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ABSTRACT

Consideration is given to the design of feedback controllers for a
plant with transfer function matrix G(s) = diag{gi(s)}Gm where Gm
is a square and constant matrix and gi(s) is a scalar transfer
function, 1<i<m. Particular emphasis is placed on the case when
gi(s) = g(s), l<i<m, and Gm is singular or 'almost' singular and
the robustness of the design with respect to errors in Gm is
represented in terms of a system of strict inequalities. An

application to strip shape control for Sendzimir mills is indicated.
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14 Introduction

We consider an m—input/m—output system with transfer function
matrix (TFM)

G(s) = diag{gl(s),-..,gm(S)}Gm cuwtl)

where Gm is a real, constant mxm matrix and g(s) is a strictly proper,
stable transfer function (TF). The stability assumption is not necessarf
but is motivated by the objective of applying the analysis to strip shape

1)

control for Sendizimir mills which can be approximated by a TFM of the

form of (1). The objective of the analysis is to design a unity
negative feedback system(z) with forward path controller K(s) as
illustrated in Fig.l to ensure the stability and satisfactory transient
performance characteristics required. In the following analysis we
will distinguish between the cases when Gm is nonsingular and when Gm
is singular or almost singular. In both cases it is shown that the

robustness of the design can be represented by a system of strict

inequalities,

2. The Case of !Gm| #0

It is natural to set

=1, .i
K(s) = Gm dlag{kl(s),...,km(s)} ses (2)
where ki(s) is a proper scalar TF, l<i<m. It is immediately verified
that
m
I +G()K(s)| = izl (1+g, (s)k, (s)) e (3)

and that the closed-loop TFM



H_(s) = (I_+e(s)K(s)) G (s)K(s) = diagth; ()3 4

m

h, (s) = g, (s)k, (s)/(1+g, (s)k.(s)) , l<izm -ee (4)

indicating that the closed-loop multivariable system is non-interacting
and also stable if, and only if, the scalar feedback systems hi(s) shown
in Fig.2 are stable.

The simplicity of the above analysis is deceptive as it relies
crucially upon the invertibility of Gm. If Gm is singular it is certainly
necessary to modify the approach. It is also necessary to change the
approach is Gm is 'almost singular' as small errors in estimation of
elements of Gm could then lead to large errors in elements of val.

The resulting control system is hence very sensitive to such modelling

errors and possibly unstable!

3. The Case of Gm 'Almost Singular'

In the remainder of the paper we assume that gi(s) = g(s), l<i<m,

when

G(s) = g(s)Gm ses (3)

Suppose that Gm is diagonalizable by the mxm nonsingular transformation

T to give

T T = diag{A. s yeer,) ) .. (6)
m 1 m

2)

and that the eigenvalues satisfy the separation condition

Hy & nmin !Ail >>  max ]Ail & My eus £1)
L<i<g 2+1§ifm
for some &. It is trivially verified that {A.} is invariant under

L<i<g



complex conjugation. Intuitively the eigenvalues A ...,Am can be

2+1°

identified with the zero eigenvalues and the 'small' eigenvalues that

are sensitive to modelling errors. Write also
fy
=1 1
T = [T,, T,] 3 T = e (B)
1 2 v
2
where T1 is the mxX matrix of eigenvectors of T corresponding to the
eigenvalues Al’A2’°°"A2 and Vl is the 2xm matrix of 'dual' eigenvectors
corresponding to these eigenvalues. Note that T-lT = Im indicates that
V1T1 = I2 s V2T2 = Im_g , VITZ =0, V2T1 =0 ... (9)

The physical interpretation of this decomposition is seen by writing

. =1
G(s) =T diag {Ai}lfifm T “g(s)
=1 [s(s)diaghh} ]V,
1<1<g
+ T [g(s)diag{h.} v ...(10)
. = 2+lfi§n9 2

or, with the obvious identification of G1 and GZ’

G(s) = TlGl(s)Vl * T2G2(s)V2 s (11}

which is illustrated in block form in Fig.3. Clearly the 'Gl loop'
corresponding to the large 'insensitive' eigenvalues dominates the
response characteristics of the system as, roughly speaking,

where v = TlGIVlu = O(uz) >> O(ul) = T2G2V2u =Y, As G, is stable it

is tempting therefore to ignore this loop in design. This notion can



be formalized by choosing

K(s) = TlKl(s)V1 ) Kl(S) = dlag{ki(s)}lfifz 13}
when it is easily verified that
-1 K (s) O

T K(s)T = el (1)
0 0]

and hence that the return—-difference takes the form

2
[Im+G(s)K(s)J = |I£+G1(S)Kl(s)| B 151 (1+g(s) k. (s)) ... (15)
and that the closed-loop TFM
H (s) = (I_+GK) LGk
c m
-1
= Tl(I£+Gl(s)K1(s)) Gl(s)Kl(s)Vl o« (16)
Remembering that G2 is stable it is clear that K stabilizes G if, and
only if, Kl stabilizes G1 in the configuration of Fig.4. This

configuration has closed-loop TFM

: -1 gAik;
B - (IE+G1K1) G,k = diag{ TIEXIFT“} . ww bk 13
i1 1<i<f
and (16) can be written as
Hc(s) = Tch(s)V1 ...(18)

A particularly simple form is obtained by choosing

liki(s) = k(s) , L<i<® ... (19)
when

= _ _g(s)k(s) _ _8(s)k(s)

Hc(s) " 1+g(s)k(s) IE » H () = 1+g(s)k(s) Tlvl -+ (20)



Finally, although the sensitivity of the design to the small
eigenvalues (and hence the 'near' singularity of Gm) has been reduced,
we have lost some performance as illustrated by noting that the choice
of reference demand r(s) of the form

r(s) = Tzf(s) e e (21)
yields the output from zero initial conditions |

y = Hcr = T1HCV1T2r =0 (by (9)) ...(22)

ie the closed-loop system does not respond to demands in the subspace
spanned by the eiéenvectors corresponding to the 'small, sensitive'
eigenvalues. In contrast the response to the demand r = T1; in the
subspace spanned by the eigenvectors of the 'large, insensitive'

eigenvalues is simply (using (9))

y=Hr=THVTr=THTr-= le £0 — )

where ; is the response of the Ix A feedback system of Fig.4 to the demand
;. In fact, if ; is the 'deal' response ; =‘£, it is seen that the
response y to r is the ideal response y = r ie the demands in the subspace
spanned by the eigenvectors corresponding to the 'large' eigenvalues can
be made to be arbitrarily good.

This analysis can clearly be continued to examine in more detail
such concepts as steady-state response, interaction etec. As this note
is essentially a theoretical preparation for application to the strip

(1)

shape control problem ™ ’, such considerations are not pursued here,

4. Robustness of the Design with respect to Errors in Gm

Given the design technique of section 3 a stable feedback regulator

can be simply designed. If however (as in ref (1)) Gm is known to be



inaccurate it is important to produce a means of predicting the maximum
errors in elements of Gm that can be tolerated without spoiling feedback
stability ie just how robust is the final design? Suppose therefore
that K has been designed for G = Gmg but that Gm is subjected to a
"matrix error' A. In such a situation the stability of the implemented
feedback scheme is described by the return-difference

[1_+(G_+8)g(s)K]|

T, + Kg(G_+A) |

|1, + KG + Kg|

1t

|T_ +KG[-|T_ + (1+KG) " 'Kga |

I
m
I+ (1+KC) 'Kgh| ... (204)

|T_ + GK
m

A necessary and sufficient condition for A to retain stability is hence

that
[Im + (I+KG)_1KgAl #0 v Re s >0 + . (25)
A simple calculation using (9) and (11) yields

gV ... (26)

-1 -1
(I+KG) "Kg = Tl(Iz+K1G1) K 1

i

(2

and hence, using the identity IIm+AB| = ]I£+BA| valid ) for any mx&

matrix A and 2xm matrix B, equation (25) can be replaced to the condition
|1 +(I+KG)_1KgVATI7‘O
2 g 11 17171
\d Re s >0 a3 (2T

This expression is rather complicated but it can be replaced by a
sufficient condition based upon the observation that a diagonally (row)
dominant matrix is nonsingular. More precisely, a sufficient condition

for the error A to be such that stability is retained is that



L
1> Z lFrj{s)|

1<r<q s \j sE D g {s : Re s > 0} ... (28)

where the x% TFM F(s) is defined by

F(s) g (IQ+K1(S)G1(3))_1K1(s)g(s)V1AT1 .. (29)

The frequency dependent condition (28) can be replaced by the frequency

independent condition

[
v
I~

sup |Frj(s)| ; l<r<f « 5 7 L3O

j=1 Res>0

Noting that F is strictly proper and analytic and bounded in the interior

of D the suprema are achieved on the imaginary axis ie equation (28) is

valid if

L
1> )  sup |Frj(iw)| 5 l<r<s e ¢ (31)

This is the basic robustness relation used in the following development
where it is shown to generate a set of strict linear inequalities
describing the magnitude of errors A that retain stability.

Although linear in the perturbation A, F is a fairly complex function
in general. It can however be written in the element form

m

m
: = z —
FrJ(s) pzl qu frqu(s) qu (32)

for suitable choice of £ . (s) and clearly
ripq

m m
sup |F_.(@w)| < sup |[£ . (Gw)| [a ] ...(33)
w>0 tJ pél qzl w>0 ¥JPq pd



It follows that (31) is satisfied if

L m m

1> Z X 2 sup Ifr. (w) | IA | » l<r<g ...(34)
or, equivalently, if
m m
1> z 2 c IA | s l<r<yg ... (35)
pel q=1 TPY = P4
where the scalars
A 2
c = 'z sup |f . (iw) ] >0
Y 4l g0 SOPY
lgr<2 , 1lgpzm , l<qz<m ... (36)

Equations (35) and (36) describe a computable class of perturbations
or errors A that guarantee the retention of closed-loop stability. They
are expressed in terms of £ linear inequalities in m2 variables which
could conceivably cause problems if m is large. We can however derive

a more conservative estimate by noting that (35) is wvalid if

m m

max A < 1 / max c w337
1254 L L g 37

l<p<m l<r<g p=1 g=1

l1<q<m

the RHS being easily computed.

Finally we note one particular case when calculating can be
simplified. Consider the choice of K(s) via (13) and (19) when it
is trivially verified that
1 -1

,...,AQ } xs s (38)

-1 g(s)k(s) .. -
(I,Q.+K1G1) Klg m dlag{)\l



and hence that

m m
. _g8(s)k(s) -1
F . = == Vv A T .
ri®) = TGy M L L ) AT,
p=1 ¢g=1
1<rzt , 1<jz8 sl 39)
and
g(s)k (s) -1
Fez =t tom Y T i ... (40
r:lpq(s) l+g(s)k(s) 'r (l)rp(l)q_] (40)
yielding
g(iw)k (iw)
= - - d ... (41
“rpq igg 1+ gliwk({w) rpq (41)
where
& =IJ;
L A v _ (1) . e (42
o jzlfrll(lrplqjl (42)
Note that ¢ is deduced easily from Vl’ Tl,.{k } and the single
Pl l<r<t

TF gk/(l+gk). Note also the following observations

(1) the coefficient Crpq is proportional to Ar*l indicating
that large (resp. small) eigenvalues lead to small (resp.
large) values of Crpq' Small eigenvalues tend hence to
increase the sensitivity of the control system by reducing
the permissible perturbations A.

(ii) the properties of the single TF gk/(l+gk) clearly affect
stability. If, for example, it possesses a strong resonance,
all crpq will be large hence increasing sensitivity to the

perturbation A.



_10_

5. Illustrative Example
Take
| 1
G(s) = 3 e . (43)
r 3]
from which
1 1 1
G =1 5 g(s) = — . (44)
m 11 sl
and Al =1, A2 =0 Take 2 = 1, whence
1 -
B, = | v, =11 1] o o (459

Considering, for simplicity, the case of proportional control, we have

1
K(s) = i 1] ... (46)
1
where kl(s) = k is constant. Equation (19) is trivially satisfied
with k = kl(s) = k(s) and hence the closed-loop system is stable if
k+l > 0 eu v (GT)
with closed-loop TFM
1 k
s 1 —
H_(s) = | L 1] I oo (48)

We obtain from (41) and (42) that

c = c = ¢ = c = 3 — ... (49)

and hence that stability is retained under all perturbations A to G
m

satisfying

1w oo {|

b Usgq ]+ 8yl + 8y, ]+ [ag,[1 ea s L300



- 11 =

Alternatively

(Ll T3 ... (51)

=

max ]A | <
1<p<2 P4
1<q<2

Note that the use of low gains k tends to reduce sensitivity.

6. Conclusions

The special case considered has been shown to be amenable to
analysis both in the standard, nonstandard and robustness sense. The
approach taken is nonunique and could possibly be improved. This
may become apparent when it is applied to the strip shape control

problem.
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