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Abstract
This paper describes a procedure for ﬁanipulating the free parameters
of the asymptotes of the optimal closed-loop poles of a time-invariant
linear regulator as the weight of the input in the performance criterfon

approaches zero by suitable choice of weighting matrices Q and R.

1. Introduction

Given a stabilizable and detectable f2-input/m-output.time-invariant
linear system S(A,B,C) ofthe form

x(t)

Ax(t) + Bu(t) 5 x(0) = X

y(t) Cx(t) auitl)

then the controller minimizing the performance index

[e+]

J = i {yT(t)Qy(t) ¥ pnluT(t)Ru(t)}dt

Q=Q >0 |, R=R >0 |, p>0 P (.

is a constant state-feedback controller generated by solving a Riccati

(1)

equation and the resulting closed-loop system has poles equal to the

left-half-plane solutions of the equation

1, + pe'(-s)C(s)| = o . (3)

-
Nl—

where, if Q° and R® are the symmetric, positive-definite square-roots

of Q and R respectively, we define

=1 ..,%

G(s) = Q%C(SIH - A) BR . (4)




A well-known and accepted problem in optimal controller design is
the choice of Q and R to produce acceptable design characteristics.
One can regard this problem in terms of the intuitive notion of basing
design on ensuring reasonable locations for the closed-loop poles but

this is not a tractable proposition in general and hence, fairly

2~ . . .
recently( 4), the notion of basing our choice of Q and R on the

asymptotic behaviour of the unbounded roots of (3) as p++w has been

introduced. It has been recognized(1’5—8) that the analysis of the

solutions of (3) as p-+~ is simply a problem in asymptotic root-locus

analysis and it is known(ShS) that the unbounded poles (the so-called

'"infinite zeros') can be listed in the form

1/2kj
szr(p) - K T]jslr " CLjr " Ejﬁr(p)
1 =
im Ejﬂr(p) 0
p-—)m
1 8= kj 5 L & prx dj s 1% 2§ s 5 (3)

for suitable choices of integers q, kj and dj’ 1<j<q, and complex scalars

njir’ a s lfﬂfkj, 1fr§dj, 1<j<q. More precisely, it is now known that

(8)

(a) each 'pivot' o, is pure imaginary and equal to zero for
'almost all' choices of Q and R,
1 . C Y |
(b) each "asymptotic direction anr takes the form Ajrujl where Ajr
is real and strictly positive and the sz’ lfifkj, are the distinct
k.+1
left-half-plane ijth roots of (-1) 3 , and

(c) the integer 'orders' k. are simply(g) the distinct integer structural
g

invariants of the Morse group and the dj's are their multiplicities.



There is clearly a lot of structure in the asymptotic behaviour.
In fact there is so much structure that many of the parameters are not
available to the systems designer as design parameters. More precisely,
; . _ . ; . (2-4) ;
if one poses the intuitive design objective of ensuring that the
optimal closed-loop poles move to infinity at a desired rate and at
specified angles (Butterworth patterns) to the real axis, it is cleark

that the {kj} are the dominant plant characteristic governing this

(9)

behaviour. Unfortunately » the values of these integers cannot be
influenced by choice of Q and R hence reducing our room for manoceuvre.
We do however have some control over the rate (if not the angle) of
approach to infinity as the positive-real parameters ljr are clearly
related to the approximate radii of the Butterworth patterns. It is
the purpose of this note to point out a systematic method for choosing
Q and/or R to produce arbitrary specified values of the parameters Ajr’
lfrzdj, 144 . This formal algorithmic problem parallels that discussed |
in ref (10) for non-optimal systems but, in the optimal case, the pivot
has a much reduced importance as (see comment (a) above) it is 'almost
always' zero, It will be ignored here.

A duality between Q and R is outlined in section 2 and used to
reduce the discussion to that of developing procedures for the choice
of R alone. The basic results in the form of an algorithm are given
in section 3. Unfortunately, it does not seem to be possible at this
stage to answer the question 'what is a good choice of ljr?'. This is

(10) -

a problem shared by other fields such as non-optimal root-loci d,

(11)

in another form, pole-allocation and will only be resolved by

experience in practice with algorithms of the type described below

(2-4)

and elsewhere




2\ The Duality between Q and R

A duality between Q and R is revealed by using a standard determinental
identity (see ref (12), p7) to write
T o T
IIE + pG (-S)G(S)[ = lIm + pH (-s)H(s)I ——)

where

ral—

sl d)

By = (4] = R_%BT(—‘SIH—A)_ICTQ L

Suppose now that a technique is available for choosing the matrix R for
the system S(A,B,C) to produce the specified asymptotic parameters.
Such a technique can then be converted into a procedure for choosing Q

by noting that

1

H(s) = Q%(-B)T(sIHMT)_ cTx ..(8)

(where Q = R_1 and R = Q_l) is the transfer function matrix generated by

T, —BT) with performance index

the optimal control problem for S(—AT, C
(2) with Q replaced by 6 and R replaced by R. A choice of R for this
problem to produce the specified asymptotic properties will generate a

suitable choice of Q for S(A,B,C) by setting Q = ﬁ—l. For this reason,

the remainder of the paper will only consider manipulation of the 'R

matrix'.
3 Choice of Q

Suppose that m>% and that S(A,B,C) is left-invertible and consider
the problem of modifying the R matrix to change the revealed asymptotic
parameters Ajr’ lfrfdj, 1<j<q, into specified new values ijr’ lfrfdj,
1<j<q. The results represent a generalization of recent work (see eg.

ref (4)) from the case of m = £ and [CB| # 0.




The following lemma is fundamental:

Lemma 1: Equation (3) remains valid if G(s) is replaced by

&) = qf C(sIn~A)_1BV .. (9)

. . 1E
where V is any matrix such that VV° = R
1

Proof: It is easily verified that VVT = R—l if, and only if, V = R_iq

for some orthogonal matrix U. The result then follows from the identity

|1,4pC" (-)G(s) | = |1 4pGT (-s)E(s) |

We also need the following construction:

Lemma 2(8): There exists an orthogonal transformation T1 and a uni-

modular polynomial matrix of the form

(1, o6™H . 0(s™h)
1
0 Idz
M(s) = : : ... (10)
0(5_1)
(0] . 0 Id
q

(where the notation O(sk) is used to denote a function with the property

that lim s (k+1)0(sk) = 0) such that
|s [+
MT(—S)T TGT(—S)G(S)T M(s) = block diag {Q.(s)}
1 1 ] 1<3i%q
-(2k +2)
+ 0(s T )

where the dedj transfer function matrices Qj(s) have uniform rank(lz’ls)

ij and take the form NjT(—s)Nj(s) for some mxdj left-invertible transfer

function matrices Nj(s), 1<j<q.




_6_
: ; (12513 ; .
In fact, applying known techniques , the characterization of
equation (5) follows quite simply(B). In particular, the following

result is easily proved:

2k,

J

Lemma 3: The real, strictly positive numbers Ajr R lfrfdj, are the

eigenvalues of the real, symmetric positive-definite matrix
(2k.) A 2k, k..
I 2 lim s qu(s)(-l) ] . (12)

J |s [+

Consider now the real constant nonsingular matrix

L = block diag {Lj}‘lfij v wesil L3)

where the nonsingular matrices Lj have dimensions dedj’ 1<j<q.
; G < . T "
Multiplying equation (11) from the left and right by L~ and L respectively

yields

ﬂT(—s)TlT(TlLTTchT(—s)G(s)TlLTlT)Tlﬁ(s)

-(2k +2)

= Blodk dag {LjTQj(s)Lj} rois 1) .. (14)

1<j<q

where M(s) (defined by M(s)L = Lﬂ(s)) has the same structure as M(s).

In fact, we obtain the following main result of this paper:

Theorem: If G(s) a G(S)TlLT T, then the left-half-plane solutions of the

1
relation
-»T ~
|1, + PG (-8)G(s)| = © ... (15)
are the closed-loop poles of S(A,B,C) with state feedback controller

minimizing the performance criterion of equation (2) with R replaced

by R0 where




= -1 -1
R0 1 é R 2TILLTTITR * ... (16)

Moreover, the unbounded solutions of (15) have the form of (5) but where,
in particular, the parameters kjr’ lfrfdj, 1<j<q, are replaced by the
real, strictly positive parameters A.r, lfrfdj, 1<j<q. The real,

~ 2k,
strictly positive numbers Ajr J, lfrfdj, are the eigenvalues of

L (2k.) (%) ' g
Q. J L.qQ. Jui, g 230 CLF)

| J ] J
1<j<q.

Proof: The first part of the result follows from the definition of G

and G, bearing in mind lemma 1. Equation (14) then implies that G

satisfies lemma 2 with M and Qj’ l1<j<q, replaced by M and Qj = LjTQjL,

1<j<q. Standard results(12’13) then indicate that the general
2 ;
characterization of equation (5) remains valid with (lemma 3) A.r J,
By k3 p (2
lfrfdj, replaced by the eigenvalues of 1lim s JLj Qj(s)Lj(—l) J = Lj Qj J Lj'

e

The theorem provides an explicit method for manipulation of the

asymptotic structure of the optimal root-locus by systematic manipulation
1/2k.

of the parameters Kjr describing the radii (when multiplied by p 1y of
the Butterworth patterns. For example, suppose that a given choice of Q
and R yield infinite zeros with, in particular, parameters kjr’ 1frfdj,

1%j%q+ These can be obtained by application of known numerical

(8,12,13)

algorithms to compute (amongst other things) the matrix T1 and

(2k.)
the Markov parameters Qj J » 1<j<q, and subsequent application of

lemma 3. Suppose that it is desired that the parameters {Ajr} be

replaced by hjr’ lfrfdj, 1<j<q. Write,

(2kj) ij
Q. = U, diag{A. 1 U. » 1<i<q ...(18)
J ] s 1fr5dj ]




(2k.)
where Uj is the orthogonal eigenvector matrix of Qj J' and set

- ke K "
L, = U, diag {»,_3/x, 7} W.o , 1<i<q +s 5{193
i j jr Tir lered, j ==

where Wj is an orthogonal matrix, 1l<j<q. It is trivially verified that

~ (2k.) ~ 2k, T
Q. <4 = w. diag {1. I} W.o , 1<i<q ... (20)
] J L l<r<d, J - T
=
and hence, by the theorem, that the desired objective has been achieved.
Finally, we note that the objective of manipulating the available
parameters of the asymptotic oﬁtiﬁal root-locus is easily and systematically

achieved using the above approach and that the arbitrary matrices Wj can

be set equal to identities with no loss in generality as, using (16),

-~ 2k.
~], -1 A'r . T T -1
R = R 2T block diag {U.diag{( =35 } U."} T. "R 2
o} 1 ] Ay ] . 1
jr lfridj 1<3<q
L. (21)
which is independent of wl, W2,..., Wq.
4, Conclusions
(2-4)

It has been shown that the notion of using the asymptotic
structure of the optimal root-locus for a system S(A,B,C) as the basis

of choosing Q and R matrices in the performance index has a simple, elegant
and quite general solution if it is regarded as the formal problem of
choice of Q and R to produce specified values for the free parameters of
the system asymptotes. In this sense the results are a complete

(2-4) in this area with the exception that

generalization of previous work
no attempt has been made to manipulate the closed-loop asymptotic eigen-

vectors. The contribution represents also a generalization of the




5 ; ; 10 ;
compensation ideas for non-optimal systems( ) to the optimal case but,
at this stage, suffers from the same problem that bedevills other areas

(11)

such as pole-assignment » namely, 'what should be regarded as good
choices of asymptotic parameters/poles?'. As in pole-assignment, it
appears that this problem will not be resolved at the theoretical level.
Only application of the ideas in practice can yield the required insigﬁts.
It is hoped that the algorithms described ig this paper make the appliéation

procedures a straightforward computational (if not conceptual) matter.
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