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Summary

The analysis of variable structure systems in the sliding mode
yields the concept of equivalent control which leads naturally
to a new method for determining the zeros and zero directions of linear
multivariable systems. The analysis presented is conceptually easy

and computationally attractive.



1. Introduction

Numerous methods have been proposed for calculating system zeros.
The concepts underlying such calculations range from the use of high

293 to geometric formulationsa’5 and the use of

. 1
gain output feedback °’
generalised inverses6. Other algorithms obtain the zeros as the poles
of the system minimal order right or left inverse7 or by pole-zero

. . 8
cancellation techniques.
In the present study the relationship between variable structure

systems (VSS) and the zeros of the linear time-invariant

multivariable system S(A, B, C)

X = Ax + Bu; x e Rn, u e R" (1)
m
y = & ye R, m<n (2)

are investigated. It is assumed throughout that B and C have full rank
and |CB| # 0. (The case where CB is singular can be considered with
suitable modifications and will be reported elsewhere.)

A new method of computing the zeros of S(A, B, C) is derived by
considering the theory of variable structure systems. It is shown that
the system zeros are the eigenvalues of a reduced order matrix which
arises naturally in variable structure systems design. The algorithm
is computationally simple and yields insight into the operation of variable
structure systems in the sliding mode.

The paper begins with a brief overview of variable structure systems
design. The application of this theory to the computation of system zeros
and zero directions is then investigated and the physical interpretation
of the method discussed. Additional properties of the proposed algorithm
are investigated by decomposing the state-space, and worked examples are

included to illustrate the validity of the method.



2. Variable Structure Systems in the sliding mode

. 9,10 ; : i

Variable structure systems ’ are characterized by a discontinuous
control action which changes structure upon reaching a set of switching
surfaces. The control has the form

+
u. (%) s.(x) >0
i i
wo o= { (3)
. . <
ul(ﬁ) sl(x) 0
where u, is the ith component of u and si(g) is the ith of the m switching
hyperplanes which satisfy !
m
gx) = ¢ = Q0 g(®) € R°, (4)
The above system with discontinuous control is termed a variable structure
system (VSS) since the effect of the switching hyperplanes is to alter
the feedback structure of the system.

Sliding motion occurs, if at a point on a switching surface, si(g) =0,
the directions of motion along the state trajectories on either side of
the surface are not away from the switching surface. The state then
slides and remains for some finite time on the surface Si(ﬁ) = 09’10.
The conditions for sliding motion to occur on the ith hyperplane may be
stated in numerous ways. We need

lim+ éi £ 0 and 1im_ §. 20 (5)
si+0 si+0

or equivalently

s.8. =0 (6)

in the neighbourhood of si(§j = 0. 1In the sliding mode the system satisfies

the equations

s.(x) = 0 and éi(§) =0 (7)

3
and the system has invariance properties, yielding motion which is
independent of certain system parameters and disturbances., Thus variable
structure systems are usefully employed in systems with uncertain and
time-varying parameters.

Consider the behaviour of the system dynamics during sliding when the

sliding mode exists on all the hyperplanes assuming that the non-unique



control u has been suitably chosen. During sliding equation (4)

and its derivative

~
%

§ = Ck = 0 (8)
hold and the equations governing the system dynamics may be obtained by
substituting an equivalent control By for the original control u. From
(1) and (8) the linear equivalent control is

g, = - (e o (9
and substituting in eqn (1) yields the equations governing the system
dynamics in the sliding mode

x = [I- B(CB) 'ClAx = A (10)
Notice that during sliding m state variables can be expressed in terms

of the remaining (n-m) state variables from (4). This allows a reduction

in the order of the system matrix (see section 5).

3 System zeros

The use of variable structure systems theory in calculating the
system zeros is motivated by the observation that variable structure
systems in the sliding mode are very closely related to the output

zeroing problem.

3.1 The output zeroing problem

MacFarlane and I'(al‘cafu'_as.]1 state that a necessary and sufficient
condition for an input
u(t) = g exp(zt) 1(t) (11)
to yield rectilinear motion in the state space of the form
x(t) = x_ exp(zt) 1(t) (12)

such that

(13)

i
o
v
o

y(t) for t



is that
zI-A -B X = 0 = P(z) Z, (14)
53 0 g 2

where z is a system zero, X, the related state zero direction, g the input
zero direction and 1(t) denotes the Heaviside unit step function. At

the complex frequency s = z the state (Eo) and input (g) zero directions

satisfy
e N{P(2)} (15)

x
~0
g

where N{P(z)} is the null space or kernel of P(z)

3.2 Zero calculation using VSS theory

Considering the switching functions s to be the system outputs y,
VSS and the output zeroing problem reduce to the selection of a control u
and a state vector x such that the output y(€) = 0 for t > 0. Calculation
of the system zeros using VSS theory exploits the fact that if z(t) =0 for t 20
then i(t) =0 for t > 0, The algorithm which consists of determining the
eigenvalues of the matrix Ae which arises when the feedback
control yielding i(t) = 0 1is applied to S(A, B, CX is summarised below.
(i) Calculate u using i = Ck = 0. This yields

Clax + By) = §

and
u = - (CB) 'CAx (16)
which is the equivalent control Eeq of VSS theory.

(ii) Substitute in (1) to yield

k- [1-B(CB) chx = A x. (17)

(iii) Determine the eigenvalues and eigenvectors of Aeq'
; g i . . i . ; ;
(iv) Any eigenvector X, satisfying CEO = 0 is a state zero direction

and the corresponding eigenvalue is a system zero.

(v) The corresponding input zero directions are given by
g - U = —(cm) Toag !
=4 ~q| _ i 5 (18)



In practice we need consider only the (n-m) eigenvalues Ai € U(Aeq) = fO1
in steps (iii) and (iv). This becomes clear in section & (see equation
(33)) since it is evident that the eigenvectors associated with the m

zero-valued eigenvalues of Aeq do not lie in the null space of C,

18, B X~ = 0,
.y o



Consider an example to illustrate the procedure.

Example 1:

o 1 o0 0
x ={0 0 1|x+ |0]|u
-6 =11 -6 1
y = [20 9  1]x .
The eigenvalues of
-1 _
A, = [T -B(CB cla 0 1 0
0 0 1]
0 =20 -9

are 0, -4, -5 with corresponding eigenvectors

e, = 11 w By ™ 1 , and gy = 1
0 -4 =8 .
0 16 4
Since Ce, = 0, Ce, = 0 and CSB = 0, the zeros of the system are -4 and

-5 with state zero directions
1 1
-4 , -5 ;

16 25

=

The respective (scalar) input zero directions are from (18)

g = [6 -9 =31 17 = -6
-4
16
and
g = [6 -9 =3] 1 = =24
-5
25

Note that the zero directions are obtained without resorting to the higher



dimensional (n+m) system matrix P(s) (15) .,

3.3 Physical Interpretation

The (VSS) equivalent control is such that it assigns some of the
closed loop eigenvalues and the corresponding eigenvectors to coincide
with the system zeros and state zero directions, thus driving the system

to be unobservable. Consider the observability matrix

T
-1
- CA2 ceev., CAT :

o(c, Aeq) [C, CAeq, eq ° 5 CAeq ] (19)
since A, = O[T - B(CB) 'CJA = 0 (20)
it follows that

i ;
CA = 0 1= 1y 245 3, n-—1
eq
and
rank[0(C, Aeq)] = rank (C) = m < n.

The action of the equivalent control Eeq is therefore to drive the system

to be unobservable.

4. Decomposition of the state space

The calcﬁlation of the system zeros using the proposed method relies
on pole-zero cancellation through appropriate‘state feedback using the
equivalent control Heq' The zeros of the system are given by the
eigenvalues of a certain matrix associated with the (n-m) dimensional
unobservable subspace. To find this matrix an unobservability decomposition
is employedtz.
Introduce the similarity transformation

(21)

T = ——C—-{}m (22)
P {}n-m

U 1
1
H
w

where



C is the output matrix which spans the observable subspace, and P is a

matrix chosen to ensure that T is nonsingular. Therefore

-]

eq pS (23)

cr”!

H

= TA

Ue e

; (24)

i<
]
el

Define the partitioned inverse of T as

T = [ V: W Iln (25)
— Mgt
m n=m

and recall that a generalised inverse of a (kX¢)-matrix S is a matrix

s& satisfying]

ssbs = s, (26)

I S, P : ; -1 s
Using these definitions and exploiting the identity TT = Iﬂ it can

be readily shown that

w = I . 27)
PW = I (28)
PV = 0 (29)
tw = 0- (30)

Therefore V and_W can pe taken to be generalized inverses of C and P
such that conditions (29) and (30) are satisfied, i.e. pc® = 0 and CcP® = 0,

From equations (17) and (23)

¢cT1a rc® pElx = ca c®  ca p® x (31)
eq = eq eq

P PA B pA P8
eq eq

2

and

= crct : p81x . (32)

i<

From (20), CAeq = 0 and therefore

0 : 0
m

(33)

&N

W 1»
1

pa C8 pa P8
eq eq

y = [I_:0Ix . (34)



This is the standard unobservability decomposition, and the zeros are
therefore given by the (n-m) eigenvalues of PAeng'

The calculation of the inverse of T yields V and W. However, if the
computation of the matrix inverse is to be avoided, the matrix P should
be chosen such that equations (29) and (30) are satisfied. Furthermore,
since P& ¢ N{C}, a possible choice for P® is M = N{C}. P is then equal
to MB subject to the condition MBM = Im' The zeros of the system are
therefore equal to the eigenvalues of MgAeqM where M is a basis matrix

for the null space of C.

Since the state eigenvectors w; (or state zero directions) lie in
the null space of C, they can be expressed as a linear combination of the

basis vectors of M,

Wi T Mgi o * 9 : (35)
150,25, Trmm
Thus
Aqui - A‘equ%i - ziM%i

where z: is the zero associated with w5 and

MgAe My, = z.MMy. = z.gq. . (36)

Nl ~

Therefore g. is an ‘eigenvector oflMgAequggrresponding to the zero Z; -

To calculate the state zero directions w; the eigenvectors a5 of the
(n-m) th order matrix MgAéqM should be determined and substituted in (35).
The input zero directions g; are given by replacing X by Mo o in equation (12)
to yield

_ -1
g, = - (CB) caMy; . (37)



The algorithm presented above resembles that of the NAM method of
MacFarlane and Kouvaritakisa. In both methods the zeros are determined
as the eigenvalues of an (n-m)-dimensional matrix. It can be easily
shown that the matrix Nezﬁg[I ~B(CB)—]C} qualifies for the matrix N in the

NAM algorithm. This is because

and

n-m

where the matrix M is the same in both methods. However, the approach
proposed in this paper offers the advantage of calculating the state

and input zero directiops without resorting to the null space of the
(n+m)-dimensional system matrix P(s). Our technique involves only certain

matrix multiplications in the calculation of the zero directions.

. 4
Example 2: Consider the system

A=[-1 1 3 27, B= 1 0], ¢ = 1 -1 3 0
B =1 —1 =i 12 0 -1 -3 2
0 =1 -3 i 1
0 3 -1 -5 2 2]




From (10)

Ay " s [2 -6 6 4

1 12 42 =29

I 6 12 -11

| 2 15 39 =31
Also

P& = M = N{c} = [2 -6
2 0
0 2
...1 3_

From (36) the zeros are given by the eigenvalues of

MBA M = [ -0.5 -1.5 .
eq
0.5 ~2.5
Therefore, the system has two zeros at -1 and -2,
The eigenvectors % of MgAeqM are 3 s |1

] 1

The state zero directions are given by W, = Mgi (36)

and hence @, = Lo 6 2 6]T and 8, = [-4 2 2 4]?
The input zero directions (37) are
g = 0 and g, = -2 .
=2 0
5, Acknowledgement The authors wish to acknowledge the guidance of
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6, Conclusions

It has been shown that the study of a reduced order system which
arises in the design of variable structure systems leads to a new method
of calculating multivariable system zeros., The resulting algorithm is
computationally fast and simple to implement. It has particular

advantages when determining the state and input zero directions since



the calculation of the (n+m)-dimensional nullspace of the system

matrix P(s) i1s avoided.

References

Davison, E.J. and Wang, S.H.; Properties and calculation of transmission
zeros of linear multivariable systems. Automatica, 1974,
10, pp643-658.

Porter, B.; Computation of the zeros of linear multivariable systems.
Int. J. Syst. Science, 1979, 10, No.12, pp 1427-1432,

Young, K.D., Kokétovié,P.V.and Utkin, V.I.; A singular perturbation
analysis of high-gain feedback systems. IEEE Trans.
Automatic Control, 1977, 22, Ne.l, 931937,

Kouvaritakis, B. and MacFarlane A.G.J.; Geometric approach to the
analysis and synthesis of systems zeros. Parts | and 2.
Int. J. Control. 1976, 23, pp 149-182,

Owens, D.H.; Invariant zeros of multivariable systems: a geometric
analysis. Int. J. Control, 1977, 26, No.4, 537-548,

Lovass-Nagy, V. and Powers, D.L.; Determination of zeros and zero
directions of linear time invariant systems by matrix
generalized inverses. Int. J. Control, 1980, 3l
No.6, pp 1161-1170,

Patel, R.V.; Multivariable zeros and their properties. h'"Control
system design by pole-zero assignment", edited by Fallside,F.,
Academic Press, 1977, ppl4&5-165.

Wolovich, W.A.; Multivariable system zeros.in"Control system
design by pole-zero assignment", edited by Fallside,F.,
Academic Press, 1977, pp 226-236.

Utkin, V.I.; Variable structure systems with sliding mode: a survey.

IEEE Trans. Automatic Control, 1977, 22, pp 212-271.



10,

1l

12

13.

Utkin, V.I.; Sliding modes and their application in variable structure
systems, MIR Moscow. (English translation 1978).

MacFarlane, A.G.J., and Karcanias, N.; Poles and zeros of linear
multivariable systems: a survey of the algebraic,
geometric and complex variable theory. Int. J. Control,
1976, 24, No.l, 33-74.

Kudva, P., and Gourishankar, V.; On the stability problem of
multivariable model following systems. Int. J. Control,
1976, 24, No.6, 801-805.

Graybill, F.A.; Introduction to matrices with applications in

statistics. Chapter 6, Wadsworth Publishing Company, 1969.



THE MODELLING OF SEMIFLEXIBLE CONVEYOR STRUCTURES

FOR COAL-FACE STEERING INVESTIGATIONS

PART 1l: SPATIALLY DISCRETE MODELS

by

* *
Edwards J.B., Wolfenden, R.AT and Yazdi, A.M.S.R.

*
Department of Control Engineering,

University of Sheffield,
Mappin Street, Sheffield S1 3JD.

+Mining Research and Development Establishment,
National Coal Board.

One of a pair of companion papers submitted to the
Institution of Mechanical Engineers, for publication
in the Proceedings.

Research Report No. 151

April 1981.



