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Abstract

Glacial retreat creates new habitat which is colonized and developed by plants and animals during the process of pri-

mary succession. While there has been much debate about the relative role of deterministic and stochastic processes

during terrestrial succession, evidence from freshwater ecosystems remains minimal and a general consensus is lack-

ing. Using a unique 27 years record of community assembly following glacial recession in southeast Alaska, we dem-

onstrate significant change in the trait composition of stream invertebrate communities as catchment glacial cover

decreased from � 70% to zero. Functional diversity increased significantly as glacier cover decreased and taxonomic

richness increased. Null modelling approaches led to a key finding that niche filtering processes were dominant when

glacial cover was extensive, reflecting water temperature and dispersal constraints. Thereafter the community shifted

towards co-occurrence of stochastic and deterministic assembly processes. A further novel discovery was that intrin-

sic functional redundancy developed throughout the study, particularly because new colonizers possessed similar

traits to taxa already present. Rapid glacial retreat is occurring in Arctic and alpine environments worldwide and the

assembly processes observed in this study provide new fundamental insights into how glacially influenced stream

ecosystems will respond. The findings support tolerance as a key primary successional mechanism in this system,

and have broader value for developing our understanding of how biological communities in river ecosystems assem-

ble or restructure in response to environmental change.
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Introduction

Climate change is causing glacial retreat to proceed

rapidly across the world (Dyurgerov & Meier, 2000;

Milner et al., 2009), leading to the creation of new habi-

tats which will be colonized and developed by plants

and animals during the process of primary succession

(Chapin et al., 1994; Fastie, 1995; Kaufmann, 2001). Suc-

cessional changes over decades to centuries are known

to be driven by both biotic (e.g. facilitation, inhibition,

tolerance) and/or abiotic (e.g. temperature, moisture,

pH) processes (Fastie, 1995; Engstrom et al., 2000), and

the clear changes in biological assemblages during suc-

cession have underpinned ongoing major debates

around the general principles, or assembly rules, which

underpin community development (e.g. MacArthur &

Levins, 1967; Connor & Simberloff, 1979; Lawton, 1987;

Weiher & Keddy, 1995; Hubbell, 2001; Purves &

Turnbull, 2010).

Attempts to reveal the assembly processes that

structure biological communities have largely used

approaches based on trait diversity (Petchey & Gaston,

2002). Functional diversity indices take into account

redundancy among species that assume similar func-

tional roles (Petchey et al., 2007), and so observed func-

tional diversity for a biological community can be

compared against null (stochastic or ‘neutral’ – Hub-

bell, 2001) models constructed from the regional species

pool (Weiher & Keddy, 1995; Petchey et al., 2007)

to investigate assembly processes. Significant depar-

tures from stochastic models may indicate either deter-

ministic competitive exclusion/limiting similarity

(observed > random), or environmental/niche filtering

(observed < random), to be important determinants of

local assemblage structure (Cornwell et al., 2006;

Holdaway & Sparrow, 2006). In reality though, these

assembly mechanisms have been shown to occur simul-

taneously, or even switch, along environmental gradi-

ents (Mason et al., 2003; Thompson & Townsend, 2006;

Helmus et al., 2007). While null modelling of functional

diversity has been applied to various biotic groups and

habitats to test hypotheses of community assembly for

‘mature’ communities (Stubbs & Wilson, 2004; Micheli

& Halpern, 2005; Petchey et al., 2007), the approach has

so far not been applied to ecosystems undergoing the
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early stages of primary succession, for example where

glaciers have retreated and exposed new terrain. In

these situations, assembly processes can be monitored

directly over time as the environment changes year on

year to provide insights that may be missed in space-

for-time substitution studies (Johnson & Miyanishi,

2008).

Glacial retreat in Alaska has been occurring since

around 1750 (end of the Little Ice Age), opening up

extensive areas of deglaciated terrain, and hundreds of

new streams undergoing primary succession have been

created (Milner, 1997). Since the late 1970s, particularly

extensive and rapid reductions in glacial mass have

been observed for many of the low elevation glaciers

along the Gulf of Alaska (Larsen et al., 2007). In 1978, a

detailed study of one such stream, Wolf Point Creek

(WPC) in Glacier Bay, southeast Alaska, was initiated.

At that time, WPC was sourced from a basin with ~70%
glacial ice cover. Sampling has since been undertaken

in late August/early September during the intervening

years up to 2004 when the remnant glacial ice had dis-

appeared completely. Progressive increases in stream

temperature, riparian vegetation cover and habitat

complexity over time have been accompanied by colo-

nization of a diverse group of invertebrates (Milner

et al., 2008). In 1978, when catchment glacial cover was

~70%, only Chironomidae (non-biting midge larvae) of

the sub-families Diamesinae and Orthocladiinae, able

to complete their life cycle in water temperature <2 °C,
were found. Ephemeroptera (mayfly) and Plecoptera

(stonefly) larvae appeared at ~50–60% glacierization in

1986 and the first non-insect taxa (Oligochaete worms)

at ~30% glacierization in 1992. Dytiscidae (diving-bee-

tles) and Corixidae (water-boatmen) were first collected

in 2000 and 2003, respectively, after ice masses had

almost vanished (Milner et al., 2009). However, all of

our previous investigations in the Wolf Point Creek

system have been based on taxonomic analyses, and so

the processes of community assembly have not been

investigated in detail.

This paper provides new insights into community

assembly using the WPC long-term primary succession

record by: (i) providing the first study of changes in

stream macroinvertebrate traits as stream ecosystems

evolve following glacial retreat; (ii) investigating how

functional diversity responds to glacier retreat and

changes in taxonomic diversity, and; (iii) applying null

modelling approaches to determine how deterministic

and/or stochastic processes might influence commu-

nity assembly in freshwater ecosystems. The use of

multiple traits to characterize the functional composi-

tion and diversity of stream invertebrate communities

(cf. focus on taxonomic structure) is well established in

the ecological literature (Statzner & Bêche, 2010) but,

while space-for-time substitutions have been used to

infer stream macroinvertebrate trait responses to glacial

influence (Snook & Milner, 2002; Ilg & Castella, 2006;

Füreder, 2007), no published studies have considered

how trait composition and functional diversity change

over time as glaciers retreat and disappear.

We tested three hypotheses to gain an improved

understanding of the patterns and processes of commu-

nity assembly during primary succession: (H1) func-

tional diversity of the stream macroinvertebrate

community will be lower than randomly generated

communities during the early stages of primary succes-

sion, because environmental filters (e.g. low water tem-

perature, unstable substratum, dispersal constraints)

select for traits (e.g. cold stenothermic thermal prefer-

ence, short life-cycles, long-range dispersal ability) that

allow taxa to colonize, survive and reproduce effec-

tively in this environment; (H2) as primary succession

proceeds, functional diversity of the stream community

reflects random assembly processes, because environ-

mental filtering decreases in importance as water tem-

perature and habitat heterogeneity increase, and

stochastic colonization and disturbance events (e.g.

rainfall-induced bed disturbances) become more

important and; (H3) functional redundancy is prevalent

within the stream macroinvertebrate community, par-

ticularly during the early stages of primary succession,

because environmental filtering yields taxa with similar

traits (Cornwell et al., 2006). The findings from the

study are considered in relation to general theories of

primary succession, ecosystem responses to glacier

retreat and other long-term studies of biological

communities.

Methods

Site description and sampling

The mouth of WPC (58°59′49.84″N, 136°9′57.05″W) was uncov-

ered from glacial ice in the mid-1940s and the stream is now

approximately 2 km in length, 6–10 m wide, and flows over

glacial moraine, till, and outwash deposits. Lawrence Lake

(unofficial name), which feeds the stream, emerged in the

early 1970s and is currently 1.45 km2 in size, with a maximum

depth of 35 m. In 1978, the lower floodplain was essentially

barren and aerial photographs indicate that the catchment

was ~70% glacierized. Isolated clumps of alder (Alnus crispa)

and willow (Salix spp.) were evident on upper terraces, where

mats of mountain aven (Dryas spp.) were nearly continuous.

By 1988, the lower terraces supported a few clumps of alder

and willow and glacial cover had decreased to ~50%. Dolly

Varden (Salvelinus malma) were the first fish to colonize in

1987, followed by pink (Oncorhynchus gorbuscha) and coho

(Oncorhynchus kisutch) salmon in 1989. By 1997 (<10% glacier-

ization), alder and willow were dominant with riparian plants

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2195–2204
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exceeding 3 m in height and pink salmon numbering >12 000

individuals (Milner et al., 2008). In 2004, glacial ice had almost

disappeared completely and the upper terraces supported

increasing numbers of cottonwood (Populus trichocarpa) with

the occasional Sitka spruce (Picea sitchensis).

From 1978, macroinvertebrates were collected in August or

early September (with the exception of 1979–1985, 1987, 1995

and 2003) using a Surber net (ten replicates; 330 lm mesh),

from a representative sampling station 0.75 km from the

stream mouth. Qualitative hand-search samples were col-

lected from 1979 to 1985 at the same location. Invertebrates

were preserved in 70% ethanol and later sorted from detritus

and inorganic matter in the laboratory and identified using

Merritt et al. (2008). Chironomidae larvae were identified

using methods outlined in Milner et al. (2000). Stream temper-

ature was measured using handheld thermometers and Gem-

ini TinyTag dataloggers (see Milner et al., 2008 for details),

and turbidity (NTU) measured spectrophotometrically on

stream water samples based on APHA standard methods

(Clesceri et al., 1998). These variables, together with increased

riparian vegetation cover and habitat complexity, are consid-

ered the central drivers of invertebrate primary succession

following deglacierization (Milner et al., 2008).

Data analysis

Pearson’s correlation coefficients were calculated to show the

association between glacial cover and water temperature and

turbidity. Macroinvertebrate community structure was sum-

marized by calculating taxonomic richness and Log10 (total

abundance + 1). Traits were characterized for 37 taxa using

the database of Poff et al. (2006) for insects, and for non-insects

using the meta-database of traits for North American inverte-

brates developed by Vieira et al. (2006). One taxon from the

WPC dataset (Hydracarina) was not included due to a lack of

relevant trait information. Taxa were classified according to 20

traits coded in 63 modalities which can be broadly categorized

as life-history, mobility, morphological and ecological traits

(see supplementary Tables S1, S2). The selected categories

encompassed a range of biological and functional states that

were expected to respond strongly to ecosystem changes asso-

ciated with decreasing glacial influence (Snook & Milner,

2002; Ilg & Castella, 2006). In line with previous studies of

North American stream macroinvertebrates (Finn & Poff,

2006; Poff et al., 2006), each taxon was assigned to one modal-

ity per trait (i.e. binary approach). Traits were assigned at

genus level for most taxa. Some taxa were identified at family

level and for these we used the majority rule approach of Poff

et al. (2006) to assign the most common genus-level modality.

Chironomidae comprised 21/37 taxa (Table S1) and traits

were assigned for genera or species wherever possible based

on additional published information (e.g. Snook & Milner,

2002; Ilg & Castella, 2006).

Trait data collected each year were ordinated using Non

Metric Multidimensional Scaling (NMDS) in PRIMER v6

(Clarke & Chorley, 2006). Arcsin transformed trait relative

abundance data, Bray-Curtis dissimilarities and 2000 restarts

were used in the analysis. A one-way (between years) similar-

ity of percentages (SIMPER) routine (Clarke & Chorley, 2006)

was used to determine which traits accounted for the greatest

dissimilarity across the sampling period. For brevity we exam-

ined the relative abundance of the top five traits as a function

of catchment glacierization using linear regression.

For each year of sampling, the number of traits (richness)

represented in the invertebrate community was counted.

Functional diversity was estimated first by calculating Func-

tional Diversity (FD: Petchey & Gaston, 2002), a measure of

functional richness (Schleuter et al., 2010), whereby the taxa

by trait matrix was converted into a distance matrix (by calcu-

lating Euclidean distance) which was subsequently clustered

(UPGMA routine) to produce a functional dendrogram that

depicts the functional relationships among the entire macroin-

vertebrate assemblage of the WPC catchment. FD of the entire

WPC assemblage was taken as the total branch length of this

dendrogram, and FD of assemblages for different years was

the total length of the branches required to connect all of the

species in that assemblage, standardized by FD for the entire

assemblage. Thus, variation in FD ranged from 0 to 1, where a

value of zero represented single species communities or those

in which all taxa had identical trait profiles (Petchey & Gaston,

2006).

Second, functional diversity was calculated using Rao’s

quadratic entropy (QE) (Rao, 1982), a measure of functional

divergence (Schleuter et al., 2010), where distances between

species pairs were first calculated using Bray-Curtis dissimi-

larities and then integrated with the relative abundance of

taxa, to estimate the probability of two randomly selected

taxon pairs having the same trait profile.

Studies have suggested that dendrogram methods (e.g. FD:

Petchey & Gaston, 2002, 2006) are suitable for studies examin-

ing community assembly where taxonomic richness is >10,
and the n taxa < n traits used to calculate FD (Mouchet et al.,

2010). Therefore, FD was used to simulate five scenarios of

macroinvertebrate arrival in WPC: (i) random colonization:

the taxonomic richness of the observed assemblage for each

sampling year was determined, and then that number of taxa

was drawn randomly 25 times from the entire taxonomic pool,

and FD calculated for each; (ii) colonization in the order that

maximized FD (limiting similarity): the taxonomic richness of

the assemblage for each sampling year was calculated, and

then the combination of taxa providing the maximum possible

FD for that level of richness was determined; (iii) colonization

in the order that minimized FD (environmental filtering):

opposite of step ii; (iv) colonization determined by a taxon’s

thermal preference: steps i–iii were repeated but from the pool

of taxa possessing cold stenothermic traits (10 random draws

per level of taxonomic richness), to examine the role of water

temperature, a major environmental ‘filter’ influencing macro-

invertebrate communities in glacial streams (e.g. Milner et al.,

2001; Brown et al., 2007), and; (v) colonization determined by

a taxon’s aerial dispersal ability: steps i-iii repeated but from

the pool of insects with high (>5 km) adult dispersal distances

(10 random draws per level of taxonomic richness), to exam-

ine the extent to which delays in colonization by poor dispers-

ers (e.g. short adult flying distance or non-insect taxa lacking

aerial stages) due to barriers such as coastal inlets and high

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2195–2204
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mountain ranges (Milner et al., 2008), play a role in commu-

nity assembly. The hand-search samples collected between

1979 and 1985 enabled the inclusion of n taxa = 3 and 4 in the

modelling analyses because abundance data are not required

to calculate FD.

To examine how successional change in FD of WPC macro-

invertebrate assemblages was related to compositional change

between sampling years, we compared the observed change

in FD to the observed change in taxonomic richness using lin-

ear regression (Micheli & Halpern, 2005). This approach pro-

vides information on intrinsic redundancy, resulting from

functional similarity among taxa (Petchey et al., 2007). Assem-

blages containing many similar taxa have high intrinsic redun-

dancy, and random taxonomic changes have little effect on

FD. Second, we compared the observed change in FD to the

change in FD predicted at random, using mean data from each

of the 25 draws outlined in step i. This approach provides

information on extrinsic redundancy, which can result when

non-random compositional changes are non-random with

respect to functional traits (Petchey et al., 2007). Where extrin-

sic redundancy is high, the loss of relatively unique taxa

causes a relatively large decrease in FD.

Linear regression was used to assess relationships between

catchment glacier cover and the various dependent stream

invertebrate taxonomic and functional diversity indices. All

data sets were time-series but examination of Durbin-Watson

statistics suggested a lack of autocorrelation and therefore

ordinary least squares (OLS) regression was preferred over

generalized regression, with relationships considered signifi-

cant for P < 0.05. All variables were tested for normality with

Anderson–Darling tests and P > 0.05 used to infer normality.

All statistical analyses were undertaken in Minitab 15.0 (Mini-

tab, Coventry, UK) and considered significant at P < 0.05.

Results

The consistent decrease in glacial cover over time was

accompanied by a significant rise in stream tempera-

ture (R2 = 0.95, P < 0.001) and a decrease in turbidity

(R2 = 0.95, P < 0.001; Fig. 1a and b). Invertebrate rich-

ness increased from 1978 to 2004 whereas total abun-

dance was lowest during the late 1980/early 1990s and

in 2000 (Fig. 1c). From a possible 63 modalities, the

number of traits represented within the invertebrate

community (trait richness) at WPC increased from 21 in

1978 to a maximum of 58 in 2000/2001 (Fig. 1d). FD fol-

lowed a similar pattern to trait richness, increasing over

time to peak in 2001 and then decreasing slightly to

2004. Rao’s QE also showed a general increase over

time but fluctuations were more pronounced, with

peaks in the early 1990s and around 2000 interspersed

by lower values (Fig. 1d).

All measures of taxonomic and functional diversity

were associated significantly with decreases in catch-

ment glacierization (Table 1; Fig. 2). The NMDS pro-

duced a best-fit configuration with three dimensions

(c)

(d)

(a)

(b)

Fig. 1 Temporal change at Wolf Point Creek from 1978 to 2004

of: (a) catchment glacierization (%); (b) mean of August daily

mean water temperature, and turbidity; (c) log10[total abun-

dance + 1], taxonomic richness, richness of cold/cool steno-

therms and richness of organisms with high (>5 km) adult

dispersal ability; (d) Trait richness, FD and Rao’s QE. (Broken

lines denote changes between years where quantitative samples

for intervening years were not collected).

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2195–2204
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(stress = 0.02) which represented 99% of the total vari-

ance. The two-dimensional solution had a stress of 0.05.

Although many trait modalities were strongly inter-cor-

related, the SIMPER analysis highlighted that high dis-

persal ability, adult ability to exit the water, cold or

cool stenotherms, sprawling habit and univoltine life

cycle accounted for 23.5% of the dissimilarity. All five

traits showed relatively weak but significant positive

association with catchment glacial cover, with the

strongest relationship observed for invertebrates with

sprawling habit (Table 1).

During the initial stages of primary succession, FD

remained unchanged when taxonomic richness was

between two and four taxa (Fig. 3a), but overall a

strong and significant linear relationship between taxo-

nomic richness and FD was evident (Table 2). FD of

early successional communities was lower than

expected by chance and more similar to the environ-

mental filtering model than the limiting similarity

model (Fig. 3b). As primary succession proceeded and

taxonomic richness increased, observed FD overlapped

strongly with FD for randomly generated communities

(Fig. 3a), and became intermediate between niche filter-

ing and limiting similarity assembly models.

The colonization scenario determined by thermal

preference included 24 cold-stenotherms from the 36

taxa collected in WPC. Random communities generated

from these 24 taxa were characterized by FD highly

similar to the real community until richness exceeded

13 taxa (Fig. 3c). For assemblages of cold stenothermic

taxa, functional redundancy was evident when taxon

richness exceeded nine, as exemplified by the asymp-

tote of the limiting similarity model (Fig. 3d). The colo-

nization scenario determined by an ability to disperse

>5 km in the adult aerial stage included 22 of the 36

taxa present in WPC. Random communities generated

from these 22 taxa were characterized by FD highly

similar to the real community until richness exceeded

nine taxa (Fig. 3e). For assemblages of taxa with high

dispersal ability, functional redundancy occurred when

taxon richness exceeded six, as exemplified by the

asymptote of the limiting similarity model (Fig. 3f).

Observed FD for the stream macroinvertebrate com-

munity was typically lower than expected by chance as

shown by the relationship between observed FD and

mean expected FD (Fig. 4a; Table 2). However, as taxo-

nomic richness increased with primary succession the

observed FD became more similar to expected FD as

shown by the regression slope of 1.08 (±0.06). Strong
and significant relationships were evident between

observed changes in FD, taxonomic richness and

expected changes in FD (Table 2). The increase in FD

was proportionally lower than the increase in taxo-

nomic richness, with a slope of 0.62 (±0.02) indicating
high intrinsic redundancy (Fig. 4b). Change in FD was

marginally higher than would be expected if coloniza-

tion events were random with respect to functional

traits (Fig. 4c) but the slope of 1.04 (±0.03) indicated a

lack of extrinsic redundancy.

Discussion

This study has demonstrated long-term changes in the

biological trait composition and functional diversity of

aquatic macroinvertebrate communities following

Fig. 2 Regression of functional diversity against catchment gla-

cier cover (%). Table 1 provides regression summaries. (N traits

was standardized from 0 to 1 by dividing by the maximum

number of traits observed).

Table 1 Regression analysis summary results for dependent

taxonomic and trait variables against per cent catchment gla-

cier cover. (Response denotes association of dependent vari-

able with decreased glacial cover)

Dependent variables df R2 P Response

Taxonomic

Taxonomic richness 16 0.95 <0.0001 ↑
Log10 total abundance 16 0.24 0.05 ↑

Trait

N traits 16 0.91 <0.0001 ↑
Rao’s QE 16 0.35 0.01 ↑
FD 18 0.81 <0.0001 ↑
Adult ability to exit water 16 0.26 0.04 ↓
Cold or cool stenotherm 16 0.25 0.04 ↓
High dispersal ability 16 0.25 0.04 ↓
Sprawling habit 16 0.48 0.002 ↓
Univoltine 16 0.28 0.03 ↓

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2195–2204
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glacial recession. While some previous studies in Eur-

ope have examined spatial patterns of invertebrate

traits in relation to catchment glacier cover (Snook &

Milner, 2002; Ilg & Castella, 2006; Füreder, 2007), our

study of WPC offers an alternative viewpoint by track-

ing changes in trait composition and functional diver-

sity over a prolonged time-period as an ice mass has

ablated and disappeared. The analysis also provides

novel insights into biological trait dynamics of a

glacially influenced stream in North America for

comparison with previous European studies.

Stream ecosystem dynamics following glacial retreat

As primary succession has progressed, the WPC

watershed has shifted from one dominated solely by

Diamesinae (Chironomidae) to a more diverse assem-

blage which includes Ephemeroptera (mayflies), Ple-

coptera (stoneflies), Trichoptera (caddisflies) and

Coleoptera (beetles) (Milner et al., 2008). These taxo-

nomic changes are similar to other studies that exam-

ined community response to changing glacial influence

on stream ecosystems (Robinson et al., 2001; Brown
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Fig. 3 Observed FD (open grey circles), randomly generated FD (black filled squares), FD under the limiting similarity assembly rule

(open triangles) and FD under the niche filtering assembly rule (black crosses) as a function of taxonomic richness for (a) and (b) the

entire Wolf Point Creek macroinvertebrate assemblage, (c) and (d) assemblages generated only from cold stenothermic taxa, and (e)

and (f) assemblages generated only from insect taxa with high (>5 km) adult dispersal ability.

Table 2 Summary statistics for linear regression models between observed FD, expected FD and observed taxonomic richness.

(nb. all relationships were positive; cf. Fig. 4)

Dependent variable Independent variable df Intercept (±1 SE) Slope R2 P Interpretation

Observed FD Observed taxonomic

richness1
18 �0.006 (±0.03) 0.64 (±0.04) 0.94 <0.0001 Slope <1 indicates

functional redundancy

Observed FD Expected FD 18 �0.10 (±0.03) 1.08 (±0.06) 0.95 <0.0001 Observed FD significantly

lower than expected FD

Observed change

in FD

Observed change in

taxonomic richness

169 0.001 (±0.008) 0.62 (±0.02) 0.85 <0.0001 High intrinsic redundancy

Observed change

in FD

Expected change in FD 169 0.001 (±0.008) 1.04 (±0.03) 0.86 <0.0001 Absence of extrinsic

redundancy

1Observed taxonomic richness standardized to 0, 1.
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et al., 2007; Finn et al., 2010). However, only a handful

of studies have examined invertebrate biological trait

dynamics in glacier-fed rivers (Snook & Milner, 2002;

Ilg & Castella, 2006; Füreder, 2007), and these have all

been undertaken in Europe using space-for-time substi-

tution methods. The number of biological traits repre-

sented in the community and two other measures of

functional diversity (FD and Rao’s quadratic entropy)

showed significant increases over time as glacial cover

decreased, and a greater diversity of macroinvertebrate

taxa colonized the stream. In contrast to Bêche et al.

(2006) and Bêche & Resh (2007) who studied non-gla-

cial rivers and found trait diversity to be relatively

invariable despite changes in community composition

over 6–19 years time scales, trait richness increased by

176% (from 21 to 58) between 1978 and 2000/01 in

WPC as the taxonomic richness increased from two to

21. While the overall increase in taxonomic richness dis-

guised the loss of some early colonizers such as Diamesa

and Eukiefferiella sp. A during the 1990s (Milner et al.,

2008), no traits were lost from the community during

the study period.

The strong and significant increase in trait richness

over time at WPC reflected previously unrecorded taxa

colonizing during stream ecosystem primary succes-

sion, linked to the development of more favourable in-

stream environmental conditions (e.g. higher water

temperature, reduced turbidity) and successful immi-

gration to the stream. These findings emphasize that

strong successional dynamics can be observed by

studying community functional diversity following gla-

cial retreat, in addition to the series of incremental

changes in community structure over long time periods

as local biotic and abiotic conditions change (e.g. Cha-

pin et al., 1994; Fastie, 1995; Milner et al., 2007). The

increase of functional diversity over time occurred

because traits were being added continually to the

WPC macroinvertebrate community, but none were lost

over the study period. This supports the tolerance

model of successional community assembly because

traits observed during the early stages of succession, as

well as some taxa (cf. Milner et al., 2008), remained

throughout the study period. As functional diversity

did not exhibit a plateau or slow increase, inhibition

was not a primary successional mechanism and the

absence of trait loss over time does not provide any

support for facilitation.

Relative abundance of five traits (high adult dispersal

ability, adult ability to exit the water, cold or cool steno-

therms, sprawling habit and univoltine life cycle)

selected from the NMDS analysis declined over time

with reductions in catchment glacial cover. Trade-offs

can occur such that organisms might use different

suites of traits (strategies) to deal with similar
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ecological problems (Southwood, 1988), but our find-

ings are in accordance with studies undertaken in the

European Alps by Ilg & Castella (2006) and Füreder

(2007), and the Pyrénées by Snook & Milner (2002).

Thus, these traits are potentially good indicators of gla-

cial river habitat conditions. However, the SIMPER

analysis did not extract body size or clinging habit,

traits which have been considered to show clear

changes with decreasing glacial influence in European

studies. Southeast Alaskan streams, such as WPC, sup-

port large populations of salmon as primary succession

proceeds, and their spawning activity may suppress

colonization by larger bodied and surface clinging

macroinvertebrates (Monaghan & Milner, 2009).

Other results from this study display similar

responses of invertebrate traits to reduced glacial influ-

ence as seen in Europe. For example, Chironomidae are

common in streams influenced by glaciers as many spe-

cies can tolerate low water temperature and unstable

substrate (Milner & Petts, 1994; Ilg & Castella, 2006)

with few predators. While the Chironomidae are typi-

cally weak flyers, females have high adult dispersal

over long distances owing to their light bodies being

carried easily by the wind (Armitage et al., 1995). The

expectation that cold-stenotherm abundance would

decrease over time was upheld as the predominantly

Diamesinae/Orthocladiinae dominated community,

that is typical of glacially influenced streams, was

replaced by a community with more abundant cool-

eurytherms (cf. Brown et al., 2007; Milner et al., 2009).

This finding of similar responses to glacial influence in

both European and North American aquatic fauna

emphasizes how biological traits respond to environ-

mental selection regimes regardless of biogeographical

boundaries (Poff, 1997; Bêche & Statzner, 2009).

Community assembly following glacial retreat

Our analyses suggested that stream macroinvertebrate

community assembly during primary succession at

WPC was driven initially by niche filtering. Such pat-

terns have been proposed in some terrestrial primary

succession studies (Kaufmann, 2001; Hodkinson et al.,

2003; Tscherko et al., 2003) but assembly rules in these

sequences remain to be tested formally using the com-

bined biological trait and null modelling approaches

adopted herein. FD was lower than expected by chance,

indicating that colonizing taxa possessed more similar

traits than assemblages drawn at random from the

entire taxonomic pool. This observation supported H1

that environmental filters would select for traits that

facilitate effective colonization, survival and reproduc-

tion. The finding of environmental filtering was sup-

ported by the trait dependent colonization scenarios;

these observations that FD can be deterministic in

stream communities that are heavily influenced by gla-

cial runoff contradict Fisher’s (1983) assertion that

stream community assembly is stochastic, and contrib-

ute to a wider body of evidence (see Purves & Turnbull,

2010) showing inconsistencies in the central tenets of

neutral theory.

As taxonomic richness increased with primary suc-

cession, observed FD became more similar to that of

randomly generated communities, evidence which sug-

gests that primary succession assembly mechanisms

may be graded (Mason et al., 2003; Helmus et al., 2007).

Nevertheless, the relationship between observed and

expected FD indicated that environmental filtering was

still important in the later successional community

because observed FD remained lower than predicted

FD. Therefore, both deterministic and stochastic assem-

bly processes were probably occurring simultaneously

(cf. Thompson & Townsend, 2006; Lepori & Malmqvist,

2007); thus, we rejected H2 that random assembly pro-

cesses would be of sole importance. A possible reason

for the combination of deterministic and stochastic

assembly is that some later colonizers, such as Oligo-

chaete worms which have distinctive traits (e.g. no aer-

ial stage, larger body size) compared to other taxa from

WPC, occurred infrequently in the colonization time-

series (Milner et al., 2008) and could be missing due to

patchy occurrence. Most likely, it is possible that the

later successional communities were composed of a

mixture of taxa operating under different rules (Morris,

2005; Thompson & Townsend, 2006), some being influ-

enced by random assembly (e.g. habitat/trophic gener-

alists, or those responding to random flow

disturbances) whilst others remain affected by deter-

ministic influences (e.g. habitat/trophic specialists).

These findings provide evidence towards some external

determinants (Belyea & Lancaster, 1999) of community

assembly in WPC, such as environmental and dispersal

constraints, but internal dynamics (e.g. species interac-

tions) cannot be discounted and their contribution to

the patterns illustrated herein requires further study.

FD remained constant during the early stages of pri-

mary succession when richness was between two and

four taxa, highlighting functional trait redundancy

among early colonists and thereby supporting H3. FD

and taxonomic richness did not exhibit a curvilinear

relationship perhaps due to the relatively low peak

richness (22 taxa), although the weak linear slope of

0.64 provided further evidence that redundancy was a

feature of the WPC macroinvertebrate community

throughout the study period, as documented for fresh-

water ecosystems elsewhere (Bêche & Statzner, 2009;

Strauß et al., 2010). Functional redundancy in stream

ecosystems is thought generally to reflect the influence

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 2195–2204

2202 L. E . BROWN & A. M. MILNER



of habitat filters selecting for taxa with similar traits

(Statzner et al., 2007; Bêche & Statzner, 2009) which is

in line with our suggestion that environmental filtering

is an important assembly rule operating in WPC. The

comparisons of observed change in FD and taxonomic

richness, and FD and expected FD, highlighted that this

redundancy resulted from high intrinsic redundancy, a

feature that occurs when taxa have similar traits and

thus random taxonomic compositional changes have

little effect on FD (Petchey et al., 2007).

Intrinsic redundancy in the heavily glacial influenced

environment of WPC can be attributed to the dominance

of non-biting midge larvae (Chironomidae) which

accounted for 21 of the 37 taxa. Whilst subfamilies of this

group exhibit differences in ecological traits such as

habit and thermal preference, 15 of the 20 traits used in

our study were coded identically across all the Chiro-

nomidae (Poff et al., 2006). The high level of trait redun-

dancywasmaintained over time because new colonizers

often possessed similar trait profiles to taxa already pres-

ent. The observed redundancy could be an artefact of

many Chironomidae trait designations being derived

from tribe/sub-family level data, owing to a limited

understanding of the diversity of traits within this large,

taxonomically diverse group of insects (e.g. Heino,

2008). However, assuming the given trait database clas-

sifications do reflect macroinvertebrate functional and

ecological roles accurately, newly colonizing taxa should

contribute to ecological processes in the same manner as

those already present in WPC. This temporal ‘develop-

ment’ of redundancy adds additional weight to the sug-

gestion that tolerance plays a major role during primary

succession in glacial river ecosystems.

This study has provided novel evidence for environ-

mental filtering in early primary successional stream

communities, followed by a gradual shift towards a

state whereby deterministic and stochastic assembly

processes co-occur. This shift can be related to external

dynamics, in particular a warmer thermal regime. A

key finding was that functional redundancy occurred

throughout the successional sequence, particularly in

the early stages of community development in WPC.

This was observed in the Chironomidae, which as a

group are diverse taxonomically, but which are classi-

fied in currently available databases as having high

trait redundancy. When environmental structuring is

strong, the trait composition of a community should be

relatively stable (see Purves & Turnbull, 2010). In WPC

when glacial influence was ~70% and above, the only

persistent taxa would have been Diamesinae possessing

adaptive traits. This raises the intriguing possibility that

harsh, physically unstable glacial stream environments

(Milner & Petts, 1994) might be among the most ecolog-

ically stable systems (in terms of functioning) until

environmental change (i.e. warming and thus glacial

retreat) initiates a lifting of environmental filtering. Fur-

ther examination of these processes examined in this

study will be of fundamental importance because the

knowledge gained could help to predict better how

glacierized environments will develop with ongoing

global patterns of glacier retreat (Brown et al., 2007;

Finn et al., 2010). In more general terms, knowledge of

successional processes such as those outlined herein

would help to develop significantly our understanding

of how biological communities in river ecosystems

assemble or restructure in response to environmental

change.
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