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Abstract
Norms for operators play a fundamental role in the stability and
approximation theory of linear and nonlinear systems. This note
describes how certain induced operator norms can be bounded for continuous

and discrete systems using plant step response data only.

1. Continuous Systems

Any stable m-output/f-input, linear, time-invariant system S(A,B,C,D)

of the form

]

x(t) = Ax(t) + Bu(t) -, x(0) = x & R"

Cx(t) + Du(t) wea (1)

y(t)
can be associated with a mapping L of the Banach space CR(O,W) of bounded
continuous mappings of (0,+w) into r* into C" (0,2). We can choose the
norm in RY as

Hané max  |x, | e (2)

1<izq
where x€RY is regarded as the column x = (xl,xz,...,xq)T and the norm
in Cq(O,m) as

Iyl

il

sup ||y(t)i|q vie(3)
£50

The mapping L can be represented by the 'convolution'

t
Lw (£) = [ H(tDu(t-t")dt' + Du(t) , t30 oo (4)
0

where H(t) is the mxf impulse response matrix

H(r) 2 ¢ oA , 0 Ce . (5)

Noting that the matrix norm ||+|| on mxf matrices induced by the vector

norm (2) is just



A g
M| = max ) [Mi.l ... (6)
l<i<m j=1 J
then the stability assumption guarantees the existence of real numbers

M>0 and o>0 such that, for each (i,]),
~at J )
B 0] < JHD ] <Me T 0 s (1)

(Note: although in what follows we are primarily interested in lineat
systems of the form of (1), we note that the results apply to any system
with input/output map u -y = Lu with L of the form of (4) and (7) with
H piecewise-continuous (say). Our results extend in this sense to
differential-delay systems etc).‘

Our concern is the evaluation of the induced norm of I in

ijCE(O,w), Cm(O,M)) defined by

L]l = sup 2 .. (8)

The approach taken will be to reduce the evaluation of [|L]|| to the
evaluation of norms of single-input/single-output systems. To do this
we will regard the system as decomposed in the form

L

1
L o= | L +e e (9)

5 4
. L . 1 :
where Li is the map of C7(0,») into C (0,~) defined by u - y; or, more
explicitly,
L t

(Liu)(t) = j-z-l (E)[ Hij(t')uj(t—t')dt' + Dijuj(t)) we (100

Clearly each Li is an f-input/single-output stable system which can be



decomposed in an obvious way into single-input/single-—output stable

systems by writing

£
L., i = E B o \j u o » i l11)

where Lij maps Cl(O,m) into itself and takes the obvious form

t ]
= [ et 1 {
(Lijuj)(t) -é Hij(t )uj(t t')dt' + Dijuj(t) ... (12)

We can identify certain relations between the norms, namely,

Proposition 1:

Ll = max [z, | a (13)
1

]

Proof: Let q be the index such that Hqu| max||Li[f and let >0 be
i

arbitrary. There exists u such that Hu[] = 1 and yq = Lqu satisfies

lrgll > N ll-e.  seteingy = Tu then (L]l 2 Iy ] 2 liv, | > il =

As ¢ is arbitrary we get HLq]| = max HLillg Ll . But |ly|| = maﬁiyi“
i i
= max||LiuH < max HLill for any u of unit norm and the result follows.
L

The norms of the Li can be related to those of the Lij by the obvious

inequality,

[ sk CAY

L
el < X in

i=1 1]

and we can obtain ”Lij|| from the following result,

Proposition 2:

(o]

L. .|| = g JHij(t)Idt + IDij' swahl o)




and the obvious corollary follows that, using (13), (14) and (15),

Ll < max
l<i<m  j

I 1=

: (£|Hij(t)|dt + |Dij|) .o . (16)

Proof of Proposition 2: Let >0 be arbitrary and note that the convergence

of the integral

fes]

[ |, . (o)]|de < [|H(e) || dt <M [ e *Fae
o 0 0
M
< o s s LLT)
o0
ensure that there exists tozo such that f |Hij(t)fdt < gfZ. Choosing
E
the piecewise continuous input %
sgn H,.(t -t) . £ <
u (6) = S s e © e. (18)
{ segn Dij 5 t > tO
then [|u]] =1, y. =1L,.u, is bounded with
1 1] ]
t
0]
lyi(to)[= [é Hij(t)uj(tc—t)dt + Diju(to)]
E
[e]
=Cj; |Hij(t)|dt - IDijJ
> [ |H,.()|dt + |D,.| - €/2 .. (19)
0 L] 1]

It is trivial to verify that we can replace uj by a continuous input Gj

satisfying f]GjH = 1 and, denoting §i = Lijaj’ |§i(to)—yi(to)| < g/2,

Clearly,
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Bl 2 15,0 > 5,0 ] > Iy e - /2
>6[ |Hij(t)|dt + |Dijl ol v (20)
and hence, as € is arbitrary,
HLij|f > é IHij(t)|dt - |Dij} Y i

The result follows as, for anmy input uj, it is easily seen that

t
ly, )] = lg Hy;(eDu(e=e)de! + D, u (1)

< { é [Hij(t)[dt + ]Dijl}f|uj[| siow (22)

hence reversing the inequality in (21).

It is however possible to strengthen (16) to equality using the

result:

Proposition 3:

[T, . I , l<i<m ve e (23)

A
J

I 1=

5 1

Proof: We need to show that the inequality in (14) can be reversed.

Let >0 be arbitrary and choose t >0 so that, l=jse,

o

f |Hij(t)]dt < g/2% cea (264)

t
o

If uj is given by (18) for 1<j<#, then, writing P = YL 0 5
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E
i o
|j£l(£ Hij(t)uj(to—t)dt + Dijuj(to))l

|

ly; (e =
L to
= Hiy i dt Bz
le(é’ [H; ; () [de + [D, . ])
2 o
H.. d B l) = g/2 : ¢2: 25
> jzl(g p (0 [de + D) - e/ (25)
As in the proof of proposition 2, replace u by u such that o]l =1

and I§i(to)—yi(to)| < gf2. A similar argument to (20) yields

Il b~

HLi[| > ; (é'Hij(t)ldt + 'Dijl) - ¢ Wy

1

and the result follows from (15) and the fact that ¢ is arbitrary.

In fact we have proved the following theorem relating the norm of L to

the impulse response matrix H(t):

Theorem 1:

)
Ll = max |l || = max ] L, .|
l<i<m % l<i<m j=1 H
1

= max ([|H..(&) |dt + [D..])

l<i<m j=1 0 *J 2
< [l | de + [|p]] o 2

0

Proof: The equalities follow from (13), (23), (15) and the inequality

from
I (o]
max ( |H..(t) dt + [D..')
l<i<m j=1 O td .
< [ max 3z [H,,(t)|dt + max I ID. .| )
"o i oj M i j M

and application of the definition (6).



Given the impulse response data H(t) and D, (27) enables us to
compute or bound ”LI|. In the more practical situation where the

system step response matrix

E ‘
[ H(t")dt' +D ... (29)
0

v(r) &
is available from plant tests or model simulations (Yij(t) being the
response of vs from zero initial conditions to a unit step in uj) then
H and D can, in principle be computed. The main result of this section
indicates however that it is possible to avoid the evaluation of
integrals in (27) and, in cases where the system is non-oscillatory,

to compute ”Lij|l’ and hence |[|L|| , from a finite number of carefully

selected data points of Yij"

Theorem 2:
For each pair of indices (i,j), there is a finite or infinite

sequence of times 0 = t,. < t,., < t..,, < ... such that
130 13l ij2

[O,OO) =U[tk__l,tk) and \
¢

I )| ... (30)

| B N b S €D B S €V 1 I b Y €
1] K51 1] ik 1] 1ijk-1 1] 1jo
Moreover, the sequence {tijk} is any sequence with any one of the
following (equivalent) properties,
(a) Hij(t) is either >0 or <0 in every interval tijk <t < tijk+1
(Note: the sign of Hij may vary from interval to interval)

(b) Yij(t) is monotonic on every interval tijk < t< tijk+l'



Proof: Simply use (15) and note that (a) yields the identity

Yo
ol = 3 0 Jm.olae + o]
.. = ..t £t + .
1] 1] 1]
kel Gyampey
£k |
= H.. d D.. I .
kgl | tJ’ lJ(t) t| +JlJ| ( )
2t Bospg

and the result follows as

ij ijo ij
{41 Eyoy € 5k-1
B, A{thde = H,.(t)dt - H,.(t)dt
) / i5(® é 150 é e
ijk=1
= Yij(tijk) - Y ) i3 (32)

The equivalence of (a) and (b) is a trivial consequence of the definition

(29).

This result has a clear advantage over Proposition 2 in that only a
countable (and, in many cases, finite) amount of step response data is
needed to evaluate HLijI[ and hence HLJ{ exactly. The actual construction
used is illustrated in Fig.l using both impulse and step response
properties (a) and (b). Tt is immediately clear that the tijk can be
taken, by inspection, to be the crossover points of the impulse response
Hij(t) or the stationary points of the step respomnse. It is also clear

that only a finite number of t, . are needed if the system is non-

jk

oscillatory (or, more generally, asymptotically monotone) but that an

infinite number of tijk are required if the system has dominant oscillatory



Fig.l. TIllustrating the calculation HLi.fl = a+(a-b)+(c-b)+(c=d)

J
modes. The problem of summing (30) in this case is clearly insoluble
as only a finite amount of data is normally available. The following

corollary indicates that an arbitrary accuracy is possible if long finite

data records are available.

Corollary 2.1.

Given any £>0, there exists a time T such that knowledge of Yij(t)

on any interval {p,Tﬂ with T>T ensures that the numerical estimate

k*

|Yij(T) - Yij(tijk*)|+ P P TP L

A
= 5,5 Eous
k=1 iy ik i ijk-1

E.. )]

1]

+ |Yij(tijo)| B . -
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~

(where k* is the largest index such that tijk < T) satisfies the

accuracy relation

;& HL «(34)

| === EiJ = in

[

Proof: The proof is virtually identical to that of theorem 2 applied

to the approximation

~

% A
I Zwﬁl+£|%fUMt=E. «w» $35)

”Lij ij

to HLijll' Clearly, if T is large enough, the convergence of the

~

integral as T++» guarantees arbitrary accuracy.

Finally, we note the following bound on [|L]| .

Corollary 2.2:

By replacing {tijk} by an ordering Of[‘J{ti'k} , Wwe can take

i M kst
t,. =t  (independent of i,j) for all (i,j) and k. Under this
ijk k
construction, U = © and
Ll < X IvCe) =g DI+ [lvce) |l Lo (36)
k>1
Proof: Simply note that, using the above,
2
L] = max ) () |Y..(t) - Y,.(t )]
l<i<m j=1 k>1 ' E + L
+ Y. . (D) ])
ij o
) |
e max Y..0(6) = ¥..0t )[
= k>l 1<i<m j=1 1]k 17 k-1
+ max E 1Y..(t )I .. (37)
ij o

l<i<m j

which is simply (36).

The bound (36) would appear however to be only of theoretical interest.
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2. Discrete Systems

The results described above carry over with little change to the
analysis of a stable, f-input/m-output, linear, time-invariant discrete
system

T = 0 By
Y = ka + Duk s (38)

and the 'induced' linear mapping L defined by the 'convolution',

(Lu)k = 'E Hjuk—j + Duk suelC39)
i=1
mapping ﬁmg into Emm. Here Hj is the 'Markov parameter'
H, = cod la j51 .. (40)
and lmq is the natural Banach space associated with sequences y = {yo,yl,...}

Iyll = sw [y [| < += (D)
kzo q

The stability assumption is equivalent to the existence of real numbers

M>0 and 0<)<l satisfying

HHj|| < wpJ : i>1 L (42)

We note that the results depend only upon the convolution and stability
structure imposed on the problem and hence can be applied to a larger
class of system than (38).

Comparing (4) and (39) we see that we need only replace integration
by summation and the impulse response H(t) by the impulse sequence

{H » Fn As such the proofs of the following results are virtually

1,H2,..

identical to those of their equivalents in section 1 without the

in RY with norm
\
complications introduced by continuity etc. They are hence omitted. |

|
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We do however need to identify L with single-output systemsusing the

decomposition (9) with Li mapping an into le defined by

% k
(L w), = jzl () @) (uk—r)j + Dij(uk)j) )

r=1 ij

and decomposing Li into single-input/single-output system as in (11)

with

k
@ggup = rz (Uk— j<uij cn (50)

L : .
where Lj maps £ " into itself. In more detail we get.

Proposition 4: (c.f. proposition 1)

L]l = max [z c (45)

Proposition 5: (c.f. proposition 2)

I I(Hk) + o, | o (46)

1]

HbvﬂB

Proposition 6: (c.f. proposition 3)

1

el = 3 e,

i=1

[l oo (BD)
ij

and hence

Theorem 3: (c.f. theorem 1)

L
max Z IJL..“

Ll = max ] y

l<i<m l<i<m  j=1

max  J (] [@) |+ |p,.])
l<i<m j=1 k=1 K ij 1
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< 3l Il + o] ... (48)
k=1

Introducing the step response sequence,

k
Y = ) H, +D , k>0 owin LRI

we obtain the following equivalent of theorem 2:

Theorem 4:

For each pair of indices (i,j), there exists a finite or infinite

sequence of sampling instants O = kijo < kijl < ..... such that
e, .1l = |(YO) I+ ) 1o S ) | ... (50)
A ij el ijr  ij ijr-1  ij

Moreover, the sequence {kijr} is any sequence with one of the following

equivalent properties

(a) (H) is either >0 or <0 in every integer interval

k” .y
1]
kijr <k kijr+1
(b) (Yk)ij is monotonic on every interval kijr <k < kijr+1

The graphical comstruction is shown in Fig.2.

The use of finite data sequences is described by:

Corollary 4.1:

Given any e>0, there exists a time k' such that knowledge of

~ A

k) , k>0, on any interval k<k with k>k' ensures that the numerical
ij
estimate

(Y



- T —
i
h =D 3%, h = a— )}"\ = 4 oo
"‘S“ tx| (l‘l
Cl=-=— == == — = i - - =
" X
X
i
X
a X X
o
X K (8] c
b R e o c
O
T >y T T T T T T &=
(&)
o}
Fig.2. Illustrating the calculation Lijf| = a+(a-b)+(c-b)
A
E.. = |(@) |
ij o L3
r*
)l ) -« )
r=1 1je © i ije=1 4j
2 L« ) ... (51)
k ij ijr# ij

~

(where r* is the largest index such that kijr* < k) satisfies the
accuracy relation

s R I L o (52)

ij A}

The following bound on HLI| can also be obtained:
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Corollary 4.2:

By replacing {kijr} by an ordering of gg{kijr}rzl’ we can take

k = kr (independent of (i,j)) for all )i,j) and r. Under this

ijr

construction

L] srzl llYkr ", I+ g, |l ‘ ¢4+ (53)

Finally, the discrete system theory can be used to answer the
practical problem of estimating the norm of a continuous system L of
the form of (1) if the system step response is available only at
(synchronous) sample times O,h,2h,3h,... Clearly this data only allows
the calculation of the norm of the system regarded as a discrete system
Ld of the form of (38) with sample interval h. We can however prove
the following result indicating that a good estimate is obtained at

fast sampling rates.

Proposition 7:

L)l = tim [Jz,]] i v 5 (58
h~0+

Proof: The graphical construction for both ||L|| and HLdll indicates

that

gl < Il h >0 ... (55)
and that [[L,|| increases monotonically as h decreases. Clearly
therefore

lim L ]l < [l ... (56)

h->0+

To show that equality must hold, simply note that as h-+0+, the estimate

of HLd|f obtained from a finite data record Y Ofkfto/h, is arbitrarily

k’



- 16 -

close to the estimate of ||L|| obtained from Y(t) on the interval
Oftfto. But (Proposition 2.1), suitable choice of to enables the
estimate of ||L|| to be arbitrarily accurate and hence that HLd|f is
close to HL|| under fast sampling conditions. Equality therefore

holds in (56).

Finally note that the result can also be interpreted as stating that

small errors in estimating the ts will only lead to small errors in

1k

estimating ||L]] .

3. Some Illustrative Examples

3.1. Systems with Monotonic, Sign-definite Step Responses

If the continuous system (12) is monotonic and sign-definite (ie
either H..(t) >0 t >0 and D.. > 0 or H..(t) <0 t > 0 and D.. < 0)
ij - = ij = ij - - i =

then Yij(t) increases or decreases monotonically from O at t = O-.

Clearly t.. 0 and t.., = +» and
1jo ijl

|Yij (=) | L

Clearly, the steady state value of the step response is sufficient data
to calculate the norm in this case.
The equivalent result for the discrete system (44) is that

L.l = [, .| .. (58)
1] °°l_]

if either (H, ) >0 k>1andD.. >0 or (H) <0 k >1 and D.. < 0,
k = = 1y - B e — ~ 14

i3 ij
In this case, k.. =0 and k,,, = +e,
ijo i1
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3.2. Norms for First Order Systems

The stable first-order models
y(t) + Ay(t) = gu(t) g A>0 .« (59
and

Vie+l + Ayk = guk y ]A|<1 : ... (60)

have norms g/X and g/(1+)) respectively as they have monotone step
responses (see section 3.1).

3.3. Norms for Second-order Systems

Consider the second order system

Fo+2twy 4’y = o’ G

If the damping ratio £>1, the step response is monotonic and hence
(section 3.1) the system has norm [|[L|| = 1. If however 0<g<l, the
situation changes completely but the norm can still be evaluated in
closed-form. More precisely, the system response from zero initial
conditions to a unit step input is simply obtained from the transfer

function

aleh = BB ... (62)

(s=A) s— ;)
where A = -En - jw /(1—&2) to be
o J9,

Xe—kt Ae—ht
Y(t) = 1 + " + = s s (6:3)
(A=) (A=2)

Solving the equation Y=0 yields the time sequence

2km]
A=A

- m k =0,1,2,... .. (64)

2
wo/i—g



From (63) we see that

I

Y(t,) 1 + 2Re ~A:-e_At
=3
-Ew
14 208 P

]

cos(mo/l—gztk+¢) | .. (65)

where A and ¢ are deduced from the polar decomposition

Ao ped? ... (66)
A=A
and hence, using (64), that

-Ew t
1 + 28e °© kCOS(kﬂ+¢)

Y(tk)
-Ew
i % =13%94s otkcos ¢ o tBT)

clearly, Y(to) = 0, and
(t) - Yt )

2,-4
- (—1)k2A e_E(l_E ) (k-l)'ITX

Lo

2. -
(e_g(l_g iy 1)cos ¢ il

so that

R

2_
Ll = @ + e 07ED "My 9a cos ¢]x

[=+]

atl
J o me-e) i1y

k=1
2 -1
~E{1~E") *m
_ Xl # e - ) . (69)
a - o ~E(-ET) *m)
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where we have used the observation that the sum is a geometric series
and, from (67) and the fact that Y(to) = 0, that 1+42Acos¢ = 0.
Finally, note that
lim L] =1 , lim [|L]] = += « wis Ay
E¥li= E~O+
indicating that |IL” is a continuous function of & on (0,+=) and
unbounded in the vicinity of £ = O+. [|L]] is independent of w, as 1€

is independent of scaling of time.

4. Frequency and Time-domain Norms

Application of functional analytic techniques in stability theory
can use 'frequency' or 'time'-domain based analysis. We see below that
bounds for time—domain norms can also be bounds for frequency domain

norms .

4.1. Continuous Systems

The continuous system (1), after Laplace transforming and rearrangement,
can be written in the form
y(s) = G(s)u(s) s L
where y(s) (resp. u(s)) is the Laplace transform of the mxl (resp. (2x1)
output (resp. input) vector and G is the mx{ transfer function matrix

alul = c(sln-A)"ls + D . (72)

As the system is stable it can be regarded as a map of EQ(S) into Em(S)
where Eq(S) denotes the Banach space of gqxl vector-valued functions of
the complex variable, bounded and analytic in the 'Nyquist region'

g

S {s : Res > 0 s |s| < R} .. (73)
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where R is 'large' in the standard sense. If the boundary of S (ie the

standard Nyquist D-contour) is denoted 35, the norm in Eq(S) is just

Il

[

sup [ly (s) || o mi )
SE35 q

and the induced operator norm is

lell & sw  [lcts)]| NG N
sEas

Noting that

[ e®F H(t)dt .. (76)
0]

G(s)

is defined for Re s > -0, we see that the norm of G and L are related

through H. More precisely,

Proposition 8:

For the linear system (1)

lell < I Lo (7D)
Proof: If the supremum in (75) is achieved for a point |s| = R on the
compact set 3S, then, letting R+, |[|G|]| = ||D|| which is clearly less
than or equal to |[|L|| (set t = 0 in (4)). If however the supremum is

achieved at s = iw on the imaginary axis and q is the index such that

e
llell = lleGw| = } e .G ]| . (78)
2l
i |
let u(t) = Reuoelwt. Clearly the resultant response is just
y(0) = Re Giwu et +y_(©) . (79)

where, for suitable choice of M' > O

—at

lly (], < ... (80)
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Let t_ be such that ]|y0(t)” g < ¢ for t > t, where >0 is arbitrary

and consider yq(t) for t > to ie

2 .
_ . ipt
|yq(t) jzl Requ(lw)uoje | <€ ... (81)
~3 4
Choosing uy; < e J where ¢j is the phase of qu(iw) yields, via (78)‘i
L
Iyq(t) = '21 |qu(iw)[ cos wt |
J
= 'yq(t) - ||¢]| cos wt]] < e s (82)
Noting that ||u|| = 1, we conclude that

SHEFFIELD (n,
Ll > iyl > sup |yq(t)| APPLIED S(};UA-U'

t>t
=0

f-i‘(\d‘__

LIBRARY

>sup |G| |coswt| - e = |[¢]| - e ... (83)
txt_

The result follows as e is arbitrary.

There are a number of obvious corollaries obtained by substituting
for I[LH from theorem 1. These are omitted. We will however state

one interesting case.

Proposition 9:

If the linear system (1) is monotonic and sign-definite

llell = L]l = [[¥¢=]] ... (84)
Proof: The identity HL|| = ||[Y(«)|| follows from the discussion in
section 3.1 and |[G“ = HL|] as IIGH < ]|L” from proposition 8 and
G(o) = [ H(t)dt = Y(=) ...(85)
0

by definition.
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4.2. Discrete Systems

After taking z-transforms, the discrete system (38) can be written
as
y(z) = G(2)u(z) ...(86)
where G(z) is the z-transfer function matrix

6(z) = C(zI_ - @)_IA +D ...(87)

The stability assumption then implies that the system G maps EE(S) into

Em(S) with S defined to be

S 4 {z : 1 < Iz| <R} ...(88)

with compact boundary,

aS = {z : |z| =1 or |z[ = R} ... (89)

where R is taken to be 'large'. The discrete equivalent to proposition

8 is easily proved:

Proposition 10:

For the discrete system (38),

llell < Izl ... (90)
Proof: If the supremum in (74) is achieved at a point z such that |z| =
then, as R+, [|G]|| = ||D]] < |[|L]| by (39) (set k = 0). If however the
supremum 1s achieved at z = g with |B| = 1 and q is the index such that
&
lell = Nl = § o ] (o)
j=1 q]

* k :
set = Reuoﬁ . The resultant response is

Vi = ReG(f.%)uOBk + yo(k) is s (92)

R
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where, for suitable choice of M' > O,

ly @, < Mr K , k>0 ... (93)

The remainder of the proof follows the pattern set out in proposition 8

and is omitted.

The discrete equivalent of proposition 9 is

Proposition 11:

If the discrete system (38) is monotonic and sign-definite

el = [zl = Il swy (94D

Proof: Note that

G(z) = } 73 H, +D L
j=1 !
converges for |z|>) and hence that |[|G(0)|| = HYm” . But the
discussion of section 3.1 indicates that HLH = HYOOH ie

lle|l > ||| = ||L]|] . The result follows by combination with (90).




