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1. Introduction

There has been considerable interest in recent years in the input-
output stability of large—scale systems, mainly in the case of nonlinear sub-
systems combined together at linear summing points (see, for example [1,6] =
However, there has also been some literature on nonlinearly interconnected
subsystems (e.g. [?] ) where a geometric type of argument is employed.

In this paper, we shall use the graph theoretic techniques descr{bed
in [b] , although for the case of nonlinearly interconnected subsystems, it
will be seen that it is natural to use hypergraph theory (an account of which
can be found in [4] ) The interconnection hypergraph is defined and then
decomposition theory is used to represent the hypergraph as a tree of
strongly connected components. A minimal essential set is then found for
each strqngly connected component and a nonlinear system is‘derived which
depends only on the outputs of the combining points corresponding to the
vertices included in this minimal essential set.

In section 2, we shall describe our notation and in section 3 the
system description will be developed. Séction 4 is devoted to a study of
the stability of an overall interconnected system and in sections 5,6,7 we
describe the decomposition theory discussed above. Finally, conclusions
are drawn in section 8.

&, Notation

In this paper, the notation which we use is fairly standard. FLn
denotes n—dimensional Euclidean space and L will denote a general function
space (which could be a Banach space or a Hilbert space, for example).

Le is the usual extended space of funtions allof whosg truncations to a
finite interwval belong to L.

The main novelty of our notation is in the representation of a vector

valued function. Let f: ﬁ{L%Ffl be a function defined on R" with values

. m . . ‘ " n
in /R~ and suppose that G is an nxn matrix and e is a column vector in R_.
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Then, by G*e we shall mean the nxn matrix
(G..e.) (no summation!)
11 ] 1<i<n
1<j<n
and by £(G*e) we shall mean ﬁhe vector-value

fl(Gllel,....,Glnen)

f € ,::005G & .
n( nl 1’ *“nn n)

The nonlinear functions f will denote the operations of the nonlinear
combining elements. Of course, if these reduce to summation points, then

f(G*e) = Ge (ordinary matrix multiplication).

3. System Description-’

The system we consider in this paper is of a very general type.
It consists of a set of m linear or nonlinear subsystems connected together
at nonlinear combining points. The subsystems are specified by input-output

maps which may be stable or unstable. A typical subsystem is shown in fig. 1.

Fig. I,

The nonlinear combining elements fi’ l<i<m, are maps
m
£+ @ {; L;§+ Le
i=1

in the general case, and in the case of memoryless combiners may be regarded

as maps



m

f.:“K +R.
i
We now introduce the following general assumption Al.
Al. Throughout this paper the operators Gij’fj will be assumed to be causal.
The equation for each nonlinear combining point may be written

(comparing with fig. 1.)

. . =u, + £ (G. w5 s 58 B 5 G
(31a) 5 "% 1(G11e1, ’ 1Je3’ 'Glmem) ;
or
(3.1b) (I-F)e = u
where
a %, R
g = ° u °
é i1
m m

m m
and F: ® L - @ Le is the (nonlinear) map defined by
=1

Fi(e) = fi(Gile s B, & Ja

1 im m

Note that Le is a Frechet space (cf. [[107] ) as the inductive
limit of the Banach spaces L(0,T) for T>O. There are various ways of
studying the existance theory for the equation (3.1), but the assumptions ‘

|

on F ﬁainly fall into three categories: i
(i) F is a.contraction for each space L(TI’TZ)’ (Eﬂ).
(i1) F is monotone. ([7])
(iii) F is completely continuous (i.e. maps bounded sets to compact sets).(Dﬂ).

In each of these cases (with certain additional technical assumptions)
one can obtain a unique causal in verse (I-—F)_1 defined on a; Le'

i=1

However, in the practical situation, it is unlikely that any of these

conditions will hold fdr an arbitrary system of the form shown in Fig. 1.
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We shall therefore assume in the sequel that I-F has a unique causal inverse
m
defined on the whole of & L and rely on physical intuition or the
i=1 ©

nature of a particular system to guarantee such an inverse exists., Such
an assumption is justified to a certain extent by the fact that we are

interested mainly in stability and if a solution does not exist then to ask

for the system to be stable is somewhat meaningless. Therefore we make the

assumption o

A2, (I—F)_l exists and is causal on @ {Le}'
i=1
It will be convenient in the following to replace the system in Fig.l.
by one in which the nonlinearity fi does not depend explicity on the input
G, €. This can be done easily at the expense of increasing the order of

11 1

the system, We merely introduce a new summing point for each i as shown

in Fig. 2.
1
e 0 _
Gig &L ‘ol £ Givmi Gpam|
= G m S - = =&
e
Lim
- Fig. 2.
In this system G, . 1is the identity operator and
i4m,i
i GG gl e, ) =G, .e, = = “
f1+m( 1+m,le1“ : 1+m,2m?2m) 1+m,1E1 ism i
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Note that the G matrix now becomes

.. ;3 1<i< B ¥ .
1<j<m :
' 0 G
nm
I :
0
0
0 .
L I '
-

(we shall use the same letter ¢ for the 'augmented system'; this should
not cause any confusion). We note that the diagonal of the new G matrix
is ignored, and we have shown that the original system can be replaced by
one in which the output of a nonlinear combiner is not fed‘directly back
into its input. This will enable us to apply the theory of Eﬂ and also
it will simplify the graph theory structure of the system since this will
have no self-loops (see section§).

4, Stability of an interconnected system

Before discussing the graph theory decomposition of the system we shall
first consider the stability of an overall interconnected system. Suppose

that, in the original system (Fig. 1.), the maps

@ B

£f. & 1. = L
i e e

i

]
e

are Frechet differentiable when restricted to LT (the Banach space of

truncations of elements of Le to the interval &Lfﬂ Y2 da@s

\

m
£, 3 _qa LT - LT
i=1

is Frechet differentiable. (Note that if PT:Le+ L. 1is the projection, and

T

IT:LTELe is the inclusion, then we are denoting PTfiIT by the same symbol fi;
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m
this should not cause confusion. Also, fi (@LT) E-LT by causality.)
i=1
Consider the equestion

Te;, = £; 0657805 vvvvs Gyyepy wonry Gpe) = ug.
If we assume that Gii is also Frechet differentiable as a map from LT to
LT’ then if

1-3 fi'}Gii ("% = Frechet derivative)
is invertible at each point of the domain of fi’ then, by the implicit
function theorem, we can solve uniquely for e, in terms of the ej 's for

j#i, i.e.d a function, .

T m=1
(4.1) g; : 0 Ly > Ly
i=1
such that
_ T £
F_'i = gi (Gilel, LI R Y ii ei, o0y Gineh )

where ¢ denotes that this argument is omitted. Now, because each fi

and Gij is causal, if T <T, it follows easily that

1
ng ) gT2
i i o1
=, 1
i=1 1
T _ m-1
: (=gi2 restricted to the subspace ;21 LT1 ), and hence by the definition

of inductive limits, the set of maps {gg} T>0 uniquely define a map,
m—-1
gy ¢ M q bR
i=1
which is causal by(4.1)
Following [6] , we introduce

Definition 4.1 The overall system S is stable if Y i,j=1,...,m,

the maps uéGij[(I—F)—lu]j are stable.
We then have

Lemma 4.2 Suppose that

(a) Each Gij is stable for i # j.
(b) For each unstable Gii’ we assume that 8; exists and is a stable
m-1

mapping; i.e. 8 ¢ & { L}+ L
i=1
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(c) The mapping (I~—I-?')_1 is stable .
Then the overall system is stable. O
The proof of this result is simple and generalizes Theorem I of [6]. Its
usefulness is limited, however, by the strong assumption that for an unstable
Gii’ we have Frechet differentiability of fi and Gii together with (for
example) a condition of the form

I, eIl IF96,; el < 1.

for all €128, LT' (This latter condition will guarantee the existence

of (1—'§fi’>}cii)_l 2

In systems of the type considered in Eﬂ , where the combiner is
defined by digital logic we do not have such differentiability, but we are
usually able to derive a norm cpndition on fi of the form
(4.2) |fi(e1,...;em)|§_ Ei(||e1||,...,[|emll)
for some function E:WP++ W{ and for el""’eﬁELT'

We shall now use the augmented system ,which is of order 2m if the
original system is of order m. However, for simplicity, we shall continue
to use m to denote the order of the augmented system . Note that, in the
augmented system, both fi and %i are independent (explicitly) of e, .

It will be assumed that all the Gij are stable and we shall denote their
gains by Yij' Introduce the functions
Fi(xl,...,xm) = xi-fi(yilxl,...,?i,...,yimxm)—vi
(where the ?i represent the norms of the inputs ui). Then&fa trivial extension)
of [3, proposition 3.£], the sets
M={x e R™: F.(x) =01}
i i

are (m1)-dimensional submanifolds of m:m. We also define

d
]

{x € R": F, (X)20 }

o
i

{XERm: Fi(x)j_O }

and let
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P—i)r\R-'-m | .

-

w* = gsup{ (

i=1

+
It is shown in [3] that w* = q(vl,...,vm) for some function q :RHL-R .
Then, we have
m
Theorem 4.3 [3]. If wk<w and q : €@ L -L, then the overall system is
i=1
stable. O

The above two results can be used in the case of small-scale highly
interconnected-systems. In the case of large-scale systems which consists
of such small-scale systems loosely connected together, it has been found-
that a graph-theoretic decomposition technique is sometimes useful (see [2],
[b]). We shall consider this approach in section 6, but first we shall
introduce the notions of graph and hypergraph theory that we shall need.

5 Graphs and Hypergraphs

The theory which we shall outline in this section can be found

mainly in [4]. However the notion of directed hypergraph appears to be new.
P

Definition 5.1 A directed graph G=(X,E) is a pair of sets X and E where
ECXx X, the airtesian product of X with itself, The set X is called

the vertex set and E the edge set of G, and if e€E then e = (xl,xz) can be
regarded as a directed line segment from x, to x_.

1 2

Let |S[ denote the order i.e. the number of elements of a set S,

Then

Definition 5.2 ‘ An undirected graph G' = (X',E') is a pair of sets
X',E' where

(5.1) E' ¢ {s ePx") : |s]|< 2}.

(P(X') is the power set of X').
The notion of undirected graph can be generalized to that of a
hypergraph by removing the condition |S|§_2 in (54). Thus

Definition 5.3 A hypergraph G'H=(X'H,E'H) is a pair of (finite) sets

such that



G v
7 ? ]
EHE?(X we e # @ for each e;€E',,
U e, = X',
]
B H
We can now generalize the concept of directed graph to that of
directed hypergraph by regarding an edge e of a hypergraph as being
partitioned into disjoint subsets €s8ys which can be thought of as generaliﬂed
vertices, and then a 'directed hyperedge' is an arrow joining ey to e,.

Thus, more formally,

Definition 5.4 A directed hypergraph GH = (XH’EH) is a pair of (finite)
sets such that

E; & Px) =Py .
If e € EH is a hyperedge of G, then e = (XI’XZ) for some Xl’x2€'5)(XH) and

Xl is called the initial vertex and X2 the final vertex of e, denoted

respectively ersep.

We shall now define a graph G, called the representative graph of

R
the directed hypergraph GH as follows; the vertices V

R of GR are in a one-

s, and so we can write V_ = E_ and

to-one correspondence with the edges of G R u

H

. T ; 1 2 g ;
R of GR joining the vertices v RV RG'V 1f and only if

1 2
g N O F 0.

there is an edge e R

It will be convenient to use the representative graph of GH for a
system since we can then use the standard decomposition theory for the system
graph [s ee, 6:[ 2

6. Decomposition Theory for the Overall System

In this section we shall generalize the ideas developed in Dﬂ to

[

the present case of nonlinearly connected systems. In order to generalize
slightly our results, we shall suppose that each of the nonlinear combining

elements fi is a sum of several ngnlinear functions. Thus
L1
(5.1) f.1 CHPPNN D E

; fij(xl,...,xm) .

1
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However, in a large-scale system each fij will not necessarily be a
function of all the inputs xl,;;;,xm. If fij depends explicitly only on
the inputs x, where LeL € {1,...,m }, we shall write
fij(xl""’xm) = fij(xL) .

Also, in the equation (6.1), if fi' and fi' depend explicitly on the

31 L
same variables x, we shall assume that their sum has been represented by
a single function in the summation on the right hand side. (This will

avoid multiple hyperedges in the interconnection hypergraph). We are now

in a position to define the interconnection (directed) hypergraph of the

system, as follows. The vertices of the hypergraph are in a one-to-one
correspondence with the nonlinear combining points of the system, of which
there are m. Hence the vertices can be taken to be the set m = {1,...,m}
of the first m natural numbers. The directed hyperedges afe subsets of
5)(1-11-) x?(-u-]') of the form
(L ,{i}) R 1<i<m

where L is such that there exists, in the expression (6{1), a nonlinear
combining function fij which depends éxplicitly on the inputs ) for 2&L
(and only those inputs).

We shall now need the concept of cycle in a directed hypergraph,

which is a sequence (el,...,en,e l=e1) of hyperedges of the hypergraph such

n+
that
Lemma 6.1 A directed hypergraph GH has a cycle (el,...,en,el) iff the

representative graph G_ of G-H has a cycle.

R

Proof 1f (eia...,en,ei) is a cycle in G_ , then el,...,en are vertices of

). # @ , the definition of G

e’ implies that there is

i n
GR and since (ei)F (

an edge in GR from e, to e

R

. The reverse argument is equally simple. [
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We can now use the decomposition theory described in[ 4 ].
The following definitions are required.

Definition 6.2 A diagraph (i.e. directed graph) is connected if, for

any pair of vertices v 2Vys there is a chian of directed edges joining

1

either vy to v, or v, to v,. It is strongly connected if there are chains

of directed edges joining both vy to v, and vy to ST (i.e. every vertex

lies on a cycle). A strongly connected component (SCC) is a maximal

strongly connected subgraph.,

It should be noted that we can define similar concepts for directed
hypergraphs, and by lemma 6.1 there is a one-to—one correspondence between
the SCC's of a directed hypergraph and its representative graph. Using the

results of [6], we can decompose a connected representative graph G_ of a

R
connected hypergraph GH as follows:
3 i
(a) Find all the SCC's Cl""’cu of GR
(b) Define a new graph GRC on y vertices (wl""’mu) (corresponding to

the components Cl,...,CLl of GR) such that (mi,mj)e. E(GRC) (the edge set of

R in Ci’cj respectively, such that (vi,vj)

or (vj,vi)E.E(GR). Clearly GRC is a tree

GRC) iff 3 vertices Vi’vj‘Of G

(c) Relabel the vertices of GRC such that its adjacency matrix is lower
triangular. If we continue to denote the new vertices by (ml,...,wu), then
we finally relabel the vertices of the SCC's Cl,...,CH‘such that those of

Ci have lower numbers than those of Ci l<i<p-1.

+1°

The adjacency matrix of GR is then of the form

A(;ﬁ = By 9 0 )
Ay Ay
: Co
A. ... A
ul Uy
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H
P‘ L]

Before proceeding with the decomposition of the general system we note that,

Denote the corresponding SCC's of GH by C?,...,C

following [G], the augmented feedback system of fig. 2 may be represented as

a nonlinear feedback system as shown in fig, 3. where Gj is the jth column of G,

T T T T T ge T T

G,.2 -t
: L (G| .
e | T G € '{3 |
y: : 2 Gl — 77 =
| Gom | !
: GovamPim |
7 z

Fig. 3.

Qe

and = diag (G!l,...,G_m),

2 5
= [Il,. o ,Imje‘&mm

where Ii is the mxm identity matrix with the ith diagonal element 1 replaced

> 2

by O (since in the augmented system e; does not feed directly back to the

input of ith loop), and

~ ~

fi(ki) = fi(ki,ki+m,...,k )

i+m(m-1)

~ -

. .th
where ki is the 1~ row of K¥y.

Returning to the augmented nonlinear system we have seen that its

representatice graph GR can be renumbered so that its adjacency matrix is

block-triangular. Refering this back to the original hypergraph it is easy

to see that the equations (3.1) become
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- " ] e . © e | ¢ 7
%
311 fl G11 0 0 e1 \ u1
. . c c .
6.2) | S| _ - Gy G, 0 .0 .
© £C c© c© c oC / &
L M [ u Ml u2 U | Loy u
4
where, for a>8 , (o, B= l,...,u), ‘
c
Vu = UéeIUeF)
e€C
a
~ = wvector (u.) c
Ya Y ieV_ (of dimension m )
c
e, = vector (ei)ievc
a
c .
Ga = matrix [Gij]ievz,je'v°
£€ = ctor (f.) (o f
a ve i ieVd of nonlinear operators at the

vertices of Vg .
It is evident from (6.2) that our original system may now be

decomposed into uy subsystems. At the 'top' of the hierarchy is the sub-

system with system matrix G;l v 1o
& . @8 g B c
(6.3) e f1 (Gllel) + uy

and, by construction, this system is strongly connected. If we can

derive stability conditions C, for this system, then, under these conditions

1

- g oy
W e @ {1} e @ {13
Joul Jwl

The next subsystem in the hierarchy is

g _ .8 & c <
(6.4) e, f2(G21el s G22e2) + u,

Assume that all the off-diagonal blocks Ga ,0>8 have finite gain and

8
replace the subsystem (6.4) by the system
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(6.5) e = £ (v, » Cyoep)
where v, is the 2m2—vector (G21 1 " ;) and
E;("Z’Gzze;) = £,(G51e] »Gppey) +uy

Now the system (6.5) is a strongly interconnected éystem of the type (6.3),
except that now, not only are the feedback elements nonlinearly connected,

but the input v, also enters the system nonlinearly. Also, if we have

2
conditions 02 for the stability of the 'system (6.5) (i.e. such that
2m1 . m,
v, e & {L} < e, @ $L}) then under the joint conditions C1u02
i=1 i=1

we have that

c m1+m2 TRy,
(ui s u2) € {, L =>(e§ . e;) € 42} {LE
i=1 i=1

Continuing in this manner, it is clear that, if we can obtain stability
conditions on a general strongly connected nonlinear system whose inputs
enter nonlinearly, then the subsystems of (6.2) defined by the operators
c y ; . :
fi can be considered seperately, and, extending the above notation in an
obvious manner, we have, under the condition C u...uCP , the stability condition
m U
(ul,---ﬂl)e e $LY ==>-(e1,-~-,e) e ® L m= ] m)
i=1 i=1
for the overall system.
We have seen, therefore, that the stability of the overall system,

which was reduced to one of the form (6.2) can be characterized in terms of

the stability of strongly interconnected systems of the form

(6.6) e = f(G*e, u)
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where £ is a general nonlinear function and u is the system input. We
could use the results of section 4 (which can easily be generalized to such
systems) to answer stability questions for the system (6.6) or we can
decompose the hypergraph of this strongly interconnected system into its
spanning tree and its complement. This will now be considered in section 7.

7. Decomposition of a SCS

i

In this section we shall consider a strongly connected system of the
form (6.6) and derive a stability condition for this system by decomposing
its corresponding hypergraph GH into two parts. The decomposition of GH
is obtained as follows: we successively remove hyperedges from the graph
which do not disconnect the hypergraph. This process 1s continued until
no further hyperedge with this property can be found. We will then be

left with a hypertree and a collection of hyperedges which have been removed

' . "o 1
from G,. Let VH be the vertices of the hypertree and put VH VH\VH

H
where VH is the vertex set of GH. Therefore, if we let
f1 = vector of nonlinear combining functions of dimension m
each element -corresponding to a vertex in Vﬁ (m1=|Vﬁ!)
f2 = vector of nonlinear functions corresponding to vertices in
T = 11
Vi (of order m, |VHI).
T
G.. = (G..).: i
11 ij'ije VH
T
G = (G, .), ’
2 il iz
1 ijfie vy )AEVH
T
Gy = (B .},
2% eV ey"
B
T A
Gya = (Gi5)4, 56w
H
e, = (e.), ., _
1 i 1£VH > e, (Ei)iev"
H
u = (u-).. ] —
1 1 1eVH > U, = (ui)



.

The equations of the system can therefore be written in the form
T T
= 1T % *
oy ™ E LG "y 5 Cpgtey 5 By

T T
P % *
e, = £,(Gy %e; , Gyy*e, , uy)

However, because Vé is the vertex set of a tree and we are considering the

augmented system, we can arrange that G¥1

(i.e. has zeros ahove and on the main diagonal). Hence ey is just a function
— i

is strictly lower triangular

of u, and eys i.e.

T
= *
e £..(G e2,u1). (e

11 Ll 12 ))

= (911,...,e1m

1

(By a slight abuse of notation we shall use the same letter fl for this

1

function.) Therefore,
T
T

T
= & * .
e1p™ By (fy1(Gpp%essu)s(Gry)g0es, 5 Gyt suy)

Continuing in this way, we can express e, as a new function.g1 of e, and u_.

1 Z 1

Thus,

(7.1) e, = gl(ez’ul)

(g,, of course, also depends on the subsystems G). Therefore, we have an
1

equation which just depends on e namely,

LT
S i
= % *
(7.2) e, fz(G21 gl(ez,ul), G22 ez,uz).

It is clear from this development that if we choose the edges
which are removed from the original hypergraph to belong tc a minimal essential
set (i.e. a set with the least number of elements which will reduce GH to a

tree), then the dimension of e, in (7.2) will be a minimum. The stability

2
problem for a general strongly connected system can therefore be considerably
reduced and is equivalent to solving that for equation (7.2), to which can
be applied the methods of section 4,
8. Conclusions

In this paper we have generalized the theory of [Q] to take account

of nonlinear combining elements. An example of such a system can be found

in [2] , where a discussion of elementary graph theory is presented. The
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natural setting for the present situation is that of hypergraph theory
Ceof. [ﬁ]) which is used here to give a structural model of the system
in topological terms. This model can then be decomposed using first the
strongly connected component decomposition and them, for each such subsystem,
a minimal essential set is found. The latter procedure was used, in effect,
in [z] although there the full significance of the procedure was not
emphasized. The subsystem thus obtained can be approached with the theory :
such as in [5] , and stability conditions for the overall system can be

developed.
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