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Abstract
Recent work on the design of robust proportional plus integral non-adaptive
process controllers for unknown minimum-phase (but possibly unstable) E
multivariable systems is compared and contrasted with recent work, extended

to predict permissible data inaccuracies and illustrated by application to

an open-loop unstable batch process.

1. Introduction

In recent papers Penttinen and Koivo (1980) and Porter (1981) have
considered specific examples of the general problem discussed by Davison
(1976) of constructing simple, non—adaptive process controllers for unknown
multivariable systems (unknown in the sense that its model is unknown or
of too high order to make normal design calculations feasible) using only
elementary computations based on inspection of graphical system open—loop
step response data., Astrom (1980) has also considered a special case
for single-input/single~output systems. When applicable, the techniques
are capable (in principle) of generating éimple process controllers that
are easily tuned on-line and, in this sense, can be regarded as preliminary
attempts to extend and generalize classical tuning methods such as that
due to Ziegler and Nichols (1942). In the authors opinion, all of these
techniques lay an important foundation to help bridge the gap between
control theory and engineering practice based on experience and intuition.
We should note that the problem could also be approached using sophisticated,
microprocessor-implemented adaptive (self-tuning or model-reference

adaptive) controllers (see, for example, Billing and Harris (1981)).



This is most probably the preferred approach if the plant is subject to
significant parameter variatidn. We take the view, however, that, in
those cases where plant parameters are known to remain sensibly constant,
there is still a vital need to retain the simplicity, familiarity and
known robustness of fized-parameter, non-adaptive control elements.

It is the purpose of this paper to provide & discussion of underlying
theoretical concepts relevant to the construction of 2 viable theory of
non—adaptive unknown systems control and to note that there are two
natural and complementary situations (namely those of "high' and 'low'
controller gains) where useful analysis is possible.  The work of
Penttinen and Koivo, Porter, Davison and Astrom all require the use of
"low' control gains. The high gain situation is then illustrated by a
generalization of controller design as discussed by Edwards and Owens
(1977) and Owens (1978,1979b) and applied to control design for the open-
loop unstable system previously considered by Munvo (1972) and Rosenbrock
(1974). The technique is seen to be the natural 'inverse' to that of
Penttinen and Koivo and has the advantage that the effect of measurement

nonlinearities can be estimated during the design exercize (see Boland

and Owens (1980) and Owens (1981a)).

T Alternative Approaches to Non—adaptive Unknown Systems Control

It would appear to be a general principle that, in any attempt to
design a controller for an unknown system with m-inputs and f-outputs

described by (say) the (unknown) continuous, linear, time-invariant model
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it is necessarily true that the structure of the design and the limitations
encountered should reflect this uncertainty and generate a closed-loop
system that is robust (i.e. insensitive to the unknown dynamics). The
details will, of course, vary from situation to situation and will depend
upon the physical nature of the plant. It is possible however to generate
two distinct situations where general statements can be made about stabilit%
as outlined in the following sections. It is important to recognize
however that the presence of unknown dynamics in the plant inevitably
constrains the form of theoretical result obtainable and clearly precludes,
in general, the possibility of making precise predictions about performance
in situations of interest. The precision of the results obtainable
clearly depends upon the degree to which the plant is unknown! At the

most primitive level, the smallest data set allowed seems to consist of

some structural information about the plant (eg stability, minimum-phase,

rank) that is presumed to be known from physical or other considerations

together with a small amount of parametric information (eg steady-state
data, rise-time) known from (say) plant tests. Given such a small data
set, precise analytic predictions about closed~loop performance cannot
even be attempted and the theory must turn its attention to the important
but less (numerically) precise questions:
(i) Given the structural information known, does a stabilizing
controller of the required structure exist and
(ii) is the parametric information required to construct such a
controller available?
If the answer to both questions is in the affirmative the control problem
is viable but is not solved unless the theory also provides some indication
of a systematic search procedure for finding a controller. We must not
preclude the possibility that the procedure takes the form of simple

guidelines for use in on-line tuning!



In the following sections attention is focussed on the problem of
the design of a proportional plus integral unity negative-feedback
controller for an unknown linear plant. If the problem is solvable it
will clearly provide a control system ensuring regulation, tracking of
step demands and total rejection of step disturbances. Theoretical
analysis, as expected, does not produce a precise numerical form for
the controller but it does provide parameterizations of classes of
controllers in which a suitable controller is known to exist. For
example, it is possible to prove that suitable controllers lie in the

one-parameter family

+Lxy )

K(s) = k (K1 s K

where K1 and K2 are computable matrix gains and the parameter k is an
'overall loop gain', and that suitable controllers can be constructed
using any k in a non-empty but unknown range

kl<k<k2 5503

The form of (2) and the known existence of a stabilizing value of k clearly
makes possible the systematic search for a suitable value either on-—line
or by simulations using a complex system model, In those cases where

k, = 0 (resp. k, = +») the analysis also provides additional 'trend'

1 2
information indicating that instability found on implementation of a

trial value of gain k can be removed by decreasing (resp. increasing)

its value on-line.

2.1 The Low Gain Philosophy for Stable Unknown Plant

Intuitively, a stable system of the form of (1) will, in general,
retain its stability in the presence of 'low gain' output feedback.
The mathematical formulation of these ideas for the case of proportional

plus integral unity negative output feedback requires more careful thought



but can be resolved (Davison (1976), Pentinnen and Koivo (1980),

Porter (1981)) to prove that a controller of the form of (2) exists
guaranteeing closed-loop stability for all k in some open interval of

the form of (3) with k1 = 0 if the plant has the structural characteristics
of stability and the absence of transmission zeros at the origin s = 0.

In particular, in the case of m = &, it is then possible to choose

K, = G_l(O) and K2 = eGﬁl(O) with >0 and G(0) equal to the matrix of

1
d.c. gains deduced from open-loop plant step tests. No other structural
information or numerical data is necessary to ensure the successful
completion of the design by on-line tuming of the parameter k.

Finally, it must be emphasized that, as the theoretical treatments
concentrate on stability predictions, there is no guarantee that closed-
loop tramsient performance will be acceptable. Indeed, if the unknown

upper gain bound k, is numerically small, we will expect to achieve only

2
sluggish closed-loop performance. If, however, kz is large (as will

be the case for overdamped plant) improved transient performance will

be achieved by the use of the higher gains permitted. Unfortunately,

at the level of plant knowledge assumed, the bound k2 cannot be computed,
its value (good or bad) being revealed by the plant at the on-line

tuning stage. This is the inevitable priée that must be paid for
attempting controller design at this level of plant ignorance! Improved

predictions can only be obtained if more detail on plant dynamics is

included in the design (see Owens and Chotai (i981)).

2.2 The High Gain Philosophy for Minimum Phase Unknown Plant

The design of high gain feedback controllers for uncertain systems
originates with the pioneering work of Bode (1945) and Horowitz (1963)

for single-input/single-output systems. A corresponding theory is not



yet available for the multivariable case despite the promising beginnings
in the work of the authors (Edwards and Owens (1977), Owens (1978),

Owens and Chotai (1980), Owens (198la)), the work of Willems (1981) and
Kimura (1981) and the important work of Kouvaritakis, Shaked, Owens and
others on multivariable root-loci (see, for example, Kouvaritakis and
Shaked (1976), Shaked (1976), Owens (1978) or the review paper by Owens
(1981b)).

The relevance of high gain feedback to non—adaptive unknown systems
control can be illustrated by considering the situation when m = £ and
structural information is available to the designer to indicate that the
plant is minimum-phase and possesses only infinite zeros of first and
second order, It is then a simple exercize in compensation theory (Owens
(1979a)) to demonstrate that there very often exists a unity negative
feedback controller of the form of (2) that places all system asymptotes
in the open-left-half complex plane and hence stabilizes the plant for
all gains k in some range (3) with k2 = oo, Mpreover the existence and
form of such controllers can be deduced from any parametric data set
containing the Markov parameters CB, CAB and CA2B if the plant possesses
second order characteristics or simply the single Markov parameter
matrix CB if the plant possesses only firgt order characteristics at
high gain. This last case corresponds to the case when CB is nonsingular
and it is interesting to note that it can be estimated from oﬁen-loop
transient step response data (Edwards and Owens (1977)) alone.

As in section 2.1 the lower gain bound is unknown and hence the
analysis produces no guarantee that system performance or control input
magnitudes are acceptable. If k1 is large then stability may only be
achieved using large control inputs and/or (if the plant possesses second

order infinite zeros) at the expense of severe oscillation in the closed-



loop system. The use of such high gains may be physically necessary

if the plant is open-loop unstable but, if the plant is stable,
excessively high gains must be avoided. This will only be possible

if the lower gain bound k1 turns out to be small. Unfortunately, with
the minimal plant knowledge assumed, kl cannot be predicted theoretically,

its value (good or bad) and the consequent success of the design being

revealed only at the on-line tuning stage.

2.3 Low-gain versus High-gain: inverse approaches

In order to highlight the relationships between the high and low
gain philosophies, divide the class of all square, invertible linear
systems into four subclasses:

(a) Stable and minimum-phase systems,

(b) Stable and non-minimum-phase systems,

(c) Unstable and minimum-phase systems and

(d) Unstable and non-minimum-phase systems.
Subject to the availability of the required structural information, the
low-gain philosophy applies to unknown systems in (a) and (b) only
whereas the high-gain philosophy applies only to unknown systems in (a)
and (c¢)., Clearly the methodologies have distinct areas of applicability
with overlap in subclass (a). They must hence be regarded as distinct
alternatives to controller design for unknown plant known to lie in (a),
(b) or (c). Neither philosophy can cope with case (d) but, intuitively,
a plant with the dual complexity of right-half-plane zeros and instability
must be modelled accurately if control design is to be successful. The
existence of distinct but overlapping areas of applicability is underlined
by noting that, although stability, asymptotic tracking and disturbance

rejection are fundamentally important design specifications in process



control, other applications demand higher performance specifications
including fast rise-time, small overshoot, small transient interaction
etc, The relevance of the low—-gain philosophy to such situations is
small as it is generally true that high performance systems require
tight (ie high gain) control loops!

Finally, we note that the low and high gain philosophies can be
pictured as inverses of each other in the sense that the gains and the
required structural information have an inverse relationship:

(a) the inverge of a high gain is a low gain, and

(b) a minimum-phase system has a stable inverse.

3 High Performance Controllers based on Approximate Plant Models

Although root-locus arguments provide a useful starting point for a

theory of controller design for minimum-phase unknown multivariable

systems, it does not produce a complete picture. For example, specific
choices of Kl and K2 must be made to ensure, not only stability, but
excellent time responses for the closed-loop system. The approach

being pursued by the authors is to base controller design upon a very

simple model of plant behaviour, to ensure that the derived controller
produces the desired stable, high performance responses from the approximate
model and to demonstrate that, at high gains, the real plants stability

and transient characteristics are arbitrarily close to those predicted

by. the approximate model. The theory is under development at the present
time and is certainly not complete. We will restrict our attention
therefore to the special case when m = £ and ]CBI # 0. This is clearly

a restrictive assumption on plant structure that is equivalent to the
existence of only first order infinite zeros of the root-locus or, in

transfer function terms, it is the multivariable equivalent of the



classical situation when the plant has a pole-excess of unity or a high
frequency slope of -1 on the amplitude curve of the Bode diagram. In
practice, the assumption is not satisfied in the sense that unmodelled
fast dynamics almost always increase the 'pole-excess'. There are
situations however when it is a reasonable approximation over the
bandwidth of interest. We therefore take the view that analyses of
this special case will provide a bench mark/starting point for the
analysis of more complex cases.It seems to be self-evident that, if this
case defies analysis, the analysis of the more general situation will
be impossible!

Suppose that structural information is available to indicate that
a square, unknown multivariable system is minimum-phase with CB
nonsingular. It follows that the plant has transfer function matrix
G(s) with inverse of the form

=2

G (g) = sAo + A+ AOH(s) oo (4)

1
" where Ao = (CB)_l and H(s) is proper and stable. Both Al and H are
not defined uniquely as, replacing Al by Al, (4) is structurally

unchanged if we also replace H by H = H + Aoml(Al—Al). There 18 no

loss of generality therefore in taking H(o) = O when A1 = lim Gpl(s).
s = s=0
Let Ao and Al be numerical estimates of AO and Al obtained from a

complex model or, if open-loop plant step response data is available,
from initial rate and (if the plant is stabl:c) steady state data (see
Edwards and Owens (1977), Owens (1978)). This numerical information can
be used to comstruct an approximate first order model (Owens (1978)) of
plant dynamics of the form

R sAOm&l .. (5)
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which approximates the high and low frequency plant characteristics only.

Consider now the two-term parametric controller

. k.e. N
- & o 4 -]
= s E e, - Béa
K(s) Ao dlag{kJ cJ + " } A1 (6)
generalising previous work of Owens (1978 p.120). A simple calculation
yields the identity
I+ 6,()K(s)) 'e,()K(s) = (6, "(s) + K(s)) 'K(s)
m A A A
= diag{ o7k j€é+c )} (diag{(k.+c.)s+k.c.} -SA _1£ )
j i’ 1<j<m 14 l<j<m  ° 1
T A

and hence the approximate system is stable in the closed-loop situation
iff kj>0 and cjzo, l<j<m. If we identify the kj's with fast modes and

c.'s with slower modes then a simple pole-residue calculation yields

the results

(a) responses in loop j have time-constants of the order of kj_l,

zero steady state errors in response to unit step demands if
c. # 0 and reset times of the order of cjvl, and

(b) defining k = m%n k,, then the system response speeds in response
to unit step dimand can be made to be arbitrarily fast and
transient interaction effects arbitrarily small as the 'gain'
k becomes large.

Clearly the controller (6) generates a high performance closed-loop

system for the approximate plant (5) if loop gains are high! Suppose

that we now apply the controller to the real (unknown) system (4): The

following result is a natural inverse to those of Davison and Penttinen

and Koivo.
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Theorem: Using the above assumptions and constructions, there exists
a real 'overall-gain' k*>0 such that the inknown multivariable plant
considered will be stable in the presence of unity negative feedback
with forward path proportional plus integral controller given in (6), if
(i) the tuning parameters kj>0, cjzo (1<j<m)
m i

. A e
(i1) A_ = max z |(A (A =A ))..] <1
l<i<m  j=1 © e o 1]

(iii) the gain parameter k - min k. > k*
1<j<m

Proof: Using the results of Edwards and Owens (1977), sufficient conditions

for closed—-loop stability are that K stabilizes GA and that
A 7 -1,-1
A = max sup z IF..(S)I < 1 where F = (I+QA )
l<i<m se€D j=1 +J

and Q; = GAK and D is the usual Nyquist contour. A little manipulation

Q- ™h, q = &

indicates that

o ~ -1~ ~ -1
} (SAO (AO AD)+AO (A1 Al) AO AOH(S)

& e s
F(s) = dlag{(s+k.)(s+c.) 1<j<m
J ] -
...(8)
Condition (i) is required to ensure that K stabilizes GA' The theorem
follows as conditions (ii) and (iii) together ensure the existence of

k* such that A<l for k>k*. Simply note that H is proper and stable and

use (8) to prove that limA < A < 1,
ko>t

The application of the result is illustrated in the next section.
Before continuing we note that conditions (i) and (iii) together provide
a guaranteed range of tuning parameters for stability. They can be
tuned on-line or using simulations of a complex model and using the
approximate model predictions (observation (a) preceding the theorem)

to provide some correlation with expected transient performance.
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Condition (ii) provides explicit lower bounds on the maximum permissible

error between AO (resp. CB = AD_I) and its estimate AO (resp. CB = Ao_l

)
or, equivalently, lower bounds on the maximum permissible error in rate
measurements on open-loop plant step response data. For example, if
m=1_ = |1~ CB(CB) '| <1 iff O < CB < 2CB ie iff the rate measurement
has less than 100% error. The design is clearly very insensitive to
measurement errors and condition (ii) is a theoretical condition for this

inherent robustness at high gain.

Finally, note that Al and Al play no role in the theorem and hence

~

the results are insengitive to the choice of A, e.g. choosing A1 =0

1

the result is still wvalid and the controller structure considerably

simplified.

4, Numerical Example

To illustrate the application of the high gain theorem, consider
the unstable batch process discussed by Munro (1972) and Rosenbrock (1974)

and defined by the matrices

r R

A = [ 1.38 -0.2077 BT15 -5.676
-0.5814 -4.29 0 0.675
1.067 4,273 -6.654 5.893
| 0.048 4.273 1.343 -2.104
B = (o0 0 1 3 1 0 1 -1
5.679 0 01 0 O
1,136 -3.146
L 1.136 o - (9)

which is known to be minimum phase and open-loop unstable.

We will assume
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that it is required to design a high performance controller generating a

closed-loop system with fast rise-times, zero steady state errors and

small interaction effects in response to unit step demands. Also, although

the system model is known, we will assume that the controller design must

be undertaken without the aid of an interactive computing facility!
Following the procedure defined in section 3, we could use the model

to compute CB (which is nonsingular) and hence AO exactly ie

i 0 0.176
Ao = (CB) = ... (10)
' ~0.,318 0
or estimate it from model simulations. Suppose that such a procedure

or simple rounding of the elements in (10) suggests the choice

o 0 0.2
A il u-c(ll)
° -0.3 0
with the consequence that A, = 0.12 < 1. As the plant is unstable we
cannot deduce Al from steady state simulation data. It is possible to
calculate its exact value Al = ~CA_1B from the model, but, for illustrative
purposes and to simplify the form of the controller, we will take Al = 0,

The resulting approximate model is the 2x2 pure integration GA = 5-130*1

which clearly has time responses differing greatly from those of the
real plant.

Controller design proceeds by the choice of tuning parameters kl’ k2’
¢y and ¢, based upon the approximate model predictions that the closed-
loop system will have time constants and reset times in loop j of the
order of kj“1 and c:._1 resp. The preliminary choices are hence based

upon required performance taking into account the achievable response
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speeds expected from plant experience. The theorem indicates that the
resultant controller will certainly stabilize the unstable plant if

k = min(kl,kz) is greater than the unknown bound k¥*. In this case,
this can be checked by simulation of the real plant model with the trial
controller and tuning attempted by increasing k if instability is found
and reducing k if control input magnitudes are unacceptable.

Suppose that closed-loop time-constants in the range 0.1 to 0.15
are required in both loops with reset times 0.25. This suggests the
choice of k, = k2_= 8.0 with c, =c, = 4.0. The trial controller is
uniquely defined immediately and can be assessed by simulation of the
closed-loop system. That k = min(kl,kz) = 8 is a large enough gain to
stabilize the system is immediately revealed by Fig.l which shows the
closed-loop unit step responses generated by both the real and approximate
feedback systems. Note that the plant responses are close to those
predicted by the approximate model. Fig.2 shows the corresponding
input signals and indicates that the 'high gains' required to generate
stability are not unacceptable.

Finally, we note that the final design above generates responses
comparable with those obtained by Munro (1972) using sophisticated
systematic multivariable frequency response techniques and an interactive
computing facility. In contrast, the above design was achieved very
rapidly and with only minimal computational requirements! Clearly the
considerations outlined in this paper have provided a substantial

'short-cut' to controller design in this case.
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5. Conclusions

It has been demonstrated that the low-gain philosophy inherent in
the work of Astrom, Koivo and Davison on the control of stable unknown
plant has a natural ‘'inverse' namely, the high gain philosophy for the

control of minimum-phase unknown plant. This second approach has been

explored by constructing a generalization of the first authors previous ‘
work in the form of a robust parametric controller structure capable of
stabilizing unknown multivariable plant at high gain. The applicability
of the results has been verified by the design of a high performance
regulator for an unstable multivariable process that compares favourably
with a previous design obtained using model-based multivariable frequency
response methods.

An important conclusion is that a meaningful theory of unknown systems
control appears to need the availability of both parametric and structural
information, Structural information could present a problem unless
physical insight into plant behaviour can be invoked. It is present
both in the low gain case where the absence of zeros at the origin is
needed and in the high gain case where the minimum phase property is
required. In the scalar case, open-loop step responses could yield
an answer by examination of 'reverse'kick' and steady-state phenomena
but, in the multivariable case, the problem is more severe. These
problems are however present in other areas such as, model—réference
adaptive control and will merit further attention.

Finally, we point out that the principles outlined in this paper will
extend naturally to the discrete case with 'high gains' and 'low gains'
replaced by 'fast sampling' and 'slow sampling' respectively. The

details of this extension are currently under consideration.
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