case was solved by Manakov [6]. He made an important observation that
the Euler equation (1), (2) is a stationary point of the N-wave equations, known to be integrable
[7].

Equation (1) is a Hamiltonian system1 with Hamiltonian

H1 =
1

2
trace(MΩ) . (3)

It is easy to check that

H2 = −trace(M2
J

2) , H3 = trace(2J
4
M

2 + J
2
MJ

2
M) (4)

are also first integrals of (1). First integral H2 generates a symmetry of the Euler equation

Mτ = [M, gradMH2] = J
2
M

2 − M
2
J

2
. (5)

In terms of M, J, Ω first integrals and symmetries have reasonably simple polynomial form.
An attempt to find first integrals or symmetries in component notations, say by the method of
indetermined coefficients, would fail for dimensions n > 4 because of enormous scale of computa-
tions involved. In order to avoid component-wise computations and make results suitable for any
dimensional problem we could regard objects M, Ω, J as generators of an associative algebra (i.e.
assume that all our objects are polynomials of non–commutative variables M, Ω, J with complex
or real coefficients). This is not a free algebra because of the constraint (2). A more serious prob-
lem is that the Euler equation (1) does not define a t-derivation of the algebra. Indeed, we cannot
determine dΩ

dt
as an element of the algebra using the Euler equation (1) and the constraint (2).

In other words the Euler equation is not an evolutionary equation. On the contrary, symmetry
(5) with the condition Jτ = 0 defines a derivation of a free algebra generated by elements M and
J (we shall denote associative multiplication in this algebra by ◦). It is much easier to study (5)

1Indeed, it can be rewritten in the form Ṁ = {M, H1} = [M, gradMH1] with Poisson brackets defined as {F, G} =
trace(gradMF, [M, gradM G]) .



than the original Euler equation. Since the Euler equation and (5) belong to the same hierarchy,
they have common symmetries and first integrals.

In this paper we will use equation

Mt = M
2 ◦ C − C ◦ M

2 (6)

which coincides with (5) if C = J2, as a basic and instructive example.
Being defined on a free algebra, equation (6) has infinite hierarchies of polynomial symmetries

and first integrals (see Section 1) and therefore is integrable according to our definition. Taking
concrete finite and infinite dimensional associative algebras (such as algebras of differential or
integral operators, matrix algebras or algebras with particular commutation relations) instead of
the universal free associative algebra one can obtain a wide variety of equations which we expect
to be integrable in a more conventional sense. For instance, in matrix realisations, symmetries
and first integrals of equations on abstract associative algebras are inherited by the corresponding
matrix ODEs and can be used for their integration in quadratures.

Our approach to differential equations on associative algebras requires proper definitions for
such concepts as symmetry, first integral, Hamiltonian and recursion operators, etc. In the next
section we give a definition of symmetries and first integrals suitable for equations on free asso-
ciative algebras. Also we show that equation (6) is not a unique representative of one component
integrable equations and formulate a few classification results (we call them Results, rather than
Proposition or Theorem, because they were obtained by straightforward computations).

Fréchet derivative, gradient, Hamiltonian and recursion operators for equations on free as-
sociative algebras are defined in Section 3. In the same section we formulate a simple classi-
fication result for Hamiltonian operators. In particular, we have shown that equation (6) is a
tri–Hamiltonian system. Ratios of the corresponding Hamiltonian operators yield two recursion
operators. Existence of two independent recursion operators enables us to build up a complete
two-index hierarchy of symmetries for equation (6).

Many important multi–component integrable equations on associative algebras can be obtained
as reductions of one–component equations. Here we give just one example. Let M and C in (6)
be represented by matrices of the form

M =











0 u1 0 0 · 0
0 0 u2 0 · 0
· · · · · ·
0 0 0 0 · uN−1

uN 0 0 0 · 0











, C =











0 0 0 · 0 JN

J1 0 0 · 0 0
0 J2 0 · 0 0
· · · · · ·
0 0 0 · JN−1 0











, (7)

where uk and Jk are block matrices (of any dimension) or even generators of a bigger free algebra.
It follows from equation (6) that uk satisfy the non-abelian Volterra equation

d

dt
uk = uk ◦ uk+1 ◦ Jk+1 − Jk−1 ◦ uk−1 ◦ uk, k ∈ ZN . (8)

In Section 4 we consider other examples (modified Volterra equation, discrete Burgers type equa-
tion, etc) and reductions to two–component systems of equations. Also we solve a simplest
classification problem for two–component equations with one extra symmetry and study some of
their properties.

We conclude our paper by a discussion of possible developments and future research.

1.1 First integrals and symmetries for equations on free associa-

tive algebras

Equation (6) is naturally defined on a free algebra M generated by elements M and C over the
field C with an associative (but noncommutative) multiplication denoted as ◦. Elements of the
field will be denoted by Greek letters α, β, γ . . . ∈ C, elements of M will be denoted by Latin
letters. Also we assume that M contains a unity element which we denote Id.

All basic objects such as symmetries, first integrals, recursion and Hamiltonian operators can
be naturally defined for equations on associative algebras. We formulate and illustrate definitions
for equations on algebra M generated by two elements M (variable) and C (constant), but all
these definitions can be extended to any associative algebra with a finite number of generators
straightforwardly.



Definition 1 For a differential equation Mt = F on algebra M we say that G ∈ M is a generator
of an infinitesimal symmetry if the flows Mτ = G and Mt = F commute (i.e if dG

dt
evaluating

according the equation and dF
dτ

evaluating according Mτ = G give the same element of M).

Remark. In terms of the (non-commutative) differential algebra, equation Mt = F is nothing but
a derivation DF of algebra M, which maps M to F and symmetry Mτ = G is another derivation
DG, commuting with DF .

To introduce the concept of first integrals, we need an analog of trace, which is not yet defined
in algebra M. As the matter of fact, in our calculations we use only two property of the trace,
namely linearity and a possibility to perform cyclic permutations in monomials. Therefore, instead
of a trace, we define an equivalence relation for elements of M in a standard way.

Definition 2 Two elements f1 and f2 of M will be called equivalent, denoted f1 ∼ f2, iff f1 can
be obtained from f2 by cyclic permutations in its monomials.

For example, αM ◦C ◦M ∼ αC ◦M ◦M , and of course, any commutator is equivalent to zero.

Definition 3 Element h of M will be called a first integral of our differential equation, if dh
dt

∼ 0.
First integrals h1 and h2 are said to be equivalent if h1 − h2 ∼ 0.

Here there is an obvious similarity with a definition for conserved densities in the theory
of evolutionary PDEs [5]. In both cases, first integrals and conserved densities are defined as
elements of equivalence classes, the difference is in the choice of the equivalence relation.

According to our definition, Rn = Mn , n = 1, 2, . . . are nontrivial first integrals of equation
(6). Indeed, Rn 6∼ 0 and d

dt
Mn =

∑n

k=1
Mk−1 ◦ (M2 ◦C −C ◦M2) ◦Mn−k. It is easy to see that

each element of the sum is equivalent to zero.
The r.h.s. of equation (6) is a (double) homogeneous polynomial with respect to scaling

σ : C → µC , M → νM . For such type homogeneous polynomials the exponents of µ and ν we
shall call weights. As a linear space, algebra M can be decomposed in a direct sum M = ⊕Mnm

where a ∈ Mnm if σ : a → µnλma. It is easy to see that

Lemma 1 Let I be a first integral and G a generator of a symmetry for a (double) homogeneous
equation. Then any (double) homogeneous component of I or G (i.e. a projection on Mnm) is
also a first integral or a generator of a symmetry respectively.

A direct computation of first integrals for (6) with small weights is a simple problem, since
we have only a few coefficients to determine. For example a general homogeneous polynomial of
weights (2, 2) is equivalent to

P2,2 = αC
2 ◦ M

2 + βC ◦ M ◦ C ◦ M .

It is easy to check that
dP2,2

dt
∼ 0 iff α = 2β and therefore

I2,2 = 2C
2 ◦ M

2 + C ◦ M ◦ C ◦ M (9)

is a first integral of equation (6).
In a similar way one can easily find that apart from the obvious orbit integrals I0,n = Mn,

the following polynomials In,1 = Cn ◦ M , I1,n = C ◦ Mn and

I3,2 = C
3 ◦ M

2 + C
2 ◦ M ◦ C ◦ M I2,3 = C

2 ◦ M
3 + C ◦ M ◦ C ◦ M

2
, (10)

are nontrivial first integrals of equation (6). It is interesting to note that the space of first integrals
in each homogeneous component Mkn is one dimensional. We have found the above integrals (9)
and (10) by a simple straightforward computation. We did not use the known Lax representation
for equation (6) ( not known for all equations), but if we do so, we would find that In,m is
equivalent to the projection of (M + C)(n+m) on Mnm.

A similar computation gives us generators of homogeneous symmetries Sn,m ∈ Mnm for (6).
For instance, to obtain S2,2 we start with a general ansatz

Q2,2 = α1C
2 ◦M

2+α2C ◦M ◦C ◦M +α3C ◦M
2 ◦C+α4M ◦C

2◦M +α5M ◦C ◦M ◦C+α6M
2 ◦C

2
.

It is easy to verify that Q2,2 gives a symmetry for (6) iff α3 = α4 = 0 and α1 = α2 = −α5 = −α6.



Having first integrals and symmetries of equation (6) we can use them for the integration of
Euler’s equation. Let C = J2, with J being a diagonal matrix with positive eigenvalues, and
let M be a skew-symmetric real matrix. Then one can show that Hn,m = trace(In,m) is a first
integral of the Euler equation. Of course, only half of the integrals survive such a reduction, since
M is a skew symmetric matrix and therefore Hn,2k−1 = 0. Also, the first integrals may become
functionally dependent. For instance, in the case of the three dimensional Euler top only two first
integrals are independent. We can choose H0,2 and H1,2 as a basic set of functionally independent
first integrals. In the four dimensional case as a basic set we can choose H0,2, H1,2, H2,2 and H0,4.
In both cases the Hamiltonian (3) of the Euler equation does not belong to the basic set (it is a
function of the basic integrals).

Summarising the above exercise we would like to say the following: The Euler top on an
abstract associative algebra is not an evolutionary equation and therefore it is difficult, if possible
at all, to study its symmetries and first integrals directly. Meanwhile, it has an evolutionary
symmetry (6) which is naturally defined on a free algebra. It is very easy to find first integrals
and symmetries for (6) (only linear algebraic equations to be solved). In a standard matrix case,
symmetries and first integrals of (6) are also symmetries and first integrals of the Euler equation,
they are sufficient for integration of the Euler equation in quadratures.

1.2 Other examples of integrable evolutionary equations on M.

Equation (6) possesses sequences of first integrals and symmetries. These properties enable us
to integrate its matrix (finite dimensional) reductions. A natural question is: whether there
exist other equations which possess such properties? In this section we show that the answer
is affirmative. The definitions given above proved to be efficient and suitable for handling such
problems.

Let us inquire when a general double homogeneous evolutionary equation on M:

Mt = αM
2 ◦ C + βM ◦ C ◦ M + γC ◦ M

2 (11)

possesses symmetries? According to Lemma 1, we can study symmetries in each homogeneous
component independently. General equation (11) has an obvious sequence of symmetries S1,n =
M ◦ Cn − Cn ◦ M , n = 1, 2, . . .. In the matrix case these symmetries would correspond to
the invariance of our equation with respect to similarity transformations commuting with C.
Symmetries S1,n we shall call trivial and omit them from the further consideration.

We checked the existence of homogeneous symmetries Sn,m ∈ Mn,m with n + m ≤ 10 for
equation (11) by straightforward computations. To do so, we wrote a general homogeneous
polynomial Pn,m ∈ Mn,m with indetermined coefficients, and commuted equation (11) with flow
Mτ = Pn,m. Then we equated the result of the commutation to zero and solved the resulting
system of algebraic equations for the coefficients of Pn,m and {α, β, γ}. This system is nonlinear
(all equations are quadratic), but quite simple. All steps in this study are algorithmic. In order
to perform actual computations we wrote a symbolic code for Mathematica.

Result 1 Up to scaling of t, every equation of the form (11) possessing a nontrivial symmetry
Sn,m ∈ M , n + m ≤ 10 coincides with one of the following equations:

Mt = [M2
, C] , (12)

Mt = [M, M ◦ C] , (13)

Mt = [C ◦ M, M ] , (14)

Mt = M ◦ C ◦ M . (15)

The first equation of the list coincides with (6). Equations (13) and (14) are equivalent in the
following sense. Let us define a formal involution ⋆ on M by

M
⋆ = M, C

⋆ = C, (A◦B)⋆ = B
⋆◦A

⋆
, (αA+βB)⋆ = αA

⋆ +βB
⋆
, A, B ∈ M, α, β ∈ C. (16)

If an equation Mt = P has a symmetry Mτ = S then equation Mt = P ⋆ has symmetry Mτ = S⋆.
The r.h.s. of equation (14) is a result of the involution ⋆ applied to (13). Similarly, all results
related to (13) can be easily rearranged for (14).

The form of symmetries for equations (13), (15) that we found with the help of our computer
programme has given us a hint for the following statement, which can be easily proven.



Proposition 1 Equation (13) has commuting symmetries

Mτn,m = [M, M
n−1 ◦ C

m] , n, m ∈ N . (17)

Equation (15) has commuting symmetries

Mτ2,m = M ◦ C
m ◦ M , m ∈ N . (18)

Another interesting problem is to describe equations of the form (11) which possess first
integrals. Straightforward computations lead to the following

Result 2 Equation (11) has first integrals of the form In,0 = Mn iff α + β + γ = 0. If equation
(11) has other first integrals In,m, n + m ≤ 10, then up to scaling of t it coincides with (12).

Equation (15) does not have first integrals, and equation (13) has only obvious orbit integrals,
but both equations have a hierarchy of symmetries. It indicates the “C-integrability” of (15) and
(13) (a similar situation for PDEs is described in [1]).

Indeed, if M, C are n × n matrices, then a solution of the Cauchy problem (M(0) = M0) for
equation (15) is [8]:

M(t) = (e− M0Ct)−1
M0 ,

where e is the unit matrix.
Equation (13) in the matrix case can be integrated in the following way. Let M0 be any

constant matrix and T be a solution of the following linear differential equation with constant
coefficients

Tt = M0TC , T |t=0 = e (19)

then M(t) = T−1M0T satisfies equation (13) and M(0) = M0. Moreover, if T (t, τn,m) is a
simultaneous fundamental solution for equation (19) and Tτn,m = Mn

0 TCm (these equations are
obviously compatible), then M(t, τn,m) = T−1M0T satisfies equation Mτn,m = [M, Mn−1Cm] as
well.

Equations (12) and (13) have cubic (in M) symmetries. The next natural question is: whether
there exist other cubic double homogeneous equations

Mt = αM
3 ◦ C + βM

2 ◦ C ◦ M + γM ◦ C ◦ M
2 + δC ◦ M

3 (20)

which possess symmetries or first integrals. The answer can be formulated as follows.

Result 3 Up to scaling of t and formal involution ⋆, every equation of the form (20) possessing
a nontrivial symmetry Sn,m ∈ M , n + m ≤ 10 coincides with one of the following equations:

Mt = [M3
, C] , (21)

Mt = [M, C ◦ M
2] , (22)

Mt = [M ◦ C ◦ M, M ] , (23)

Mt = M
3 ◦ C − M

2 ◦ C ◦ M + M ◦ C ◦ M
2 − C ◦ M

3
, . (24)

The first two equations (21) and (22) we expected, since they are symmetries of equations (12)
and (13) respectively.

Equation (24) is new, and has symmetries with weights (2k − 1, 1), but does not possess
symmetries of weights (2k, 1). It is interesting to note that element N = M2 satisfies the equation
Nt = [N2, C] (12). In the scalar case we would consider these equations to be point-equivalent.
In the matrix case if we know solutions of (24) we know solutions of equation (12) as well, but
not vice-versa.

Moreover, we can find an equation for the “n–th root” of N . Indeed, it is easy to show that
if M satisfies equation

Mt = M
n+1 ◦ C − M

n ◦ C ◦ M + M ◦ C ◦ M
n − C ◦ M

n+1
, . (25)

then N = Mn satisfies equation (12). Equation (25) has symmetries with weights (kn+1, 1) , k =
0, 1, . . ., but does not have symmetries of weights (p, 1) where p 6≡ 1(mod(n)).

In the above list, equation (23) is maybe the most interesting one. It has symmetries of
weights (n, 1) for any n. This equation also can be related on a formal level with an extension
of the hierarchy of equation (12). If algebra M contains (or is extended by) the inverse element



N = M−1, then it follows from (23) that Nt = [N−1, C] and it is a symmetry of equation
Nτ = [N2, C] (12). Generally speaking, the inverse element may not exist (for example it does
not exist in the 3 × 3 matrix case when M is skew–symmetric).

In a similar way one can verify that equation

Mt = [M, M
n ◦ C ◦ M

n] (26)

is related with (23) by the substitution N = Mn. Similar to (25), this equation has lacunas of
length n in the sequence of symmetries, namely it has symmetries of weights (kn + 1, 1) , k =
2, 3, . . ..

2 Hamiltonian and recursion operators on M.

2.1 Basic definitions

In this section we give definitions for some basic objects such as the Fréchet and variational
derivatives, Hamiltonian operators, etc. suitable for equations on free algebra M. We shall use
equation (6) to illustrate our definitions.

For any a ∈ M we define operators of left (La) and right (Ra) multiplications which map M
into itself according the following rule: let b be any element of M, then

La(b) = a ◦ b, Ra(b) = b ◦ a .

It follows from the above definition and associativity of algebra M that RaLb = LbRa and

La◦b = LaLb, Ra◦b = RbRa, Lαa+βb = αLa + βLb, Rαa+βb = αRa + βRb. (27)

Let us define an algebra O with generators LM , LC , RM , RC satisfying the following relations:

RMLM = LMRM , RMLC = LCRM , RCLM = LMRC , RCLC = LCRC .

We shall call O as the algebra of local operators. Due to (27) any operator of multiplication on
elements of M can be represented by a corresponding element of O. Let us denote by id the unity
element of O, i.e. the operator of multiplication by Id.

The gradation of M induces a gradation structure O = ⊕On,m on O. If we scale C → µC and
M → νM , then elements of On,m gain the multiplier µnνm. And, of course, if A ∈ On,m, then
A : Mp,q → Mp+n,q+m. we shall call elements of On,m homogeneous operators of the weight
(n, m).

The Fréchet derivative a∗ for any element a ∈ M belongs to O.

Definition 4 Let a = a(M, C) be any element of M. Then the Fréchet derivative a∗ ∈ O of a is
uniquely defined by:

d

dǫ
a(M + ǫ δM, C)|ǫ=0 = a∗(δM) .

For example, following this definition we can calculate the Fréchet derivative F∗ of element
F (M,C) = M2 ◦ C − C ◦ M2 which is the r.h.s. of equation (6):

d

dǫ
(F (M + ǫ δM), C))|ǫ=0 =

d

dǫ
((M + ǫ δM)2 ◦ C − C ◦ (M + ǫ δM)2)|ǫ=0 =

δM ◦ M ◦ C + M ◦ δM ◦ C − C ◦ δM ◦ M − C ◦ M ◦ δM = F∗(δM)

Therefore
F∗ = RCRM + LMRC − LCRM − LCLM (28)

Let DF and DG be two derivations of algebra M corresponding to elements F, G ∈ M re-
spectively (cf. Remark after the Definition 1). Then their commutator is also a derivation of the
algebra M

DK = [DF , DG] ,

with
K = G∗(F ) − F∗(G) .



In particular, G is a generator of a symmetry for equation Mt = F iff

G∗(F ) = F∗(G) . (29)

Usually equation (29) is called the defining equation for symmetries (c.f. [5]).
Any derivation DF of M induces a derivation of O:

DF La = La⋆(F ), DF Ra = Ra⋆(F ) (30)

for any a ∈ M.
The formal involution ⋆ (16) induces an involution of O:

L
⋆
a = Ra (31)

It follows from (31) that R⋆
a = La and in particular R⋆

M = LM , L⋆
C = RC . Operator Q ∈ O is

called symmetric or skew–symmetric if Q⋆ = Q or Q⋆ = −Q respectively. For example operator
adM = LM − RM is skew-symmetric. It is useful to remember that for any a, b ∈ M and Q ∈ M

a ◦ Q(b) ∼ Q
⋆(a) ◦ b.

2.2 Hamiltonian structures on M.

The general Hamiltonian equation on M has the form

Mt = Θ(gradM (H(M,C))) (32)

where H(M,C) is a Hamiltonian of the equation, Θ is a Hamiltonian operator. Here we shall
study local Hamiltonian operators, i.e. assume that Θ ∈ O.

For any a ∈ M we define the gradient gradM (a) ∈ M as follows:

Definition 5 Let a(M,C), δM ∈ M. Then gradM (a(M,C)) is uniquely defined by:

d

dǫ
a(M + ǫ δM, C)|ǫ=0 ∼ δM ◦ gradM (a(M,C)) .

It is easy to check that if H1 ∼ H2 , Hi ∈ M then gradM (H1) = gradM (H2) and in particular
if H1 ∼ 0 then gradM (H1) = 0. Moreover, the following analog2 of the well known Theorem (cf.
[9]) holds.

Proposition 2 Let a ∈ M, then a ∼ const , const ∈ M iff gradM (a) = 0.

For example, let us verify that equation (6) can be written in a Hamiltonian form (32) with
Hamiltonian H(M,C) = C ◦ M2 and Hamiltonian operator Θ = adM (Θ(a) = M ◦ a − a ◦ M for
any a ∈ M). It is enough to show that gradM (H(M,C)) = M ◦ C + C ◦ M . Indeed,

H(M + ǫ δM, C) = H(M, C) + ǫC ◦ δM ◦ M + ǫC ◦ M ◦ δM + O(ǫ2)

and

d

dǫ
H(M +ǫ δM, C)|ǫ=0 = C◦δM ◦M +C◦M ◦δM ∼ δM ◦(M ◦C+C◦M) = δM ◦gradM (H(M,C)) .

Definition 6 We shall call Θ ∈ O a Hamiltonian operator, if the Poisson bracket

{a, b} = gradMa ◦ Θ(gradMb), a, b ∈ M

satisfies conditions
{a, b} + {b, a} ∼ 0 (33)

{a, {b, c}} + {b, {c, a}} + {c, {a, b}} ∼ 0 (34)

for any elements a, b, c ∈ M.

2The above defined gradM is an analog of the variational derivative in the theory of PDEs.



With the help of the substitution principle [5] one can show that (33) implies

Θ⋆ = −Θ (35)

(i.e. Θ is a skew–symmetric operator with respect to the involution (31)). Moreover, the Jacoby
identity (34) is equivalent to the following condition (same as (7.11) on page 428 in [5]):

Q2 ◦ X3(Q1) + Q3 ◦ X1(Q2) + Q1 ◦ X2(Q3) ∼ 0, (36)

where operators Xi ∈ O are defined as follows

Xi = DΘ(Qi)(Θ) .

It is easy to check that Θ̂ = adCk = LCk − RCk is a Hamiltonian operator for any k. Indeed,
it is a skew–symmetric operator and satisfies (36) since Xi = 0. Operator Θ1 = adM = LM −RM

also satisfies conditions (35), (36), and therefore, is a Hamiltonian operator on M. Hamiltonian
operators Θ̂ and Θ1 are homogeneous and have weights (k, 0) and (0, 1) respectively. For any
λ ∈ R, operator

Θ(λ) = Θ1 + λΘ̂ (37)

is a Hamiltonian operator as well. In other words, operators Θ̂ and Θ1 are compatible and form
a Hamiltonian pencil Θ(λ). As usual, the Hamiltonian pencil can be obtained by a simple shift:
if we replace M by M + λCk in Θ1, we find

adM+λCk = LM+λCk − RM+λCk = Θ1 + λΘ̂ .

We can employ the method of indetermined coefficients for searching Hamiltonian operators of
relatively low weights. Conditions (35) and (36) yield systems of linear and quadratic equations
for the coefficients of Θ.

Result 4 Up to scaling of M and C, every homogeneous Hamiltonian operator of weights (0, m),
m < 8 and (1, m), m < 7 coincides with one of the following:

Θ0 = RC − LC , (38)

Θ1 = RM − LM , (39)

Θ2 = LCRM − LMRC , (40)

Θ3 = L
2
MRM − LMR

2
M , (41)

Θ4 = LMLCLMRM − LMRMRCRM . (42)

The shifts C → C +λ Id and M → M +µ Id in Θ2 gives a Hamiltonian pencil Θ2 +λΘ1 +µΘ0

for the Euler top and its hierarchy (i.e. equation (6), for example). Thus equation (6) is a three

Hamiltonian system.
A similar shift C → C + λ Id of Θ4 gives a pencil Θ4 + λΘ3. If we assume the element M to

be invertible, then the following formal change of variables M̃ = M−1 relates operators Θ1 and
Θ2 with Θ3 and Θ4 respectively.

2.3 Recursion operators.

Recursion operators, if they exist, give a convenient way for generating a hierarchy of symmetries
(see, for instance, [5]). For PDEs, most of known recursion operators are pseudo-differential.
Existence of local, i.e. differential, recursion operators usually indicates on C–integrability of the
equation [4]. Here we begin with a definition of local recursion operators for ODEs on M and
later extend it to a “non local” case.

Definition 7 We say that Λ ∈ O is a recursion operator for an evolutionary equation

Mt = F, M ∈ M, (43)

if it satisfies the following equation:

Λt = F∗Λ − ΛF∗ , (44)

where F∗ is the Fréchet derivative of F



Operators satisfying equation (44) act on the space of symmetries of equation (43).

Proposition 3 If Λ is a recursion operator and G is the generator of a symmetry Mτ = G for
equation (43) then G1 = Λ(G) is also a generator of a symmetry Mτ1

= G1 for equation (43).

Proof. Indeed, let us check that (Mt)τ1
and (Mτ1

)t represent the same element of M. We have:
(Mt)τ1

= F∗Λ(G) and

(Mτ1
)t = Λt(G) + Λ(Gt) = (F∗Λ − ΛF∗)(G) + ΛG∗F = Λ(G∗F − F∗G) + F∗Λ .

Now, due to the condition (29), we have (Mt)τ1
= (Mτ1

)t. 2

If we have two operators Λ1 and Λ2 satisfying equation (44), then any linear combination
αΛ1 + βΛ2 with constant coefficients α, β ∈ C, a composition Λ1Λ2 and, in particular, any power
Λn

1 also satisfy (44).
Applying the sequence Λk, k = 1, 2, . . . to a single symmetry (or to equation (43) itself) one

could generate a hierarchy of symmetries. In the case of integrable one–component evolution
PDEs the whole hierarchy of symmetries is generated by a single recursion operator. In our case
of equations on M the situation is rather different. As we have seen above (cf. (17)), integrable
equations may have two-index hierarchy of symmetries. It gives us a hint that we should have
two independent recursion operators, and each of the operators raises the corresponding index.

For example, Λ = LM is a local recursion operator for equation (13). Indeed, according (13),
d
dt

Λ = LM2C − LMCM . The Fréchet derivative of the r.h.s. in this case is

F∗ = RMC + LMRC − RCM − LMC

and therefore

F∗Λ−ΛF∗ = (RMC+LMRC−RCM−LMC)LM−LM (RMC+LMRC−RCM−LMC) = LM2C−LMCM .

The following sequence Mτ1,n+2
= LMn (M2C −MCM) = Mn+2C −Mn+1CM, n ∈ N is an infi-

nite hierarchy of symmetries for equation (13). It is not the whole set of symmetries (Proposition
1, (22)) and we shall see that a “non local” recursion operator is responsible for the remaining
part of the hierarchy.

In the theory of integrable PDEs a non local recursion operator, by definition, is a ratio of two
local (i.e differential) operators. In our case we define the corresponding object as a ratio of two
operators from O.

One of possible ways to introduce non local recursion operators for multi–Hamiltonian equa-
tions belongs to Magri [10]:

Proposition 4 If Θ and Θ1 are two Hamiltonian operators for the same equation, then their
ratio

Λ = Θ1Θ
−1 (45)

is a recursion operator.

Proof. Indeed, any Hamiltonian operator satisfies equation (c.f. (7.38), page 449, [5])

Θt = F∗Θ + ΘF
⋆
∗ . (46)

If Θ and Θ1 are two solutions of equation (46), then it is easy to check that the ratio Λ = Θ1Θ
−1

satisfies equation (44). 2

In order to illustrate this Proposition let us consider equation (6). It has three Hamiltonian
operators Θ0 = LC − RC = adC (38), Θ1 = LM − RM = adM (39) and Θ2 = LMRC − LCRM

(40). Consequently, we have two independent recursion operators for (6):

Λ1 = (LMRC − LCRM )ad
−1
M , Λ2 = (LMRC − LCRM )ad

−1
C . (47)

Here we propose a simple generalisation of Proposition 4, and make it suitable even for non–
Hamiltonian equations.

Proposition 5 Let Q1, Q2 ∈ O be two solutions of operator equation

Qt = F∗Q + QP , (48)

where P ∈ O is a given operator. Then

Λ = Q2Q
−1
1 (49)

is a recursion operator for equation (43).



Proof. Indeed,

Λt =
dQ2

dt
Q

−1
1 −Q2Q

−1
1

dQ1

dt
Q

−1
1 = (F∗Q2 +Q2P )Q−1

1 −Q2Q
−1
1 (F∗Q1 +Q1P )Q−1

1 = F∗Λ−ΛF∗ .

2

Equation (48) is a generalisation of two well known operator equations. Namely, if P = −F∗,
then (48) coincides with equation (44) for a recursion operator. If P = F ⋆

∗ , then skew-symmetric
solutions of (48) give us Hamiltonian operators (46). Here we would like to emphasise that in
Lemma 5 we do not specify the nature of the operator P , the only requirement is an existence
of two (or more) solutions Q1 and Q2. Such a construction may occur to be useful for theory of
integrable PDEs as well.

It is clear that for a homogeneous equation (43) with F ∈ Mn,m, operator P must belong
to On,m−1 and we could try to find simultaneously operators P, Q1 and Q2 by the method of
indetermined coefficients. Actually, following this simple idea we have found recursion operators
for equations (13),(15) and (23).

Equation (15) is not a Hamiltonian system, but it has a hierarchy of symmetries. It is easy to
find that

Qn = LML
n
C , n = 0, 1, . . .

are solutions of equation (48) with P = RMRC . Therefore

Λ = LMLC(LM )−1 (50)

is a non local recursion operator for (15).
In a similar way one can show that besides of a local recursion operator Λ1 = LM , equation

(13) has a non local recursion operator Λ2 = adMRCad−1
M which corresponds to Q1 = adM , Q2 =

adMRC and P = LMC − LMRC

It is easy to check that Θ3 (41), Θ4 (42) are Hamiltonian operators for equation Mt = [M ◦
C ◦ M, M ] (23). Therefore

Λ1 = Θ4Θ
−1
3 = (LMLCLMRM − LMRMRCRM )(L2

MRM − LMR
2
M )−1 = (LMLC − RMRC)ad

−1
M

(51)
is a recursion operator for (23). In the last part of the equality (51), i.e. after a cancellation, we
have a ratio of Q1 = LMLC−RMRC and Q2 = adM . Neither of these two factors is a Hamiltonian
operator for (23), but they both satisfy the same equation (48), where P = LMLCRM−LMRMRC

is a local operator. Moreover, Q3 = LMRMRC − LMLCRM is a third independent solution of
(48). Therefore Λ2 = Q3ad−1

M is another recursion operator for equation (23).
In spite of a non local recursion operator is formally defined by expression (49) in Proposition

5, its action on symmetries is not well defined yet. Here there are two problems:

• Action of non local operator (49) can be correctly defined only on elements of the image
space MQ1

⊂ M of operator Q1.

• If Q1 has a non–trivial kernel, then action of Λ is not uniquely defined.

Similar picture we had in the theory of integrable PDEs [5], where often there was a problem to
define the action of D−1

x on differential polynomials.
As a first example we consider an action of recursion operator (50) on symmetries of equation

(15). In this case the kernel space of operator Q1 = LM is trivial. The action of Q−1
1 (and

therefore of Λ) is correctly defined on subset MQ1
= {M ◦a; a ∈ M} by Q−1

1 (M ◦a) = a. Powers
Λk = LMCkL−1

M of the recursion operator Λ are also correctly defined on MQ1
and the r.h.s.

of equation (15) belongs to MQ1
. Therefore we can generate the following infinite hierarchy of

symmetries
Sn,2 = Λn−1(M ◦ C ◦ M) = M ◦ C

n ◦ M , n = 0, 1, 2, . . .

for equation (15). Equation (15) has other symmetries, namely the trivial symmetry Mτ0
=

M ◦ C − C ◦ M and the scaling symmetry Ms1
= M + tM ◦ C ◦ M . Action of Λ (50) on the

generator of the trivial symmetry is not correctly defined (i.e. the result does not belong to M).
On the contrary, the action of Λk on the generator of the scaling symmetry is correctly defined
and give the following hierarchy of time dependent symmetries

Msk
= Λk−1(M + tM ◦ C ◦ M) = M ◦ C

k−1 + tM ◦ C
k ◦ M , k = 0, 1, 2, . . . .



As usual (c.f. [3]), time independent part of the above hierarchy defines a hierarchy of master
symmetries. Namely,

Sm+n,2 = Sm,2∗(Kn) − Kn∗(Sm,2) ,

where Kn = M ◦ Cn are generators of master symmetries.
In the case when operator Q1 (see Proposition 5) has a nontrivial kernel we have to impose

some extra conditions in order to make the action of Q−1
1 uniquely defined. As an example, let us

consider equation (6) with recursion operator Λ1 (47). We can choose Mk , k = 1, 2, . . . as a basis
in the kernel space of adM . Applying the recursion operator Λ1 to the trivial symmetry generated
by S1,1 = M ◦ C − C ◦ M we obtain

G = Λ1(S1,1) = Θ2(C) +
∑

αkΘ2(M
k)

= M ◦ C
2 − C

2 ◦ M
2 +

∑

αk(Mk+1 ◦ C − C ◦ M
k+1) .

We see that accounting elements of the kernel space we add symmetries S1,k = Mk ◦C−C ◦Mk ∈
M1,k to G. The function S1,1, operators Θ1 = adM , Θ2 = LMRC −LCRM are homogeneous and
if we request that the function G = S2,1 = Λ1(S1,1) to be homogeneous too, we have to choose
coefficients αk = 0. It is easy to see that S2,1 is an element from the image space of adM , and
therefore S3,1 = Λ1(S2,1) = Λ2

1(S1,1) is well defined and is the next member in the hierarchy of
symmetries of equation (6), etc. Moreover, it is easy to check, that elements Sk,1 belong to the
image of another Hamiltonian operator Θ0 = adC and therefore the action of operator Λ2 (47)
on these generators is also correctly defined. The whole two–index hierarchy of symmetries for
equation (6) can be obtained by the action of recursion operators Λn,m = Λn

2 Λm
1 on the trivial

symmetry
Sn,m = Λm−1,n−1(S1,1) . (52)

The same hierarchy of symmetries can be obtained using the first integrals In,m

Sn,m = adMgradM (In,m) = Θ2gradM (In−1,m) .

In a similar way one can check that pairs of recursion operators for equations (13) and (23)
give corresponding two–index hierarchies of symmetries.

3 Multicomponent equations

3.1 Breeding and reducing equations

In the previous sections we were dealing with evolutionary equations on a free algebra M with
one constant (C) and one variable (M) generators. Our result indicates (see Result 1) that there
are only three basic hierarchies of equations and one could think that it may not be worth to
develop a sophisticated theory to serve these three exceptional cases. In this section we are going
to demonstrate that many important integrable equations are nothing but particular cases of these
three equations.

A way to breed equations is to regard M and C as N ×N or even infinite dimensional matrices
whose entries are generators of a free algebra A and to reduce the system obtained by imposing
linear constrains on the entries compatible with the dynamics.

One example which gives the (non-abelian) Volterra equation (8) has been considered in Intro-
duction. Deriving equation (8) from (6) we have made two steps: we have replaced M, C by N×N

matrices whose entries belong to a free algebra and then we have imposed constrains by setting
some of the entries equal to zero. These constrains are compatible with the dynamics. Indeed, let
C be given and be of the form (7). If the initial conditions are such that matrix M has the form (7)
then it will remain of the same form for any t. The constrains imposed are not compatible with all
the symmetries Sn,m of equation (6). Only symmetries Sn,n+1 survive under the reduction. First
integrals of equation (8) can be obtained from the first integrals In,m of (6) by taking a formal
trace of the matrix corresponding to In,m (i.e. summing up diagonal elements). For example

ρ1 = Tr(I1,1) = Tr(M ◦ C) =
∑

n∈ZN

Jn ◦ un ,



ρ2 = Tr(I2,2) = Tr(2M
2 ◦ C

2 + M ◦ C ◦ M ◦ C) =

=
∑

n∈ZN

Jn ◦ un ◦ Jn ◦ un + 2Jn ◦ un ◦ un+1 ◦ Jn+1 .

It is easy to see that Tr(In,m) = 0 if n 6≡ m mod(N).
The modified Volterra equation

d

dt
uk = uk ◦ (Jk−1 ◦ uk−1 − uk+1 ◦ Jk) ◦ uk, k ∈ ZN . (53)

is a reduction of equation (23), where we have to assume M to be of the form (7) and matrix C is
of the form [C]p,q = δN

p+2,qJq (here δN
i,j = 1 if i ≡ j mod(N) and 0 otherwise). Again, symmetries

and first integrals of equation (53) can be easily obtained from the corresponding symmetries and
first integrals of equation (23).

Cyclic reduction (7) is also compatible with equation (13). The corresponding C–integrable
system of equations for variables uk is:

d

dt
uk = uk ◦ uk+1 ◦ Jk+1 − uk ◦ Jk ◦ uk, k ∈ ZN . (54)

Let us consider the simplest nontrivial case N = 2 and assume that J1 = J2 = Id. In this case
equations (54) and (8) are reduced to

ut = u ◦ u − u ◦ v , vt = v ◦ v − v ◦ u , (55)

and
ut = u ◦ v − v ◦ u , vt = v ◦ u − u ◦ v , (56)

respectively. One more two component equation can be obtained from (8) if we assume N =
3, J1 = J2 = J3 = Id and u3 = −u1 − u2:

ut = u ◦ u + u ◦ v + v ◦ u , vt = −v ◦ v − u ◦ v − v ◦ u . (57)

All these evolutionary equations are defined on a free algebra A with generators u, v over the
field C. Elements u and v satisfy a system of equations of the form

ut = P (u, v) , vt = Q(u, v) , (58)

where P (u, v) and Q(u, v) are elements of A. The involution ⋆ (16) on A is defined by

u
⋆ = u , v

⋆ = v , (a ◦ b)⋆ = b
⋆ ◦ a

⋆
, a, b ∈ A. (59)

Equations, which are related to each other by linear transformations of the form

û = αu + βv , v̂ = γu + δv , αδ − βγ 6= 0 (60)

and involution (59), we shall call equivalent.
Equations which are equivalent to

ut = P (u, v) , vt = Q(v) (61)

we shall call triangular.
For example, (56) is a triangular equation. Indeed, after the following change of variables

û = u, v̂ = u + v we obtain ût = [û, v̂], v̂t = 0 . It is easy to check that equation (57) is equivalent
to

ut = v
2
, vt = u

2 (62)

and not triangular. Equations (57) and (55) are not equivalent.



3.2 The simplest classification problem for equations on algebra

A

3.2.1 Quadratic equations with a cubic symmetry

Equations (55), (57) have infinite hierarchies of symmetries and first integrals. It is interesting to
answer the question whether do exist other quadratic equations

ut = α1u ◦ u + α2u ◦ v + α3v ◦ u + α4v ◦ v,

vt = β1u ◦ u + β2u ◦ v + β3v ◦ u + β4v ◦ v
(63)

which possess symmetries or first integrals? And, if so, how many classes of inequivalent and
non–triangular equations do exist? A partial answer to these questions is given by

Theorem 1 Any non-triangular equation (63) possessing a symmetry of the form

uτ = γ1u ◦ u ◦ u + γ2u ◦ u ◦ v + γ3u ◦ v ◦ u + γ4v ◦ u ◦ u +

γ5u ◦ v ◦ v + γ6v ◦ u ◦ v + γ7v ◦ v ◦ u + γ8v ◦ v ◦ v,

vτ = δ1u ◦ u ◦ u + δ2u ◦ u ◦ v + δ3u ◦ v ◦ u + δ4v ◦ u ◦ u +

δ5u ◦ v ◦ v + δ6v ◦ u ◦ v + δ7v ◦ v ◦ u + δ8v ◦ v ◦ v,

is equivalent to one of the following:

ut = u ◦ u − u ◦ v,

vt = v ◦ v − u ◦ v + v ◦ u,
(64)

ut = u ◦ v,

vt = v ◦ u,
(65)

ut = u ◦ u − u ◦ v,

vt = v ◦ v − u ◦ v,
(66)

ut = −u ◦ v,

vt = v ◦ v + u ◦ v − v ◦ u,
(67)

ut = u ◦ v − v ◦ u,

vt = u ◦ u + u ◦ v − v ◦ u,
(68)

ut = v ◦ v,

vt = u ◦ u,
(69)

It is a remarkable fact, that a requirement of existence of just one cubic symmetry selects a
finite list of equations with no free parameters (or more precisely, all possible parameters can be
removed by linear transformations (60)).

The next natural question is whether equations (64)-(69) have other symmetries, do they
possess first integrals, whether the corresponding matrix equations are integrable? We have
calculated all time independent polynomial homogeneous symmetries and first integrals of low
orders for equations of the list. The dimensions of linear spaces of symmetries and first integrals
are compiled in the following table:

Number of Symmetries Number of First Integrals

Order 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12

Equation (64) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Equation (65) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Equation (66) 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1
Equation (67) 0 1 1 1 0 1 0 1 0 1 0 1 0 2 0 2 1 3 2 6
Equation (68) 0 1 1 1 0 1 0 1 1 1 1 2 2 4 4 8 11 20 27 52
Equation (69) 0 1 1 0 2 1 1 2 0 0 1 1 0 2 1 1 2 2 1 3

None of the equations from the list has a linear symmetry. The only symmetry of order two
is the equation itself.



Equation (64) has a symmetry of order 3

uτ = u ◦ u ◦ v ,

vτ = v ◦ u ◦ v − u ◦ v ◦ v .
(70)

(and that is the reason why it belongs to the list) but it does not have any higher symmetries nor
any first integrals (at least of orders less than nine and thirteen respectively).

Equation (65) has a hierarchy of symmetries
(

uτn

vτn

)

= Λn

(

u ◦ v

v ◦ u

)

=

(

u ◦ v ◦ (u − v)n

v ◦ u ◦ (u − v)n

)

, n = 0, 1, 2, . . . (71)

where the corresponding recursion operator Λ is of the form

Λ =

(

Ru − Rv, 0
0, Ru − Rv

)

.

It is easy to verify that
ρn = (u − v)n

is a sequence of first integrals for equation (65). Equation (65) can be written in a Hamiltonian
form

(

ut

vt

)

= Θ

(

graduρ1

gradvρ1

)

where the Hamiltonian operator Θ is of the form

Θ =

(

RuRu − LuLu, LuLv + LuRv − LvRu + RuRv

LuRv − LvLu − LvRu − RvRu, LvLv − RvRv

)

.

It is interesting to note that equation (65) is a stationary point of 1+1 dimensional integrable
system [11]

ut = ux + u ◦ v ,

vt = −vx + v ◦ u .

Equations (66) and (65) have different sequences of orders of first integrals - it is an indepen-
dent indication that these two equations are not equivalent, i.e. cannot be related by invertible
transformation (60) and involution (59). It is easy to check that

ρ2n = (u ◦ v)n

is a sequence of first integrals for equation (66). Its symmetries also can be written in terms of a
recursion operator

(

uτ2n

vτ2n

)

= Λn

(

−u ◦ v

v ◦ v + u ◦ v − v ◦ u

)

, n = 0, 1, 2, . . . (72)

(

uτ2n+1

vτ2n+1

)

= Λn

(

u ◦ u ◦ v − u ◦ v ◦ u

−u ◦ v ◦ v + v ◦ u ◦ v

)

, n = 0, 1, 2, . . . (73)

where

Λ =

(

RuRv − LuRv, LuRu − LuLu

RvRv − LvRv, LuRv − LvLu

)

=

=

(

Ru − Lu, 0
0, Rv − Lv

)(

Rv, Lu

Rv, Lu

)

.

Equation (69) is, maybe, the most interesting in the list. It is a Hamiltonian equation with

Θ =

(

0, 1
−1, 0

)

and Hamiltonian H = 1
3
(v3 − u3). We have seen in the previous section that (69) is equivalent to

(57) which is a reduction of equation (6). Therefore the Lax representation for (69) is known and



its symmetries and first integrals can be easily found. A straightforward attempt to find a local
recursion operator (i.e. to find solution of equation (44)) gives

Λ =

(

LuLv − LuRv − LvRu + RuRv, −LuLu + 2LuRu − RuRu

LvLv − 2LvRv + RvRv, LuRv − LvLu + LvRu − RvRu

)

=

=

(

Lu − Ru, 0
0, Lv − Rv

)(

Lv − Rv, −Lu + Ru

Lv − Rv, −Lu + Ru

)

. (74)

Equation itself and all known to us time independent symmetries belong to the kernel of this “re-
cursion” operator Λ (74). Equation (69) is homogeneous and therefore it has a scaling symmetry

uτs = u + tv
2
, vτs = v + tu

2
.

Applying Λ to this scaling symmetry we obtain a cubic symmetry

(

uτ

vτ

)

= Λ

(

u + tv2

v + tu2

)

=

(

−2u ◦ u ◦ v + 4u ◦ v ◦ u − 2v ◦ u ◦ u

2u ◦ v ◦ v − 4v ◦ u ◦ v + 2v ◦ v ◦ u

)

(75)

of equation (69).
A systematic description of symmetries and first integrals for equations (67) and (68) is still

an open problem.

3.2.2 Quadratic equations with a quartic symmetry

Integrable equation (55) does not possess a cubic symmetry and therefore does not belong to the
list (64)-(69), but it has a quartic symmetry

uτ = u ◦ v ◦ u2 − u ◦ v2 ◦ u ,

vτ = v ◦ u ◦ v2 − v ◦ u2 ◦ v .
(76)

Symmetry (76) and higher order symmetries of equation (55) can be generated by the following
recursion operator:

Λ =

(

LuLv, 0
0, LvLu

)

.

Proposition 6 Apart from (65)-(68) the list of quadratic equations on A which possess a quartic
symmetry includes the following inequivalent equations:

ut = u ◦ u − v ◦ u ,

vt = v ◦ v − u ◦ v ;
(77)

ut = −u ◦ v ,

vt = v ◦ v + u ◦ v ;
(78)

ut = −v ◦ u ,

vt = v ◦ v + u ◦ v ;
(79)

ut = u ◦ u − u ◦ v − 2v ◦ u ,

vt = v ◦ v − 2u ◦ v − v ◦ u ;
(80)

ut = u ◦ u − 2v ◦ u ,

vt = v ◦ v − 2v ◦ u ;
(81)

ut = u ◦ u − 2u ◦ v ,

vt = v ◦ v + 4v ◦ u .
(82)

Here we do not claim that the list presented above is complete. Some extra work is required
to cast Proposition 6 into the form similar to Theorem 1.

It is interesting to look at the sequence of dimensions for symmetries and first integrals of
equations (77)-(82).



Number of Symmetries Number of First Integrals

Order 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12

Equation (77) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Equation (78) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Equation (79) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Equation (80) 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 2
Equation (81) 0 1 0 1 1 1 1 1 0 0 1 1 0 2 1 1 2 2 1 3
Equation (82) 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Equations (77), (78) and (79) have identical sequences for dimensions of symmetries and first
integrals. Nevertheless we have checked that they are not equivalent, i.e. cannot be related by
linear transformations (60) and involution (59).

Equation (82) possesses a symmetry of order four but it seems it does not possess any other
symmetries or first integrals.

Instead of a conclusion

In this paper, we have made an attempt to bring the rich hidden structure of integrable PDEs [4] to
a new domain, namely, to differential equations on free associative algebras (see also [12, 13, 14]).
We have formulated basic definitions and shown their correctness and efficiency. Like integrable
PDEs, ODEs on associative algebras may have infinite hierarchies of symmetries and first in-
tegrals and that asserts an algebraic definition of integrability. In the case of finite dimensional
(matrix) representations of the algebra, the corresponding (matrix) systems of ODEs inherit these
symmetries and first integrals and can be integrated in quadratures.

This study raises a lot of questions and open entirely new area for research. For instance,
we foresee that the list of integrable equations on associative algebras with constrains should be
a lot bigger. Quantum problems, with some commutation relations, naturally fall in this class.
Another important and promising problem for further research is a systematic study of reductions
of equations on associative algebras and, in particular corresponding matrix systems of ODEs.
We expect that infinite dimensional realisations (for instance by operators in a Hilbert space) and
their reductions may be of interest as well. We would like, also, to look at the theory of classical
integrable tops from the point of such a componentless approach. That would require to study
equations on associative algebras with a few constant elements related by algebraic constrains.
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