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- The problem of controller design for multi-
variable systems with uncertain dynamics is aggra-
vated by the obvious difficulty of making precise
theoretical predictions based on uncertain data.

The paper reviews some recent attempts to forma-
lise this problem and describes how asymptotic
analys;s can play an 1mportant role in such studies.

Introductlon

== It is generally true that control theoretic
studies of controller design assume the existence
of ‘a precise model of plant dynamics. In fact,
given the existence of a 'precise' linear model,
control theory has reached some maturity. It is
however, frequently the case in industrial or

other applications that a model of the plant is not
available or that the available model of plant
dynamics is too complex to make normal design cal-
culations (e.g. calculation of poles, zero, trans-
fer matrix, canonical forms etc.) feasible. 1In
both cases, the plant model is, from the point of
view of design work, effectively unknown - yet con-
troller design must still be undertaken! In such
.Situations it is clearly possible to consider the
use of adaptive or self-tuning controllers [l] or
;standard identification procedures (2] It may,
however be considered that the inevitable complexi-
ties implicit in adaptive control are not necessary
.in the given application and hence that fixed struc-
. ‘ture process controllers (with their known simpli-
‘city and robustness) are to be preferred. Such
;controllers could be designed on the basis of a
‘low order, approximate model deduced by identifi-
.cation of input-output data but (i) this needs
access to computing facilities that may not be
.available or regarded as necessary and (ii) there
‘is always the uncertainty present concerning the
behaviour of the real plant in the presence of the
‘controller designed on the basis of the identified
model. The construction of a viable alternative
‘would clearly be a useful addltlon to the desxgners
armoury.- T

" 777 It is the purpose of this paper to describe a
conceptual framework and related theoretical con-
cepts relevant to the construction of a viable
theory of non-adaptive unknown systems control and
to illustrate the form of result possible using
asymptotic analysis. It should be noted that the
possibility of constructing viable contrel
theories for systems with unknown model has only
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recently been identified by the picneeriné work of
Dav1son [3] with its modification and generalizatiohs
[SJ and the more detailed dork of the author and
hls collaborators LG] [12} and Astrom [J.B-I All
of this material can, at least in part, be regarded
as an attempt to generalize the classical on-line
tuning procedures (such as that due to Ziegler and
Nichols Ll{}) to the multivariable case. One thing
is most certainly clear [15] — the problem of con-
troller design for systems with uncertain dynamics
/precludes the possibility of making precise theore=-

' tical predictions of closed-loop performance under

some (and probably all) conditions of interest! At
the minimal level of plant information required, it
appears to be necessary [15] to have some structural
information (e.g. stability, minimum-phase, rank,...)
together with some numerical information (e.g.
steady-state data, rise-times,...) and theoretical
work should turn its attention to the general
questions:
(i) Given the structural information known,
-~ - -does a stabilizing controller of the
required structure exist,

(1i) is the paramtric information required to
construct such a controller available and
(1ii) what is a suitable paramerization of the

controller?

If the answers to questicns (i) and (ii) are in the
affirmative and the solution to (iii) is known, then
the choice of parameters could be undertaxen Dy on-
line tuning. -

“The form of result possible can be illustrated
by the work in [3] [s] where, roughly speaking, a
stable unknown system with no invariant zeros at the
origin of the complex plane can be stabilized by a
P+I controller with transfer function matrix,

éxz]

1 - G(o)
plant deduced from open-loop step responses),

K2 £ G(o) (where > o) and the 'overall gain' k

in a (proved) non-empty range

K(s) = k (R + i) e

by choosing, for example, K (D.C. gain of

e

Sk <k (e) 2)

The existence of a stabilizing k is the most the
theory can provide (unless other information is

invoked |12|) but a suitable value can always be
found on-line.



77 : RED. S0 EL PAP

m

S —

io -The above example lllustfafes the general

J’low -gain philosophy' [lﬂ based upon the intuitive
inotion that a stable system will retain its. ._._ ___ . ... .

?stahllity under low gain feedback. There is, how-
|ever an inverse approach (tentatively termed the
!'hlgh -gain philosophy’ [lj]) that is suggested by
|the recently developed theory of multivariable
lroot loci (see, for example, [ﬂ or the review in
[lq]) and the argument that an unknown plant can be
‘stabilized by the controller (1) by suitable choice

jof K, and K, and choice of k in a non-empty range

1 2 :
i ! i

* ! T e
' kK <k i | ! R
[ } !

}1f the plant is miﬁimum—phééEMEhdrﬁee';e;ﬁgﬂgfes in
:the open left—half complex plane. The proof of
existence of k* in (3) is clearlj a prablem in

asymptotic analysis!

--The general details of such a theoretical
approach are under consideration. Precise results
are now available, however, to cover design of P+I
controllers for unknownm-input/m-output, llnear,
'time—xnvarlant systems i B e

= k(t) = A x(t) + Bu(t) s

S L e

1]

LT ) x(t) il

possessing the (assumed knDWH) structural proper-
ties of being minimum-phase and [CB]# 0. They are
described in the following sections where previous
work is extended to produce stability results and
transient performance assessment in the presence

of measurement nonlinearities.

An Approximation Philosophy

The theoretical approach taken by the authors
for the design of the controller K for the unknown
plant G in the feedback configuration of Fig. 1(a)
with the (assumed known) memoryless measurement non-
‘linearity N is to consider the problem of control-
:ler design for a simple approximate model Gp of the
‘plant in the configuration of Fig. 1(b) with a
‘llnear approximation F to the nonlineary N.
'Theoretical studies can then be directed to the
jgeneration of computable conditions for the stabi-
lity of the real feedback system and the search
for estimates of the closed-loop response y in
Iterms of the approxlmatlng response v

= The basic result can be deduced from recent
irobustness studies [17] if we regard that the plant
‘G and its approximation Gp as mappings from a vec-
tor space U into a vector space Y. As we are in-
‘terested in square systems we will take Y = U. The
space Y is assumed to contain a subspace Y, endowed
with a suitable norm topology with respect to which
it is complete. A system is said to be stable if
‘it maps Yo into itself. Causality structures are

easily included but are ignored here for simplicity.

Suppose that the plant G and its approximation Gp
are related by the feedback structure of Fig. 2 or,
in algebraic form,

1

G= (I + GA H) GA N o ) (5)

where H:Y -+ Y is stable and that the nonlinearity N

~~that there exists g

A ' is being considered at the present time.

‘'satisfies the. Condltlon e busoanting pages heee i

N ~F = Nl,+ N2 e - ; (6}§
where N. has finite incremental gain ky such that
(|}.]| Being the norm in Yol e o

oy - wzf] <k [ly - 2] )

!
for all y,z & Y, and Ny is bounded in the sense
2" 0 such that

iM;H_ZﬁyE! | ®)

ST i

g e s SN

The following result can 1mmed1ately be deduced
from [17] by regarding G as a perturbation of its
approximation G, and describing Fig. 1(b) by the
llnear operator L Im Y=

Theorem 1: If the feedback system of Flg 1(b) is
stabilized in the presence of X and = g

_.{a) the control mapping K has an inverse on 45
(b) L k-1 maps Y into itself with

o at

£ —~~‘k9)

]|ch<' Bh <%, apigne
(ci the nonlinearity satisfies

i &t

1 = L . S
L ||k 1
2%, < (10)
then the controller K stabilizes the plant G in the
configuration of Fig. 1l(a). Moreover, under these
conditions, the responses y and Y, are related by
the inequality, T

] -
Sl = YAII g g [le
o 7 q 1 ) T __—_m—“.
] |T (T o R ¢ =)

Note that the RHS of (1ll) contains only known
quantities and hence, in principle, can be com-
puted to bound the error (in norm) y - y in pre-
dicted response. Its use in general design studies
We will
turn our attention however to the specific situa-~
tion when G has a minimum-phase state-space form
(4) with CB nonsingular and the use of a multi-
variable first order model G_ with transfer func-
tion matrix [6],[7], [11] [157 with inverse a

GA (s) =8 AO * Al (12)
where A_ = (8T 4% wecimared using initial rate
data from open-loop plant unit step responses F51
[li] and Aj is, in principle [1§J, any mxm real
constant matrix e.g. choosing A; equal to the
inverse d.c. gain matrix (deduced, perhaps, using
steady state open-locop step responses data [ﬁ],[ll])
would ensure that the plant and its approximation
have identical rise-time and steady state data. An
equivalent state-space model is
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; Througl;out the remainder of the paper we will also "

assume that ¥, is simply the product space _
Lm(0,+w) and that Y is its natural extended space. -
[--3 .

For Simplicity however we will not use the implicit

causality structure. _  _
i
| I e e T

Control of Unknown Plant

The application of the above theory to design
begins by the construction of a suitable controller
Ifor Gp. We will suppose that F is an mxm nonsin-
'gular matrix and write K as a minimal realization
of the transfer function matxrix 5
k]cJ
=3

-1
. ey PE =Y A
K(s) {Aodlaq{kjﬁ:j l<jem Al)F (14)

‘where {k } and {c } are available proporticnal and
integral tuning parameters respectively. A simple
calculation yields the fact that L has transfer
function matrix

=1 - -
: (T+G, KF) "G K
: e
iribes f(mﬂmm s et
=¥ =1
+k cj 1¢9sn ~ ® L P —

and hence that the approximate feedback system is

stable if k. > o, c. 3 o and that response speegf
and reset times in ioop j are of the order of k.
and cfl respectively. Defining the matrix norm]
||M]|2 = max ] |m, .| and the 'overall gain'

. m . ij

i i

= e 5

8 A .

vk =min k U ¢ X 23 |

| 3 1 a ‘

‘then we obtaln the following asymptctlc results

R T R
lLemma 1: |
i—-——-— e e ~e
| © lm IEL l! [IF Ifm e
T ket T T :
equality holding if F = I . P TS
:Proof: For simplicity let kj =k > o and Cj = cd>o,
l¢jsm, and write (15) in the form L
1
: k k -1 -1 — R
i —  — -k
: Prrall e (Im AQ Al}F
S— : _ ‘ .
c c -1 -1 -1

! —_— e o (T = F

+ s+c {c-k) m ° Ac Al) (18)

Clearly the second term has norm tendln? to zero as

k++= and the first term has nomm & | |F~ I{m’

equallty hcldlng 1f F = I e 2

- s * '
Lemma 2:: There exists k 2 O such that K has a
. stable inverse for k > k¥ with norm in ¥
_ satisfying RS S ° 5
RIS P : i
im |jx ]| =0 | (19)
TS . 2 - (O N i
éfgaf;mmfﬁ-is.é éiﬁpigiﬁfbgig;_ih-algebra to show

that K has an inverse system with a stable transfer
function matrix for large k. The result can then
be deduced by, say, partial fraction expansion or
construction of a minimal realization [li

{

There application in prediction of the behaviour of
the unknown plant G in the presence of K requ1res
the following structural result: e

Lemma 3: If 5(A,B,C) is minimum-phase with
CB| # O then G has a decomposition (3) with H
proper and stable.

Simply note that G(s) has inverse

Proof:

G"l(s) s A+ H(s) (20

where H is proper and stable and wrlte H =H - Al

We can now state the main result of th15 paper:

Theorem 2: Suppose that an mxm unknown plant
S(A,B,C) is known to be minimum-phase with ]CB|# o}
and that the nonlinearity N is such that

A 3
Rl

Then, for each choice of integral tuning parameters

kl < 1 for suitable choice of F and kl

=N 2 0, 02 2 o,...,cm > o, there exists k* > o such
that, for all values of overall gain

* -
k = min kj 2 k , the controller (14) with Ao=(CB) %

‘ J
will stabilize the unknown plant in the configura-

tion shown in Fig. 1l(a). Moreover, under these
conditions, the responses of the real and approxi-
mating feedback systems from zero initial condi-

tions are related asymptotically by the relation

lim sup I Yy =y lim sup Yy T
v -nall € g 1w su [l

2 k ++m 1 l ;

S & gk -i ¢ s g e :
el 3 11 (21)

Proof: Simply note that the conditions of theorem

1 are satisfied as kj > o, ¢4 2 o, lgjsm, indicate
that L, is stable whilst lemmas 1-3 indicate that

LXK CH is bounded, lim A = 0 and lim u € y <Ll.

¢ koo krko

Equation (21) fcllows directly from this informa-
tion, equation (l1l) and the observation that both
u/(1-p) and (l-p)~! are monotonically increasing

in [o0,1). g 2 SR
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| B¢3'The practical interpretation of the result is

that, given the structural information and the
numerical value of CB for the unknown plant, and the

data for the nonlinearity, the controller parameter-. -

ization. (14) can be easily constructed and the para-
meters adjusted to produce the desired response

from the approximating linear feedback systems. " The
resultant trial controller can then bes hocked up to
the real plant in the presence of the nonlinearity
when theorem 2 states that, provided the computed
value of vy is less than unity and the overall gain k
is greater than its unknown bound k¥, the resultant
feedback system will be i/o stable. More than this,
the theorem states that, if instability is found,
¢éne need only increase the gains to achieve stability
nd the performance degradation can be represented

approximately by T —

¥

1y

sup ||y, &) [

S 40 I AN
[ ni ). w0

the RHS containing known quantities only. IN
particular, if the nonlinearity N is the identity

(1.e. unit feedback), then we can choose F = Im'

kl,?,or,q = 0 and (21) reduces to
. lim sup [ly = §A|] =0 ) (23)
k =+ o E
indicating that y(t) is very close to yA(t), t = o.

Finally, although stability is guaranteed and
the real system behaves in a similar manner to the
approximation in the closed-loop, it is important
to recognize that suitable choice of tuning para-
meters leads to fast responses, exact tracking of
steps, rejection of step disturbances and low
closed-loop interaction if F is diagonal. For
example, for simplicity choose cj o, l€jsm, and
5
tion matrix of the approximating feedback system
reduces to the matrix k/(s+k) (I - k‘lA;lAl)F'l

=k., 1€j<m, then the closed-loop transfer func-

-which is approximately diagonal if k is large.

I . Conclusions H

i ~ The problem of controller design in the presence
of severe plant uncertainty is a problem of immense
practical importance that has traditionally been
examined using differential sensitivity methods, and
more recently, by the ideas of adaptive and self-
tuning control. In situations where adaptive control
is not desirable yet the plant model is uncertain in
. both dimension and parameters, the theoretical
situation is still relatively underdeveloped due
(presumably) to the conceptual problem of making
precise predictions based on uncertain data. It is
clear however [15] that 'low-gain' [3]-[5], [12],
[13] and 'high-gain' [6]—{111 theories can be con-
structed to cover some (but not all?) situations of
practical interest, Work continues in these areas.

The use of high-gain feedback systems as a

P el =i
FENE S

Ly

LA

£ 2

g

.meané of combating uncertainty was pioneered by

‘Bode

- perturbations [20

.. systematic design tool.

[13} and Horowitz [19] and the use of asympto-
tic analysis for root-loci [7],'[ and singular
is now established. The contri-
bution of this paper is to describe a framework

1£
i

" under development by the author for the formal des-

cription and development of such netions as a
Theorem 2 has the typical
structure obtained, providing existence,parameteri-
zation of stabilizing controllers together with an

“asymptotic characterization of performance that can
.be used to quide design work.

"Finally, we note that similar results are
available for sampled-data systems [8], [9] and
that the results have strong connections with the
parallel work ofrPortar_[2l], [22]. Y
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