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Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets
Collected from River Systems
Stephen R. Hughes,* Paul Kay, and Lee E. Brown

School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, U.K.

ABSTRACT: Pharmaceuticals have emerged as a major group
of environmental contaminants over the past decade but rela-
tively little is known about their occurrence in freshwaters com-
pared to other pollutants. We present a global-scale analysis of
the presence of 203 pharmaceuticals across 41 countries and
show that contamination is extensive due to widespread con-
sumption and subsequent disposal to rivers. There are clear
regional biases in current understanding with little work outside
North America, Europe, and China, and no work within Africa.
Within individual countries, research is biased around a small
number of populated provinces/states and the majority of research
effort has focused upon just 14 compounds. Most research has
adopted sampling techniques that are unlikely to provide reliable and representative data. This analysis highlights locations where
concentrations of antibiotics, cardiovascular drugs, painkillers, contrast media, and antiepileptic drugs have been recorded well
above thresholds known to cause toxic effects in aquatic biota. Studies of pharmaceutical occurrence and effects need to be seen
as a global research priority due to increasing consumption, particularly among societies with aging populations. Researchers in
all fields of environmental management need to work together more effectively to identify high risk compounds, improve the
reliability and coverage of future monitoring studies, and develop new mitigation measures.

■ INTRODUCTION
Pharmaceuticals have been used by humans for centuries with
commercialization beginning in the late 19th Century. Aside
from pioneering studies in the 1970s and 1980s1−3 pharmaceu-
ticals have only emerged as a major group of environmental
contaminants over the last 15 years.4−7 Their presence in numer-
ous environmental compartments including surface and ground
waters, soils, and biota is now well established8 and the pre-
dominant pathway of entry to the environment is considered to
be postconsumption excretion to the sewer network and sub-
sequent passage to rivers via straight piping, sewage treatment
plants (STPs; where their removal is variable e.g., ref 9) or
sewer overflows.10−12 Pesticide research in the 1990s identified
clofibric acid as a widespread aquatic contaminant,13 which in
turn sparked an expansion of method development and phar-
maceutical research in subsequent years.14,15 These studies have
vastly improved the reliability, availability, and precision of
pharmaceutical detection methods.14

The shift from gas to high-performance liquid chromatog-
raphy with tandem mass spectrometry (HPLC-MS/MS) has
been a key driver in improving knowledge in recent years.16

Despite the availability of these methods, analysis and monitor-
ing of pharmaceuticals in freshwaters remains far from routine
and research is often sporadic and isolated. This is despite an
increased awareness of the potential effects of pharmaceuticals
on ecosystems and the services they provide.16−20 Existing
research indicates that pharmaceuticals are generally present in
freshwaters within the ng L−1 range and, at these subtherapeutic
levels, the risk of acute toxicity is thought to be negligible.21

However, there are substantial knowledge gaps in terms of
chronic, long-term exposure of nontarget aquatic organisms and
the effects on ecosystem functioning.16 Data are available to
suggest that some compounds may display chronic effects at or
close to the levels detected in the environment.17,20 Moreover,
the development of antibiotic resistant bacteria is a major public
health concern; the prudent use of pharmaceuticals in the
future is seen as key to reducing risks to public health and the
environment.19,22

It is likely that pharmaceutical consumption will increase in
coming years, particularly in developing countries and those
with aging human demographics.23,24 Nevertheless, pharma-
ceutical compounds currently receive minimal consideration
by regulators, policy makers, and managers,25 perhaps because
there have been few attempts to amalgamate research findings
from disparate spatial and temporal studies. However, the status
quo is unlikely to remain in future, and the European Union
has already started the process of adding the anti-inflammatory
drug diclofenac to its list of Priority Substances.26 This change
will potentially mean that in the future member states must
maintain concentrations below a defined Environmental Quality
Standard in an attempt to meet the requirements of good
ecological status under the Water Framework Directive.27
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This study synthesizes the disparate research on pharma-
ceutical occurrence in freshwaters at national, regional, and
global scales. In particular we critique current research effort by
compound class and individual substance. We also present a
critical review of sampling strategies and methods adopted
by researchers in this field, a crucial factor in considering how
reliable and representative data are. Moreover, we provide a
brief summary of the environmental effects of pharmaceuticals
in freshwater ecosystems to highlight potentially high risk com-
pound classes. The substantial assembled database is provided
as a tool to better inform future research on the occurrence and
effects of pharmaceuticals in freshwaters, and to identify key
areas where future research should be focused. Finally, we dis-
cuss the benefits of meta-analyses such as this in support of
policy development to target the highest risk and most widespread
compounds.

■ METHODOLOGY

A review was conducted via a search of the Web of Knowledge
(WoK) publications database (http://apps.isiknowledge.com/)
on March 6, 2011. The search term below was applied to the
title, abstract, and keywords of articles:
(((((pharmaceutical* OR API* OR drug* OR PPCP* OR

PhAC*) AND (aquatic* OR river* OR stream* OR “surface
water*” OR freshwater* OR effluent* OR wastewater* OR
“wastewater*”)))))
Refined by: Document Types=(ARTICLE OR REVIEW OR

ABSTRACT) AND Research Domains=(SCIENCE & TECH-
NOLOGY) AND Languages=(ENGLISH) AND Subject
Areas=(ENVIRONMENTAL SCIENCES & ECOLOGY OR
PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
OR MARINE & FRESHWATER BIOLOGY OR WATER
RESOURCES OR BIODIVERSITY & CONSERVATION)
This was intended to identify all studies that analyzed for

pharmaceuticals in either STP effluent or receiving waters; there
was no restriction on timespan for this query. Research con-
ducted by governmental departments or reported in the “gray”
literature is also available; for example the U.S. Environmental
Protection Agency (http://www.epa.gov/ppcp/) but such work
was not included here. The acronyms API (active pharmaceutical
ingredient), PPCP (pharmaceuticals and personal care products),
and PhAC (pharmaceutically active compound) are the most
widely used by researchers in this field. This initial search yielded
57 289 results which were sorted by their relevance to the search
term (using the in-built WoK algorithm).
The refined search criteria yielded 18 245 results and con-

sequently the study was constrained further to the 28 most
common journals returned by the search; these 28 accounted
for ∼50% of results (9072 records) and included most major
environmental and analytical chemistry journals. The remaining
records were sorted by relevance and the first 1000 results were
examined individually. The cutoff of 1000 and top 28 journals
results was deemed necessary due to the time taken to assess
each individual data source for the meta-analyses, versus the
“success rate” for inclusion. The criterion for inclusion in the
database was that a study explicitly analyzed for, detected, and
quantified at least one human-use pharmaceutical compound in
either STP effluent or receiving waters. From these 1000 studies,
only 236 met the inclusion criterion (Table 1). While a more
exhaustive search may have improved coverage, the assembled data-
base represents the broadest review of the most detailed research
studies to date.

Analysis of publication dates of the 236 studies showed a
clear upward trend from the late 1990s onward (Figure 1). The

majority of studies included (>80%) were published between
2005 and 2010, a trend most likely driven by the advancement
of analytical techniques such as HPLC-MS/MS and increased
interest in pharmaceutical pollution.16 This is reflected in
the relatively high number of studies published in analytical
chemistry journals such as Journal of Chromatography A and
Analytical and Bioanalytical Chemistry (Table 1) despite neither
of these journals having a specific environmental focus.
For each of the 236 studies the following data were extracted

from the main report body or Supporting Information: Com-
pound(s) detected; Country; Median and maximum concen-
tration(s); Sampling technique(s) adopted; Sampling period;
Analytical methodologies; Number of samples; Number of detec-
tions; Number of no detections; Frequency of detection;
Referencing information; Any pertinent information (e.g., raw
drinking water or estuarine sampling). Median and maximum
concentrations were recorded when explicitly stated by authors
or in some cases were calculated using data tables and in a small
number of cases, concentrations had to be derived from graphical
representations such as boxplots. Other concentrations stated in

Table 1. Summary of Journal Sources for the 236 Studies
Included in the Full Database

journal
record
count

% total
(236)

Journal of Chromatography A 42 17.80
Environmental Science & Technology 34 14.41
Water Research 34 14.41
Science of the Total Environment 33 13.98
Chemosphere 27 11.44
Environmental Toxicology and Chemistry 23 9.75
Analytical and Bioanalytical Chemistry 11 4.66
Environmental Pollution 9 3.81
Journal of Hazardous Materials 9 3.81
Water Science and Technology 8 3.39
Aquatic Toxicology 1 0.42
Environmental Science and Pollution Research 1 0.42
Environmental Health Perspectives 1 0.42
Talanta 1 0.42
Archives of Environmental Contamination and
Toxicology,

1 0.42

Ecotoxicology and Environmental Safety 1 0.42

Figure 1. Number of publications per year for the 236 published
studies included in the database shows a rapid increase after 2003.
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Table 2. Summary of Occurrence Data for the Top 61 Most Frequently Studied (1st to 50th) Pharmaceutical Compounds in
Freshwater Ecosystems

compound compound type
median concn

(ng L−1)
max concn
(ng L−1)

no.
observations

mean detection
frequencya(%) references

amoxicillin antibiotics 59.9 622.0 5 29.8 31−35
amphetamine illicit drugs 10.3 50.0 5 29.7 31,32,36−38
aspirin (acetylsalicyclic
acid)

painkillers 662.6 90 000.0 22 81.3 32,33,39−58

atenolol other cardiovascular
drugs

90.9 859.0 24 83.0 31,32,37,39,45,47,59−75

atorvastatin blood lipid regulators 39.7 101.0 5 18.2 37,74,76−78
azithromycin antibiotics 188.4 1546.7 6 40.8 37,64,69,79−81
benzoylecgonine painkillers 72.8 770.0 10 74.6 32,36,38,82−87
bezafibrate blood lipid regulators 85.0 15 060.0 38 58.0 32,40,43,45,47,53,54,61,64,66,68,69,

72,75,78,88−96
carbamazepine antiepileptics 174.2 11 561.0 98 85.0 17,31,32,37,41,42,45,47,49,51−55,

58,60,62−81,84,88−90,92,93,
96−124

chlortetracycline antibiotics 142.0 2800.0 8 18.2 34,103,108,109,125−128
cimetidine gastro-intestinal drugs 97.3 1338.0 9 47.5 31,32,37,47,98,100,103,108,126
ciprofloxacin antibiotics 163 673.5 6 500 000.0 17 33.4 29,34,35,37,61,67,72,73,75,77,80,

108,126,129−132
citalopram antidepressants 19.8 219.0 6 100.0 37,65,70,133−135
clarithromycin antibiotics 16.5 260.0 13 53.9 35,37,52,61,67,69,70,75,96,

101,121,136,137
clindamycin antibiotics 20.6 1100.0 8 48.0 33,34,37,52,67,121,129,136
clofibric acid blood lipid regulators 136.2 7910.0 26 52.9 32,37,45,47,50,51,54,57,58,61,64,

66,68−70,78,89,94,96,115,120,
122,138−141

cocaine illicit drugs 9.3 115.0 9 49.8 32,36,38,82,83,86,87,142
codeine painkillers 49.6 1000.0 17 64.4 31,32,38,47,49,82−84,87,103,108,

117,126,142−144
diazepam other CNS drugs 8.7 33.6 9 59.6 37,49,61,70,71,74,84,110,131
diclofenac painkillers 136.5 18 740.0 80 75.5 32,33,39−45,47,52−55,57,58,60,64,

66−72,74,78,90−96,99,107,115,
116,119−121,123,124,127,
139−141,145−153

diltiazem other cardiovascular
drugs

13.0 146.0 13 36.3 32,47,52,69,77,97,98,100,101,103,
108,121,126

diphenhydramine respiratory drugs 88.7 1410.6 6 28.7 37,79,80,101,103,108
doxycycline antibiotics 25.9 400.0 5 23.7 34,37,109,125,128
enalpril other cardiovascular

drugs
316.7 1500.0 6 25.6 29,37,61,71,75,126

enrofloxacin antibiotics 5754.0 30 000.0 5 38.0 29,34,80,108,131
erythromycin antibiotics 50.8 90 000.0 32 55.5 31−33,35,47,51,61,64,66,68,70,75,

80,89,96,101,103,104,107−109,
117,121,125−127,131,137,
146,154−156

fluoxetine antidepressants 17.8 596.0 12 29.2 45,66,71,74,77,78,98,103,126,
133−135

furosemide other cardiovascular
drugs

28.3 630.0 7 58.7 32,37,39,47,61,69,75

gabapentin antiepileptics 208.1 1887.0 5 94.2 31,32,47,67
gemfibrozil blood lipid regulators 103.3 7780.0 52 45.3 33,40−44,52,54−58,60,62,64−68,

71,74,78,89,90,92,93,96,104,107,
116,121,126,127,141,157−159

ibuprofen painkillers 503.8 31 323.0 92 63.0 32,33,37,40−51,54−58,60−62,
64−66,68,72,74,75,78,80,
88−93,95,96,99,107,112,
114−116,118,120−122,126,127,
138−141,146,148,149,151,
153,157−165

indomethacin painkillers 51.0 380.0 11 41.9 40,54,66,68,69,78,89,96,121,124,157
ketoprofen painkillers 97.0 2710.0 38 40.1 32,37,40−45,47,54,55,60,64,68,69,

72,78,91,92,95,99,104,114−116,
120,139,145,158

lincomycin antibiotics 23.2 730.0 11 50.3 34,35,51,61,75,89,104,108,109,
121,126

mefenamic acid painkillers 26.3 366.0 14 51.3 32,39,47,51,57,58,64,66,68,114,141,
146,150,160
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the studies were not recorded as it was felt that median levels
were appropriately representative of “normal” conditions and
maxima represent peaks in concentrations indicative of a worst-
case scenario in terms of ecological effects.
The ratio of maximum:median concentration was also calcu-

lated and recorded; this ratio was available for 74% of the studies.
For the purposes of this review only data concerning receiving
waters (and not treated effluent) were subjected to meta-analysis
because these were the most relevant indicators of poten-
tial effects in freshwater ecosystems. Effluent concentrations are

inherently variable28 and are less reliable as indicators of
effects given the broad range of dilution factors and chemical
transformations to which they are subjected when entering
receiving waters. When published studies reporting only treated
effluent concentrations were excluded, a total of 155 studies
were retained. Fifty studies (26.8%) contained samples of a
nonriverine source (marine, estuarine, groundwater, raw drink-
ing water, or sediment samples); lentic and raw drinking water
samples were included as these were deemed relevant. Five
studies contained samples extracted from freshwater sediments

Table 2. continued

compound compound type
median concn

(ng L−1)
max concn
(ng L−1)

no.
observations

mean detection
frequencya(%) references

metoprolol other cardiovascular
drugs

104.5 8041.1 22 89.6 29,31,32,45,53,54,56,59,60,63,
65−68,70,72,111,119,131,133,
157

morphine painkillers 6.5 108.0 8 45.9 38,83−85,87,143,144
naproxen painkillers 98.0 19 600.0 65 69.0 32,33,37,40−47,50,51,54−58,60,62,

64−68,71,72,74,78,89−92,
94−96,104,107,114,115,120,122,
127,139,141,145,153,157−159,
161,166

norfloxacin antibiotics 11 412.4 520 000.0 11 52.3 29,34,67,108,126,131,132,
154−156,167

ofloxacin antibiotics 628.6 11 000.0 16 60.0 29,33,35,37,64,66−68,72,75,
130−132,154,155,167

oxytetracycline antibiotics 74 757.7 712 000.0 11 50.0 30,34,35,37,61,125,126,128,131,151,
168

paracetamol painkillers 148.2 15 700.0 35 51.6 31−33,39,45,47,51,65−70,76,77,
79−81,89,97,98,100,103,107,108,
116,117,122,126,127,148,160,
169,170

pentoxifylline other cardiovascular
drugs

197.1 299.1 5 39.6 49,90,104,107,112,118

primidone antiepileptics 70.9 590.0 5 75.8 67,70,74,84,106
propranolol other cardiovascular

drugs
18.8 590.0 22 69.4 31,32,41,42,45,47,54,59,60,64,

66−68,110,124,127,146,148,150,
157,165,171

propylphenazone painkillers 31.4 180.0 5 94.0 64,66,68,96,114
ranitidine gastro-intestinal drugs 26.5 570.0 11 35.3 32,47,61,64,66,68,75,98,103,108,126
roxithromycin antibiotics 20.4 2260.0 11 49.0 34,70,96,109,126,136,137,

154−156,172
salbutamol respiratory drugs 25.3 1440.0 8 39.9 32,37,47,54,61,75,98,160
sotalol other cardiovascular

drugs
101.6 1820.0 10 96.0 37,59,62,63,66−68,70,72,73

sulfachloropyridazine antibiotics 34.3 70.0 5 3.3 79,104,109,125,128
sulfadiazine antibiotics 62.6 2312.0 5 48.6 154,156,173−175
sulfadimethoxine antibiotics 9.7 3955.6 15 44.2 45,52,67,69,79,100,108,109,

125−128,173−175
sulfamethazine antibiotics 146.1 6192.0 12 30.1 33,79,104,109,121,125−128,156,

174,175
sulfamethoxazole antibiotics 83.0 11 920.0 77 66.9 31−35,37,41,45,53,60,62,64−71,

74,76,77,89,92,93,96−98,101,
103,107−110,117−119,121,
124−130,136,137,151,154,
155,167,173−176

sulfapyridine antibiotics 11.5 12 000.0 8 75.5 31,32,47,65,173−175
sulfathiazole antibiotics 6.2 960.6 8 47.7 34,79,109,125,151,173−175
tetracycline antibiotics 41.5 300.0 10 45.0 34,37,89,125−128,131,151,168
tramadol painkillers 801.6 7731.0 5 87.0 31,32,47,84
trimethoprim antibiotics 53.4 4000.0 49 49.8 29,31−34,41,42,45,47,60,64−68,

70,71,74,76,77,80,81,89,90,96,98,
100,101,103,104,107−110,117,
118,121,126,129,133,136,137,
146,150,165,167,169,172,173

tylosin antibiotics 12.5 280.0 7 35.4 34,61,89,125−127,131
aMean detection frequency is the mean of all stated or calculated detection frequencies (no. positive detections/no. samples analyzed) for that
particular compound. Sixty-two studies representing 32.2% of all database records did not state a detection frequency, or sampling numbers to enable
its calculation.
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and although these are relevant to freshwaters, the small num-
ber of studies was deemed insufficient to merit inclusion.
The full database containing all receiving water records is freely
available upon request or from http://www.wateratleeds.org.
All concentrations were recorded in the database as nano-

grams per liter (ng L−1) to enable direct comparison. Individual
compounds were then grouped into the following classes: Anti-
biotics; Antidepressants; Antiepileptics; Antivirals; Blood lipid
regulators; Cancer treatments; Contrast media; Endocrine drugs;
Gastro-intestinal drugs; Illicit drugs; Other cardiovascular drugs;
Other CNS (central nervous system) drugs; Others; Painkillers
and Respiratory drugs.

■ RESULTS

Table 2 presents a summary of the 61 most frequently encoun-
tered pharmaceuticals (out of a total of 203); these 61 com-
pounds represent the 1st to 50th most frequently studied com-
pounds in the database. Median concentrations ranged from
6.2 ng L−1 for the antibiotic sulfathiazole to 163 673 ng L−1 for
the antibiotic ciprofloxacin which also had the highest maxi-
mum concentration of the entire database at 6 500 000 ng L−1.
Of these 61 compounds, 39% were antibiotics, 21% were pain-
killers, 20% were cardiovascular drugs or blood lipid regulators,
and 3% were antidepressants.
From 155 published studies pharmaceutical compounds were

identified in receiving waters across 41 countries on all continents
except Africa and Antarctica (Figure 2). The database included
1417 records representing 67 903 analyses and median/maximum
concentrations from >14 155 samples (27 studies did not state
sampling numbers) and >24 989 positive detections of pharma-
ceuticals; this equated to an overall detection frequency of 37%.
The results illustrated a heavy bias toward research in Europe and
North America which accounted for 80% of studies, with a further
16% in Asia (predominantly China). Only three studies reported
from South America and just one was from the Middle East
(Israel). The United States had the most studies (34) and Spain,
China, Germany, Canada, and the UK were the only other coun-
tries to have >10 studies. Seventy-one percent of nations in the
database had three or fewer studies conducted, including very
large or populous nations such as Japan, Brazil, Mexico, Pakistan,
and Australia.
When examining data at the “continental” scale strong biases

are again evident (Figure 3). For example, just 6/176 provinces
in Asia accounted for >50% of published studies in that region,
with the most populous province in China (Guangdong) having

the highest number at six. In Europe most studies have been
undertaken in Germany, Spain, and Switzerland (in the Elbe,
Rhine, Ebro, and Llobregat basins). The spread of research in the
UK is even, covering most counties except South West England
and Northern Ireland; however these are generally isolated,
with the only repeated work undertaken in Wales, Greater
London, and the North East. A similar story is evident in North
America with a good spread of research but multiple studies
in the populated states of California, New York, and Ontario;

Figure 2. Global-scale distribution of the number of published studies identifying pharmaceuticals in inland surface waters.

Figure 3. Number of published studies detecting at least one phar-
maceutical compound in (a) European regions, (b) North American
states, and (c) south Asian provinces.
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9 Canadian provinces (69%) and 28 U.S. states (55%) have just
one or fewer studies.
Globally, painkillers were the most frequently detected com-

pounds accounting for 31% of records with a median concen-
tration of 230 ng L−1 followed by antibiotics (21%, 8128 ng L−1;
Figure 4a). The remaining compound classes each demonstrated
medians of <100 ng L−1 except for Others (830 ng L−1 including
antiepileptics and contrast media). The picture changes when
data are examined regionally (Figure 4b−d). For example, the
most commonly encountered pharmaceuticals were painkillers
in Europe (34%, median concentration 261 ng L−1) and anti-
biotics in North America (38%, 71 ng L−1) and Asia (42%,
33,446 ng L−1). Contrast media and respiratory drugs had parti-
cularly high median concentrations in Asian waters of 1257 and
50 023 ng L−1 respectively, although these were from a small
number of studies contaminated by effluent from pharmaceut-
ical manufacturing facilities.29,30 Additionally, antidepressants
were more frequently detected in North America (9%, 25 ng L−1)
compared to Europe and Asia where they account for <1% of
records.
A striking result from mean concentrations in the top 10

most studied countries was that all except China demonstrated
very low proportions of the global mean (<2%) for antibiotics
(Figure 5); this was due to the very high concentrations detected
in a small number of Asian studies. Interestingly, China displayed
values well below the global means for all compound classes
ranging from 2 to 25%. Spain was above the global mean (171−
441%) for all classes except Antibiotics and Others compared
to Italy, Switzerland, Japan, and the UK which were below
the global mean for all classes. No single country in the top 10
demonstrated mean concentrations above 40% of the global
mean for Others. This is due to there being only seven coun-
tries within this group which are heavily skewed by one study in
India detecting very high concentrations (15 000 ng L−1) of the
antifungal terbinafine.29

The top 20 most frequently studied compounds in Europe
included 8 painkillers, 6 cardiovascular drugs, and 4 antibiotics
with median concentrations for all compounds below 100 ng L−1

except aspirin and paracetamol (median approximately 190 ng L−1;
Figure 6). A similar picture was evident in North America and
Asia with mostly antibiotics, cardiovascular drugs, and pain-
killers present in the top 20 and median concentrations generally
<100 ng L−1. A small number of compounds (6 in Europe and
Asia and 2 in North America) had maxima >10 000 ng L−1. Of
particular note was the antiepileptic drug carbamazepine which
was the most frequently studied and detected compound in
both North America and Europe and third in Asia. The mini-
mum detection frequency for compounds displayed in Figure 6
was 9% (diclofenac in North America) but average detec-
tions frequencies were 70% (Europe), 27% (North America),
and 65% (Asia).
A major finding from this analysis was that 45% of European

and Asian and 23% of North America studies failed to provide
any details of the sampling regime and techniques adopted
(Figure 7). Isolated and nonrepeated grab sampling was by far
the most common technique adopted in 31−34% of studies.
Slightly more representative repeated grab sampling over periods
ranging from days to years was adopted in just 12% of studies.
Additional techniques are available including composite sampling
and the use of passive samplers (e.g., polar organic contaminant
integrative sampling, POCIS) which give an integrated sample
over a period of days to weeks. However, these were adopted by
just 11% of European and 9% of North American studies and not
at all elsewhere.
Chronic effects data for the six main compound classes were

collated from four major reviews17,20,21,177 and any duplicate
results were removed manually. Chronic data (rather than acute)
was chosen as these were deemed to be more representative of
actual long-term, low-level exposure of aquatic organisms;178 the
end points assessed included lethal and sublethal indices (e.g.,
feeding, growth, behavior, and reproduction). The data included

Figure 4. Relative frequency of detection and median concentration of pharmaceuticals in receiving waters: (a) global, (b) Europe, (c) North
America, and (d) Asia. (The circumference of each fan is scaled by the relative proportion of detections. Each point outward on the radial
axis represents 10y of the median concentration in ng L−1. For example, the innermost circle represents 101 ng L−1; the second represents
102 ng L−1, etc.)
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here are not intended as a direct assessment of particular com-
pound toxicity but rather to highlight where overlaps between
measured environmental concentrations and chronic toxicity
indicate potential environmental risk.
The ranges of chronic toxicity vary markedly across com-

pound types and taxa (Figure 8). From these data antidepres-
sants appear to pose particular risk to all taxa except bacteria
with effective concentrations ranging from μg to mg L−1. Inver-
tebrates and fish show chronic toxic effects at sub mg L−1 levels
for cardiovascular drugs and Others; fish also appear susceptible
to painkillers with median effects manifesting at 40 μg L−1. This
summary highlights where research is lacking; in particular there
were no studies examining the effects of antibiotics on fish,
antidepressants on aquatic plants, or cardiovascular drugs on

bacteria. Overall, bacteria and aquatic plants appear to be the
least well studied whereas research on chronic effects in aquatic
invertebrates is relatively abundant.

■ DISCUSSION
Spatial Distribution of Research. This study shows that

knowledge of pharmaceutical occurrence is poor or absent
for large parts of the globe, particularly in developing countries.
The research that has been undertaken displays a heavy bias
toward North America, Europe, and the more populous parts of
China. Given that the consumption of pharmaceuticals is ubiquit-
ous across the globe,179 there is clearly a pressing need to expand
research into their occurrence particularly in Russia, southern
Asia, Africa, the Middle East, South America, and eastern Europe.

Figure 5. Comparison of national averages of pharmaceuticals to the global average for (a) the 1st to 5th and (b) the 6th to 10th top countries (as
determined by number of entries in the database; represented by the number in brackets. Global mean is the mean concentration for all records of
that compound group). (Values exceeding 200% of global mean: Spain (blood lipid regulators 441%, other cardiovascular drugs 213%, painkillers
209%), Germany (antidepressants 246%), South Korea (other cardiovascular drugs 404%)).
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As more data becomes available, the better able researchers will
be to highlight the scale of the problem and inform manage-
ment decisions. Moreover, even where studies have been rela-
tively numerous knowledge is still minimal compared to that
for other stressors such as nutrients,180,181 acidification,182 river
regulation,183 and sedimentation.184

When looking at the spread of research it is apparent that the
spatial biases manifest at multiple scales. In Europe, an obvious
cluster of research is evident around central Europe particularly
and to a lesser extent in the UK and Spain. Research effort
appears to be clustered around the high population areas of e.g.,
London, Paris, Hamburg, Frankfurt, California and the North
American eastern seaboard, Beijing and Guangdong province in
China. This is understandable given that pharmaceutical pollu-
tion can be expected to be at its greatest in densely populated
areas, and a risk-based approach185 should target these receiv-
ing waters first. However, this leaves substantial proportions
of Europe and North America with insufficient research.
For example, in the UK no research has been conducted in the
major urban areas of the West Midlands, Greater Manchester,
or West Yorkshire which have a combined population of 6
million people.186 Researchers should expand monitoring efforts
to previously unstudied catchments while at the same time in-
creasing the length/breadth and temporal resolution of monitor-
ing campaigns if the dynamics of pharmaceutical pollution are to
be fully understood. Research in less densely populated and rural
areas should also be a priority as it is probable that STPs in such
locations are smaller and less advanced when compared to their
larger counterparts serving urban areas.187

Coverage of Compound Classes. When viewed globally,
antibiotics, antiepileptics, cardiovascular drugs (including blood
lipid regulators), and painkillers accounted for 86% of all data-
base records with carbamazepine being the single most com-
monly identified compound. A likely reason for this bias is that
these drug types are the most widely prescribed and purchased
over-the-counter.188,189 For example, cardiovascular drugs and
painkillers were among the top three compound types prescribed
to adults in the U.S. during 2007189 and as such could be ex-
pected to enter the environment in the highest concentrations.
However, this leaves major groups of potentially toxic phar-
maceuticals being poorly studied. For example, antidepressants,
antivirals, cancer treatments, tranquilizers, and antifungals com-
bined accounted for just 6.3% of records. A reason for this

Figure 6. Boxplots of the 20 most commonly encountered phar-
maceuticals in (a) European, (b) North American, and (c) Asian
receiving waters. n values represent total number of records for
the respective region and values above the x axes represent records
for each of the 20 specific compounds. (Boxes represent interquartile
ranges with median concentration represented by the horizontal
line. Whiskers show the range of data and asterisks represent
outliers).

Figure 7. Pie chart summarizing sampling methodologies employed in detection of pharmaceutical compound(s) in rivers. (n = number of records in
the database; POCIS = polar organic contaminant integrative sampler).
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imbalance in detections could be that researchers have not been
analyzing these compounds in environmental samples, rather
than their being genuinely scarce. It may also be possible that
less frequently detected compounds are less refractory and are
more efficiently removed during sewage treatment (e.g., 9).
Further studies on these “rarer” compounds are particularly
necessary because some studies have shown effects on micro-
algal communities even at very low environmental concen-
trations.190 Interestingly, antidepressants were the most widely
prescribed compounds among young American adults,189 and
this is reflected in the relatively high number of North American
studies analyzing these compounds (9%) when compared to Asia
and Europe (1%).
The analysis confirmed that knowledge of some pharmaceut-

ical groups is almost completely lacking, with >50% of entries
in the database represented by just 14 compounds (all of which
are antibiotics, antiepileptics, cardiovascular drugs, or painkillers).
The entire database represents only a snapshot (203) of all
pharmaceuticals approved for use, which is estimated to be well
over 5000 in Europe alone.191 This gives a conservative estimate
that fewer than 4% of pharmaceuticals have been analyzed for and
detected in freshwaters. It demonstrates a clear need for future
research to be expanded across the less well studied compounds,
particularly those identified as posing environmental risk.
Pharmaceutical Concentrations in Freshwaters. One

of the most striking results from the data was the relatively high
concentrations for antibiotics and Others (comprising just the
respiratory drug ceterizine and the contrast medium ioprimide
in Asia) compared to other classes. However, these very high
concentrations were skewed by a small number of studies which
analyzed waters receiving pharmaceutical manufacturing
effluent.29,30 Up until recently pharmaceutical manufactur-
ing facilities (PMFs) were considered a low priority given the
high value of pharmaceutical products and the adoption of
“good management practice” by the industry intended to
reduce wastage and loss to the environment.192 However,
several studies have shown that PMFs can be a significant source

of pharmaceuticals to receiving waters both within developed
(e.g., 193) and developing countries (e.g., refs 30, 194); these
should be considered a priority for future research effort given
the potential for strong localized effects.
National means were compared to global means to evaluate

the appropriateness of local studies as indicators of concentra-
tions at larger spatial scales. These comparisons highlight the
importance of local studies to inform stakeholders and regula-
tors, and emphasize a need for caution when scaling up to
larger spatial scales, or vice versa. Given the relative paucity of
data it is possible for a small number of studies at particularly
polluted locations to have a disproportionate influence on national
and even global mean concentrations. The very high concentra-
tions for antibiotics in Asia and globally are an example of this
problem. The global median antibiotic concentration (8135 ng L−1)
reduces (58 ng L−1) if just two Chinese and Indian studies are
excluded.29,30

Frequently Studied Compounds. Ibuprofen and sulfa-
methoxazole were consistently within the top five studied com-
pounds across all regions and had similar concentration ranges
(1−10 000 ng L−1). Notably though, very high concentra-
tions (up to a maximum of 10 000 000 ng L−1) of ciprofloxacin,
erythromycin, norfloxacin, and ofloxacin were evident in Asia;
this is of concern because these are well within the range known
to cause acute and chronic toxic effects to aquatic organisms.20

Also of note was the presence of the antidepressant fluoxetine
in the top 20 North American compounds; this type of anti-
depressant causes chronic effects at the low ng L−1 range,195,196

well below the median and maximum concentrations detected
in the environment. Carbamazepine is the single most widely
studied and detected compound in Europe and North America
but is not generally considered to pose a risk of acute or chronic
toxicity to freshwater organisms (e.g., 197). However, its refrac-
tory nature and generally ubiquitous presence in STP effluent
may make carbamazepine a useful source-specific tracer of domestic
wastewater contamination.198

Figure 8. Summary of chronic ecotoxicological data for pharmaceuticals and freshwater organisms across (a) antibiotics, (b) antidepressants, (c)
blood lipid regulators, (d) other cardiovascular drugs, (e) others, and (f) painkillers; data summarized from refs 17, 20, 21, and 177.
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Sampling Strategies. Perhaps the most crucial step in reliably
quantifying the presence of compounds such as pharmaceuticals in
freshwaters is the collection of a representative sample using
appropriate strategies and methodologies.199,200 Sampling uncer-
tainty can often exceed that during the analytical procedure.201

Large sample numbers and sophisticated analytical techniques,
although important, should not be seen as a substitute for the
collection of a representative sample199 and a poor sampling can
be the dominant source of error in water quality data.202 Some
exponents of sampling theory have gone so far as to argue that
“nothing good (certainly nothing representative) has ever come
from grab sampling”203 due to the fact they provide a mere
snapshot in time. Grab sampling does have a part to play in
furthering our understanding of pharmaceutical occurrence parti-
cularly for extensive spatial or long-term studies where the equip-
ment and set-up costs of more representative techniques may be
prohibitive. However, efforts should be made to adopt more
representative techniques wherever possible. For pharmaceuticals
in particular, non-repeated grab sampling is unlikely to be repre-
sentative as sample concentrations have been shown to vary
considerably over time.28

A possible explanation for the lack of robust sampling is the
relatively high proportion of studies published in journals with
a focus on analytical chemistry (namely Journal of Chromatog-
raphy A, Analytical and Bioanalytical Chemistry, and Talanta).
The main thrust of these journals is method development
rather than the collection of large, representative data sets and
this is borne out by the fact that 64% of these papers did not
state the sampling methodologies adopted (c.f. 44% across all
journals) and only 11% of studies adopted repeated grab or com-
posite sampling strategies (c.f. 21−23% across all journals). This
propensity of analytical studies to collect fewer samples for
shorter periods is probably due to analytical chemists needing to
validate methods on “real” samples which require only minimal
numbers to achieve. The contribution of these papers should not
be understated though, as they provide reliable and sophisticated
analytical methods that can be adopted as part of more repre-
sentative sampling studies. The occurrence data alone provided
by these studies covers 94 compounds in 34 countries, so minor
modifications to sampling strategies and subsequent reporting by
these scientists could benefit the field substantially.
In addition to the techniques adopted, appropriate sampling

numbers, duration, and frequency are crucial to obtain a reliable
quantification of variable water quality parameters. Most studies
collected a relatively small number of samples (1−50) with only
13% of studies collecting for >12 months. This indicates a dearth
of long-term monitoring which may be crucial in understand-
ing seasonal and annual dynamics. Conversely, sampling at an
appropriately high temporal resolution over the short-term is
equally important if we are to fully quantify variability over
the periods of minutes to days (e.g., refs 28, 199, 200). Studies
on other aquatic contaminants have shown the importance of
a robust sampling strategy; Rabiet et al.204 demonstrated that
fixed time interval grab sampling underestimated pesticide
fluxes from a small catchment by as much as a factor of 5.
Robertson205 recommended tailoring sampling strategies to
the variable of interest and the duration of the study when
monitoring in small streams. An interesting research question
would be the systematic comparison of measured concentra-
tions between grab sampling and continuous or composite tech-
niques; the database assembled here may prove useful in such a
study.

These data clearly highlight the importance of adopting
flexible, appropriate sampling strategies in order to supply reli-
able and representative data. Furthermore, researchers should
explicitly state the techniques employed in addition to sample
numbers, frequencies, and locations so that other researchers
can fairly evaluate the results presented and use them to inform
their own research.

Effects of Pharmaceuticals on Freshwater Ecosystems.
Despite the widespread presence of many pharmaceuticals in
freshwaters, some risk assessments have suggested that they
pose little risk of acute or chronic toxicity at environmentally
relevant concentrations.17,206 The data summaries presented
here and elsewhere indicate potential overlap between chronic
effects levels and the concentrations detected within fresh-
waters. In particular, potential risks are evident for invertebrates
and fish from antibiotics and cardiovascular drugs in Asia and
from the contrast media, tranquilizers, and antiepileptics
(carbamazepine) across all regions. Additionally, invertebrates
and fish are potentially at risk (i.e., low margin of safety) from
antidepressants and painkillers in North America. While this
may suggest that future research should shift toward less well
studied but more “toxic” compounds, particular care needs to
be taken with these conclusions because many effects studies on
aquatic “ecosystems” have been undertaken using ecologically
unrealistic (i.e., single species) laboratory experiments. Addi-
tionally, such studies tend to test at concentrations that are
orders of magnitude above those detected in the environment
and be run over short time-scales, and as such do not ade-
quately address the issue of low-level, chronic exposure. Studies
which have examined the effects of low-level pharmaceutical
exposure on aquatic ecosystem structure and functioning are
rare but have indicated that pharmaceuticals can display sig-
nificant effects on important ecosystem services.207−210

The data presented here are a useful indicator of particular
compound classes exhibiting some kind of toxic effect at the
levels stated. As such, the combined occurrence and effects data
sets can serve as a guide for future ecotoxicological research.
However, they should be treated with caution as they integrate
a variety of toxicological tests which employ a range of expo-
sures and end points across a variety of species. The exposure
regime of any testing should attempt to cover both the median
as a measure of frequently encountered concentrations, and the
maximum concentration as an indicator of worst-case exposure.
Furthermore, standard assessments of toxicity, while useful in
producing comparable results, suffer from low bio-complexity
and environmental relevance, so researchers need to adopt a
more flexible, knowledge-based approach tailored to specific
risks.211 A problem with undertaking research in “natural”
freshwaters is that there will probably be myriad other com-
pounds in addition to the one of interest, meaning a high
potential for confounding effects. More realistic controlled
experiments need to be designed and undertaken (e.g., 212)
before researchers can make better predictions about ecosystem
response to pharmaceutical pollution. Researchers and regula-
tors must therefore be wary of dismissing particular pharma-
ceuticals as “low risk” on the basis of isolated and overly simpli-
fied laboratory studies.

■ CONCLUSION
This study is the first to assemble a comprehensive database of
widely distributed information on pharmaceutical concentra-
tions at global, continental, national, and provincial scales.
In doing so it has highlighted large parts of the globe where
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knowledge of pharmaceutical occurrence is minimal or non-
existent. In particular, large parts of Asia, Africa, South America,
and Australia should be seen as a priority for future research.
Additionally, the majority of countries where research is sparse
or absent are developing nations, and as such it is possible that
the pharmaceutical consumption (and hence pollution) profile
may differ markedly from that of developed nations. It may be
the case that in developing countries water resource manage-
ment has not yet progressed to the stage where environmental
monitoring and regulation of pollutants typically start to be
taken seriously.213

Even within the developed nations of Europe and North
America there is a pressing need for better spatial coverage
across all provinces and states. Future research should learn
lessons from other fields and use appropriate, representative
sampling strategies to give much more reliable estimates of the
pollution problem. The current proposal for statutory moni-
toring of diclofenac in European waters26 will provide a sub-
stantial boost to our knowledge but researchers and regulators
should also see this as an opportunity to increase our under-
standing of the thousands of other pharmaceuticals and
domestic chemicals that routinely enter freshwaters via STPs.
The most striking results of this study were the very high

concentrations reported (particularly antibiotics, painkillers,
and antidepressants) that are within the range known to cause
acute or chronic toxicity in aquatic systems. This challenges the
assumption that pharmaceuticals in rivers generally pose little
risk28 and highlights the need for an expansion of robust moni-
toring and the adoption of more realistic ecotoxicological
experiments. Expanding research effort to previously under-
studied compounds (some antibiotics, antidepressants, respira-
tory drugs, and contrast media) and areas of the globe where
research coverage is poor should be a priority. This is parti-
cularly important as in coming decades it is anticipated that
pharmaceutical use will increase substantially, partly due to the
aging population structure in developed countries, and with
ongoing increases in the standard of living in developing coun-
tries. These improvements in quality of life are accompanied by
an increase in meat consumption in developing countries214

which in turn may boost the consumption of veterinary pharma-
ceuticals posing additional environmental risk.
The database assembled in this study should serve as a useful

tool for industry professionals, academics, regulators, and water
managers in prioritizing future work on both pharmaceutical
occurrence and the effects of such compounds on aquatic ecosys-
tems. Ultimately, the results indicate that despite almost two
decades of research effort, our knowledge of pharmaceutical occur-
rence and effects in the environment is still substantially lacking
when compared to that of other aquatic pollutants.
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Köck, M.; Radjenovic, J.; Gros, M.; Barcelo, D. Recent trends in the
liquid chromatography-mass spectrometry analysis of organic con-
taminants in environmental samples. J. Chromatogr., A 2010, 25
(1217), 4004−4017.
(15) Stan, H. J.; Linkerhaegner, M. Identification of 2-(4-
chlorophenoxy)-2-methyl-propionic acid in groundwater by capillary
gas chromatography with atomic emission detection and mass
spectrometry. Vom Wasser 1992, 79, 75−88.
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(18) Kümmerer, K. Pharmaceuticals in the Environment: Sources, Fate,
Effects and Risk, 3rd ed.; Springer: Berlin, 2008; p 521.
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(22) Kümmerer, K. Antibiotics in the aquatic environment − A
review − Part II. Chemosphere 2009, 75 (4), 435−441.
(23) Daughton, C. G. Green Pharmacy: Mini-Monograph: Cradle-to-
cradle stewardship of drugs for minimizing their environmental
disposition while promoting human health. I: Rationale for and
avenues toward a Green Pharmacy. Environ. Health Perspect. 2003, 111
(5), 757−774.
(24) European Environment Agency. Technical report No. 1/2010:
Pharmaceuticals in the Environment; EEA: Copenhagen, 2010.
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