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AN ANALYTICALLY-DERIVED, PARAMETRIC TRANSFER-FUNCTION
MODEL FOR IDEAL PACKED, BINARY DISTILLATION COLUMNS

PART I

‘Summary

Partial differential equations and boundary conditions are derived
- for the large- and small-signal behaviour of compositions in an ideal. |
symmetrical spatially-continuous (packed) distillation column separating
a binary mixture. A precise parametric transfer-function matrix (T.F.M.)
for the system is derived completely analytically so allowing the calcu-
lation of the parameters of the T.F.M. directly from those of the plant.

It is shown that the correct choice of input and output vectors
yields a completely diagonal system (i.e. the system is Dyadic in structure).

The investigation reveals important differences between the behaviour
of packed and tray-type distillation columns examined in companion papers.
In particular, important non-minimum phase effects are shown to occur in

some packed columns that are not found in tray types.




AN ANALYTICALLY-DERIVED, PARAMETRIC TRANSFER-FUNCTION
MODEL FOR IDEAL PACKED, BINARY DISTILLATION COLUMNS

PART I

Introduction

An obviously desirable though not easily attainable objective in
any process modelling exercise is to obtain a parametric transfer-
function matrix (T.F.M.) governing the small signal behaviour of the
pérticplar process in question. Such a medel has two important
assets:

ka) it is immediately usable in modern techniques for multi-
variable control systems design (which are based in the frequency
domain) ,
and (b) Dbeing a parametric model, the effects on control of changes
to the constructional and operational parameters of the planf can be
immediately assessed\without the need for reidentification.

The calculation of parametric T.F.M. models however requires the
derivation and analytical solution cf the linearised process eguations
for sinusoidal inputs. The broad class of countérflow processes to which
distillation belongs involves spatially distributed heat and mass transfer,
(and sometimes chemical change), so that the process equations are either
differential equations of very high order or partial differential equations
(p.d.e's). Furthermore, and perhaps more importantly, such processes are
of a multistage type with difficult boundary conditions pertaining at the
interfaces between stages. Chiefly for this reason, whilst analytical
dynamic solutions have been derived for the simpler single-stage processes’
(e.g., liquid/liquid heat exchangers andsolvent extractors),processes
of two or more stages such as distillation columns (and the more difficult
single~stage processes) have defied attempts at complete solution. Despite
rvigorous investigations of distillation over more than 20 years,resort has
ultimately been made to part-empirical solutionsl'z, black-box testing or
one-off simulation yielding results satisfactory to only one column under
one set of operating conditions. This challenge has therefore provided one
important motivation for the research here reported in which a T.F.M. model
is derived for the normal 2-stage binary column by completely analytical
means so that the T.F.M. parameters are directly related to adjustable plant

parameters. The only approximations involved are those normally associated



with linearisation. Symmetrical construction and operation, which generally
implies good plant design,have been assumed.

An equally important inspirationhas been the research of Owens3 on
multivariable process model approximations used as a basis for control
system design. His control design rules for multivariable first-order lag
processes, requiring knowledge of only the high-and low-freguency gain matrix,
have already been successfully applied jointly by Owens and the present author (J.B.E)
to simulated heat exchangersand columns. In establishing the limits of appli-
cability of the completely analysable heat exchangersnowever it was discoveréd
that lobes in the true system frequency response, resulting from travelling
waves in the process, cause some deviation from the first-order lag model
behaviour and, under high controller gain, oscillation or instability could
result. A multivariable structure involving lags and delays is therefore
necessary to represent the process more precisely so leading to the concept
of a multivariable lag-delay model for more general application. Before
formulating so general a structure and for rigorous testing of such a model
later, it has therefore been necessary to examine a much more complex counter-
flow process. The binary distillation column has here been chosen with these
objectives in mind.

The present paper is devoted to packed distillation columns and is
concerned with the analytical derivationof the parametric transfer-function
matrix model. A second paper5 deals with the interpretation of the model for
predicting system behaviour. A third and fourth paper (in this companion
set of four) provide a similar treatment of tray-type distillation columns.
Important differences in the behaviour of the two types of column are
revealed .

The columns are idealised in terms of the mixture separated, adiabatic

|
operation, their symmetrical construction, operation and feed conditions and
through the neglect of all dynamics other than those directly associated with
composition change. Model elaboration may be undertaken in later research but,

in what the authors,believe to be the first ever accurate, analytical solu-

tion for composition change, these idealisations have proved to be essential

aids to model development and model interpretation. It is believed that the

column dynamics.

1. Large signal model

The process is illustrated diagrammatically in Fig. 1 which shows the

model and its derivation expose the primary, underlying driving forces of
various liquid and vapour flow rates through the system. It will be noted



that heiaht h' is defined from an origin at the feed point for preliminary
analyses. Filg. 2 shows the cross flow taking place from the liguid to vapour
streams within a thin conceptual cell of thickness §h' at a height h' = ndh'.

1.1 Vapour/liquid equilibrium

If ¥,X are the compositions+ of the vapour and liquid in the rectifier
respecitvely and Y', X' those in the stripper, then the equilibrium vapour
compositions Ye,(Ye'), for a given liquid composition X, (X') are governed
by

B =Y (1-X)/{X(1-¥)} and § = Ye'(l—x')/{X‘(l—Ye')} (1)
where B is the "Relative Volatility" which is constant for an ideal mixture
(i.e. one obeying Dalton's and Rayoult's laws). The equilibrium relationship,
(1), takes the form shown in Fig. 3 in which straight-line approximations for
the stripper and rectifier are also shown. The symmetry of both the true
equilibrium curve and its piecewise linear approximation about the -45° line

is noteworthy.

For symmetry the equations of the straight-line segments are

Ye' = aX' , for the stripper (2)
and Ye = X/o + (a-1) /o , for the rectifier (3)
where B>a=1+¢ , E >0 (4)

1.2 Large-signal partial differential equations

Considering the nth rectifier cell shown in Fig. 2, material balances

on the vapour and liquid streams for the light component give

H Sh' _E Y(n)= v {Y(I‘J—-l}—Y(l’l)} + k {y (n) —-Y(n)}cSh'
v dt ¥ r e

(5)
Bosht S XM_p fxmen) - xm)? - k(Y () - () e

where HV and Hl are the vapour and liquid capacitances p.u. length and

kr is a constant coefficient of cross flow. As ©6h' is made infinitesimal

we therefore obtain the following p.d.e.'s governing the truly spatially

continuous procéss (using egn(3) for the second p.d.e.)
Hvax/at - vraY/ah' = kr(Ye - Y) -

~H adY /3t + L 03Y /3h' =k (Y - Y)
g e ¥ e r e

Similarly, for the stripper (h' < 0) we obtain

Compositions expressed as mole fractions of the lighter component
in the binary mixture.
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- Hﬁ'ax'/at o+ LSSX'/Hh‘ &= kz(X' = Xe‘)

(7)
H "adX "/ot + oV 39X "/oh' =k (X' - X ")
v e s e S e
where HR" Hv' are again liquid and vapour capacitances p.u. length and
kS the cross-flow coefficient for the stripper and
A
i = '
X, ¥'/a (8)
1.3 Preliminary conditions for symmetry
If the system is built and run such that nominally
= 0], L = aV
Vr r ! S % S ‘ (9)
k =k =k (10)
s b o
= : o ) {
L =V =V ; (11)
S * ; ,

v v 1 .
v _ (L2
g~ = Ry = Hz }

then cleariy the system becomes highly symmetrical, p.d.e.'s (6) and (7)

reducing to

Hl Y/t + V' 3Y/sh! = k(Ye - Y)

- Y t + VoY B = k(Y -Y

H, 3 e/a d e/a (Y ) (13)

-H, X'/t + VOX'/3h' = k(X' - Xé}

X'/at + VpX'/ah' = b= 3

H) 9 e/a ) e/oh k(x Xe)

1.4 P.d.e.'s in normalised space and time
Expressing normalised distance as

h =h'k/V (14)
and normalised time as

T = t k/H2 (15)

then the p.d.e.'s (13), for the symmetrical system,reduce to the simplified

form
c ¥/9t + ¥/dh ol T
- = - v
aYe/aT & BYe/ah Ye (16)
- X'/gr + 9X'/ph = X' - X!
Xl‘ + 1 8 _ ¥ == Xl
cd e/BT axe/ h X ’
where c = Hl/H2 (17)

1.5 Feed-point boundary conditions

Considering a thin cell at the feed point then it is clear that as its



= B -

thickness Sdh' - 0 so the cross-flow from liquid to vapour and the accumulation
terms vanish as the area for transfer and the cell volume - O. We are there-

fore left with, in general

V. _Y'"(0) + F =z vV Y(0)
s v r

(18)

and L X(0) +F % T, X' (0)
r 2 s

where z and Z are the compositions of the feed vapour and liquid (see Fig. 1).

1.6 Terminal boundary conditions

1.6.1 Accumulator

At the top of the rectifier, as shown in Fig. 1, liquid is simply con-
densed'from vapour at composition Y(Ll), where Ll is the nermalised recti-
fier height and returned at flow rate Lr to the column. Hence the top

boundary condition is

dX (L_)
i = - (L +
53 % L Y(Ll) ( b D}X(Ll)
where Ha is the constant capacitance of the accumulator and D the distillate

rate. For a constant volume within the accumulator however, as Fig. 1 shows,

V =L +D (19)

so that

& {5) -
N l. = Vr{Y(Ll) X(Ll)} . (20)

and'using (3) to eliminate X(Ll) in terms of Ye(Ll) we obtain
dy (L)

e i
= - {1~ 21
B O gp v [ {1-v )z )}-{1-v (@) 1] (21)
1.6.2 Reboiler
In the reboiler, at normalised distance L2 below the feed point,

(i.e. at h = —L2), we have, if the reboiler liquid is in equilibrium with

dx' (-L_.)
- @ 2
b dt

its vapour,

]

LSX‘(—Lz)—(VS + WY (—L2)

but
I, =V +W (22)

so that, eliminating Y'(—Lz) using equation (8), we obtain the lower boundary

condition in the form:

dx ! (-L,)
H — = X" (= - oX'(-L 23
b L, ( L2) o e( 2) (23)
where Hb is the fixed capacitance of the reboiler.

Clearly there exists a strong symmetry between the accumulator and reboiler

boundary conditions (21) and (23), if L is set equal to V as specified by (11).
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1.7 Steady-state solution of the symmetrical system

1.7.1 Feed conditions for symmetry

It follows implicitly from overall mass balance considerations

and special case equations (9) and (11) that

Fv = Fg = F vae (26)

and from (24) in conjunction with equations (4), (9), (11), (19) and

(21) it follows also that the columm must be run such that nominally

b= W = F = ELr e (25)

If the feed compositions are also specified such that

i z = 1=2- ci 5 (26)

i.e. the feed coordinates lie on the -45° lime in Fig.3 and if the

feed mixture is in equilibrium such that

zZ = ab ST T
from which we deduce

Z = 1/(l+w) sree (28)

then the feed boundary conditicns also become highly symmetric to one

another since they may now be expressed thus:

i

Xe'(O) + {1-Y(0) } 2/(a+1) _ wece: (BT

2/ (a+l) saalC30)

and {I"YG'(D)} + X' (0)

1.7.2 Steady-state solutions

Ignoring all time-derivatives, steady—-state solutions for the
normalised system p.d.e.'s (16) may be obtained subject to the

special case boundary conditions (21), (23), (29) and (30) as shown

in appendix 1, producing the following results:

ay ax !
Y e ax’ e
= = = = = 2 = ta t &8s 3]_
ah oh 3 h 3h L (31)
where G = 2e/{(g+l) (2el4q+1)} ...(32)
provided L., = L, = L ¢ v« (33)

|

(i.e. provided rectifier and stripper are of equal length).



p—_—
Hence Y(h) = Y(0) + Gh : c s (38)

Y (h) = Y (0) + Gh (

e e :

where Y(0) = 1 - 2(a+el)/{(0+1) (2eL+a+1)} )
{ ... (35)

and Y (0) = 1 - 2(1+eL)/{(a+1) (2¢L+a+1)} |

Furthermore it is shown in appendix 1 that the following symmetry

exists between the compositions in the stripper and rectifier, viz,

X'(-h) 1 - Y(h)

il

@ ... (36)
1 -Y (h) |
& _

i

X '(-h)
e

The 'steady-state composition profiles are therefore linear in h and

are shown geometrically in Fig.4.

The steady-state large-signal equations and their solutions stated
above are essential to the parametric modelling of the small signal
behaviour of the system which is considered in the next section of

this report.

2. Small signal model

The small signal p.d.e.’'s for the system may be derived by
implicit differentiation of the general large signal p.d.e.'s (6)
and (7). Denoting small perturbations by lower-case letters we

i

|

\

!

|

\
therefore obtain

3y /3 sy/ah' + (3Y/3h")v = - j
H dy/0t + V_oy/sh' + (3Y/3h")v kr(ye y) ;
P s (5D
-] Ty t+L adv /ah'+(3Y /Ah)al = k -
H = 3e/a L ody /3h (3 /3h Ja kr(ye V)
~H '8x' /6t + L SO ¢ B/ s k(g% ) 5
L s S e

5 ... (38)
H,'adx "/804V udx "/on"+(3X "/oh)av = k_(x"-x '} |
e 5 g = S e

Regarding the upper-case symbols as quasi-constants and inserting
the conditions for eymmetrical steady-state solutions produces the

simplified system:



w e
H dy/dt + Vay/dh' + kGv/V = k(y_-y)
_Hzayelat + vaye/ah' + kG /V = k(ye—y) .Z (395
—Hzax'/at + Vox'/ah' + kGL/V = k(x'mxe') é o
Hlaxe/at + Vaxe'/ah' + kGov/V = k(x'~xe’) -

recalling that 3/8h' = (kd3/3h)/V ... (40)

2.1 Normalising small signal p.d.e.'s

Expressing the perturbation derivatives now with respect to
normalised distance h (=h'k/V) and time =t (=tk/H2) in a manner similar

to the large signal p.d.e.'s (16) the system further simplifies to

c 3y/3t + 3y/ah + Gv/V

il

<

!

<
—d

- aye/ar + Bye/ah + aGL/v

il

<

|

~
\'(’_'

wewiCH1)
- ax"/at + ax'"/ah + GL/V = x'-x

D

c axe'/ar + Bxe’/ah + qCu/V = x'-x -
recalling that ¢ =‘H1/H2,

2.2 Inverted U=-tube model

As will be demonstrated,solution for the terminal perturbations
(i.e. perturbations at the accumulator and reboiler ends of a two
stage process such as the column under investigation) is greatly
simplified by conceptually bending the process into the form of an
inverted U-tube as shown in Fig.5 redefining the origin of h and h'
now at the reboiler end as shown rather than at the feed plate.

This clearly has the effect of reversing the sign of the spatial
derivatives in the ractifier so that, in terms of our newly defined h,

equations (41) become modified to

e 3y/iv - 3y/dh + Gv/V . 3
!
- 3 3Tt = oy ah + aGy/V = y - \
cye/d a}e/ aly/ ¥ Y A -
- sx"/at + #x'/3h 4+ GL/V = x‘~xe' '
= x'-x'

c axe'/BT + sx '/oh + aGu/V =
el

o



Ignoring initial conditions and taking Laplace transforms of (42)

in p with respect to 71 and in s with respect to h gives

(1+cp-s)y - ;e + Gv/Vs + y(0) = 4 )
~(l+p+s)y, +y + G2/Vs +y_(0) = 0 B e (43)
-(l+p-s)x' + ;e‘ * GL/Vs = x'(0) = O {
(1+cp+s);e' - x' 4 uG;/VS = ;e‘(o) = 0 :

Where superscript ~ denotes transforms w.r.t. h and T and ~ w.r.t. |

T only.

It is important also to note that §(O) etc now refers to variables

at the ends of the columm not at the feed point.

In the present study attention is to be confined to columns which
are not only spatially, but also dynamically symmetrical. This
demands the equality of the vapour and liquid capacitances H1 and H2

so that, in this special case
c =1 e (44)

implying high pressure distillation.

2.3 HMatrix representation

Great advantage may now be taken of the system symmetry permitting

the very simple matrix representation of the system which in conjunction

nal composition variations. Being so straightforﬁaéd, the solutions
vield considerable insight into the underlying cause/effect relation-

ships which drive the columm behaviour.

In particular, if input and output vectors are defined thus

y-x') y -x ') v+l
- e e G
q = , T = and u = 7 sas (48]
- { T g5 ! - -
y+x ye Ae v J
then, if ¢ = 1, adding and subtracting analogous pairs of equations

with the inverted U-tube concept, leads rapidly to solutions for the termi-
in set (43) clearly produces the simple system



-
(l4p-s) ¢ -~ = -5 ‘u = q(0) oo (46)
—(l+pts)r +q = as | ['1 1} u - £(0) v » G4

2.3.1 Terminal boundary conditions

For small perturbations these are obtained by implicit

differentiation of the general large signal boundary conditions (21)

and (23), giving in terms of the newly defined height origin,

Ha o dye(O)/dt Vr{y(O) - uye(O)}

and H dxe'(O)/dt

! L {x"(0) = ax "(0)}

. Recalling that normalised time T = tk/H2 and that nominally

Vr = LS = V for symmetry then

H ok dy (0)
e

H

- ‘
v (0) uye(O)

and x'(0) - axe'(O)

so that, in terms of Laplsce transforms in p, we have

h

(0) u"lha(p) v (0)

A%
7
e

and x ' (0)

e

u‘lh'b (p) x* (0)

8)

where the accumulator and reboiler transfer—function ha(p) and hb(p)

are given by

h (p) = 1/(1+4T ) ’
“ ® > ... (49)

b (p) = /(14T p) .

where T o= HK/(H,V) )
- 4 - ’ ...(50)

L = k & 1 H

and Ib Hb“/aﬂzlu) 5

If again we assume symmetry such that
A

yoo= i = wd 5 LIL
h_(p) hy (p) h,(p) (51)
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then from (45) and (48) it is clear that the terminal boundary

conditions may be expressed in the compact matrix form

- e :
x(0) = o "h (p)g(0) ... (52)

so permitting the elimination of, say, iﬁo) from (46) and (47

g e

Doing this and then obtaining separate expressions for q and
yields
2 ; - l+p~a+s -

(s —qz)—l{(l+p-°heu“1+5)g(0)+s_l u } wwa UBR)
l+p+a+s

8

and
: 1-(1+p) a+os } B
e e
(52_q ) l{ I_]."‘hel}'. 1(1_4‘}))4-]’19& 1&_ O) +g | E }
' ) t 1+(l+p)a~asJ

|H e
il

- (54)
where q is an important irrational function of Laplace variable Ps
being given by

2 2
q = p +Ip ¢+ s +:{55)

Inverting equaticns (%3) and (54) back to the h,p domain from the

s,p domain, with the aid of Laplace-transform tables, gives

< lep=h o
q(h) = 4{—-~maﬂfﬂw4c1nb g h + cosh q h} q(U)
( sirn
1+p -0,) Py ilei®) & sinh gh i
( 9 ‘ u -
q 9
and
- ~1
. ‘ Li=h o “(l+p) | -1 ”
r(h) = { < : — sinh gh + h_a “cosh qh} g(0)
[ {1—(%t_lﬁf (cosh gh-1) 4 Qﬂjggﬂllﬂl .
+r q u (57)
L&&;Ew beoah, ahe1) ~ S}.iiail,ﬂ_ﬁ J

. q‘
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Now &(0) is the vector of combinations of terminal compositions
and is therefore the output vector of prime interest in an
investigation of column performance since it relates to column
outputs in the process engineering sense of the word. It can
clearly be calculated by setting h = L (i.e. the new feed point
coordinate) in (56) and (57) and substituting known boundary condition
relationships between &(L) and ;(L). These boundary conditions are
therefore derived and substituted in the following section of the

report.

2.3.2 Feed boundary conditions

* Implicit differentiation of the general large~signal boundary

conditions (18) for constant feed flows and compositions yields

0

Vg y'{Q) - v y(0) + {Y'(0) - Y(O)}v

and Lr x(0) - Ls x'(0) + {X(0) - X' (0)}2 0

Replacing x(0) and y'(0) by ayP(O) and axe'(O) {see equations (3)
and (8)} and substituting the steady-state flow conditions for

symmetry {equations (9) and (11) 1 gives

]
(@]

xe'(O) - y(0) ~ {¥Y(0) - ¥Y'(0)}v/V

1
]

ye(O) - x"(0) + {¥(0) - X'(0)}e/V

and using steady-state solutions (31) to (36) for Y(0) etc finally

produces
y(0) = = '(0) - (&/2)Gv/V

x'(0) = yE(O) + {e/2)Ge/V

Now these =quations are written in notation pertaining tec the
straight column model rather than the inverted U-tube model for
which we must substitute h = L for h = 0 so transforming the above
equations to read

y(L) = x "(L) - (e/2)Gv/V
N Y ws.(58)
'_‘)‘ . (L) + (E /‘2) Gy /V )
{

—

%V ET)

1
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Adding and subtracting equations (58) clearly produces the compact matrix
equation -1
q(L) = (L) - (5 u (59)
2 = o 2

i
which is readily substituted into general solutions (56) and (57) to permit
calculation of E{O).

2.4 Calculation of output composition vectors

Substituting h = L in matrix equations (56), (57) and, using (59),
the terms of output vector é}o) are now calculated individually.
For él(o) we note from (59) that
g + I + a, =
ql(L) rl(L) (8/2)ul 0

P 2
so that, recalling that g = p(2+p)

_ {(OL--].)(f.:osth—-l)};J_1 —(l+a)(sinth)q_l - £/2} o (60)
1

g, (0,p) = - =
{(l—heu ) (sinhgL)gp = + (l+hea )cosh gL}

for &2(0) we note from (59) that

q2(L) - r2(L) + (g/?}uz = I}
so that

- {{oa—l}p(costh—l)q_2 —(cz+l)(sinlrqu)c_[_l - e/2} N

{ (1+h aml) ;
e

q,(0,p) - =
(sinhgL)pg ~ + (l—hea )cosh gL}

2(9) (61)

3. The transfer-function matrix and inverse Nyquist loci

Choosing &l(h,p) and i2(h,p) as the system outputs and ﬁl(p) and ﬁz(p)
as the inputs then, from equation (56), (57), (58), which contain only
diagonal coefficient matrices, and it is clear that the system dynamics may
be described by

d(h,p) = G(h,p) i(p) (62)

where G(h,p) is a diagonal transfer-function matrix (T.F.M), i.e.

)]
gl (h,p) r 0

63

G(h,p) = —
o v 9,(h.p) J

Alternatively and for control design, purposes, more conveniently, the

*
dynamics may be defined in terms of the inverse T.F.M. G (h,p) as follows

& *
u(p) = G (h,p) g(h,p) (64)
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where
*
(gl(h,p) ' o} }
E*(h:P) 4 E_l (h,p) = * s
0 , 9, (h,p)

Because of the diagonal structure, the relationship between the direct and

inverse T.F.M. elements are simply

*
gl (h:P) l/gl (h;P)

and

*
gz(h,p) l/gz(h,p)

Confining attention to the accumulator and reboiler ends of the column

by choosing h = 0, it therefore follows from equation (60) and (61) that

*

{(l—hea_l)(sinth)qphl + (1+hea_l)costh}

g,(0,p) = = -1 (66)
{ (a-1) (coshgL-1)p ~-(1+a) (sinhgL)q = - e/2}

and {(+h oY) (sinhiqripg ~ + (1-h & o)

9,(0,p) = £ = ke

{(u-l)p(costh—lfq—2 - (u+l(sinth)q_l - e/2}

Fig. 6 shows the system's inverse Nyquist locus of g;(o,jm) computed from
equation (66) for the normalised plant parameter values e = 0.75, (o = 14757 5
L= 2.8 and Ta = Tb =5.0 whilst Fig. 7 shows the locus of the same element
for a longer column having the parameters ¢ = 1.0, (a = 2.0), L = 5.0 and
again, Ta = B =5.0. Figs. 8 and 9 show the locus shapes traced out by
g2(o,jm) for the shorter and longer columns respectively.

All four traces exhibit loops resembling those resulting from travelling
waves encountered in heat exchanger analysiss’g. Like the case of the ligquid/
liquid counterflow heat exchanger. The basic locus shape, disregarding the
superimposed loops, is however, similar to that of a first-order lag (a+bp)_l
i.e. a vertical étraight—line in the case of Figs. 6,8 and 9 indicating that
a simple lag-(or, for higher performance controller synthesis, a simple lag-
delay) , structure might provide a satisfactory process approximation as with
simulated tray-type columns. Unfortunately however, the behaviour of gl(o,p)
for the longer packed column (Fig. 7) does not accord with the behaviour of
a first-order lag due to the encirclement of the origin by gz(o,jm) suggesting

non-minimum phase behaviour in this case.
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4, Discussion and Conclusions

A transfer-function matrix (T.F.M.) model has been derived for a
symmetrical packed binary distillation column completely analytically
with the result that the model parameters are all expressed as
simple functions of the plant parameters, namely a, the initial
slope of the(%éﬁﬁﬁgised equilibrium curve, L, the normalised
length of each/two column sections and T the normalised time-
constant of the terminating vessels (the accumulator and reboiler).
The model is expressed in terms of normalised frequency p, and
normalised distance h, from the top and bottom of the column.
(Conversion of normalised to actual distance requires multiplication
by V/k and normalised to actual time by H/k, where V is the molar
vapour flow rate, k the evaporation constant p.u. length and H the

molar capacitance of the column p.u. length for liquid Or vapour).

The process T.F.M. is found to be completely diagonal at all

frequencies if the selected output vector is
am) = [y - x'm) , y) + x'm]"
and the selected input vector is
w = (6w [y, -0)]"

where y and x' are the vapour and liquid composition changes in
rectifier and stripper respectively, v and & are changes in the
applied vapour and reflux rates and G is the normalised static

composition gradient through the columm. In other words,

u(p) = G*(h,p) q(h,p)

where inverse T.F.M. G* takes the diagonal form:

fg,%(h,p) , O
G*(h,p) =
0 gz*(h,p)

This is an important result for the achievement of noninteracting

control and is in broad accordance with empirical findings reported

: , . 1
by some earlier researchers hy gk and earlier amalytical 0 work by the

present author on tray distillation columms. Here the relationship

is rendered precisely for the symmetrical column and it is reasonable




& Jf

to suppose that small deviations from symmetrical operation would introduce

small, possibly unequal, off-diagonal terms in the T.F.M. without serious

detriment to controller performance. In situations of gross asymmetry
between rectifier and stripping sections, the column would probably be

better analysed as a single-stage process: a much easier task than the two-

stage analysis reported here.

The derivation of gf(h,p) has been greatly aided by the use of the
"inverted U-tube" representation of the column particularly for terminal
composition changes which are, of course, of prime importance. |

The inverse T.F.M. elements gI(h,p) and g;(h,p) are found to involve
hyperbolic functions of complex frequency p that produce loops in the inverse
Nyquist loci resulting from travelling-wave phenomena in the column. From
the loci computed it would appear that the composition "tilt" gain gl(o,o)
can change sign, being positive for loﬁger columns (in accordance with
previous experience of tray-type columns) but becoming negative for shorter
columns. Unlike tray-columns, the gain gl(o,p) at high freguency is negative
for all packed columns suggesting non-minimum phase characteristics in the
behaviour of the taller plants.

These preliminaxy deductions made from the derived parametric model
suggest the need for caution in applying approximate low-order transfer-
functions to column dynamics for the purpose of control system design. A
fuller investigation of the implications for column behaviour to be drawn
from the derived model is presented in a companion paper3.
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7. List of symbols

n ™ R

n =2 o
]

G

G*
*
G

% *
g]. ’gz

E %

(=
HZ’HR ( HZ)
= T

Bt A
h!
sh'

h
ha(p),hb(p)

L (<L) ,L_,2

initial slope of equilibrium curve approximation
relative volatility of mixture

ratio of rectifier vapour—/stripper liquid capacitance
molar distillate rate

molar feed rates of liquid and vapour = F, where equal
normalised spatial composition gradient in steady
state

transfer function matrix (T.F.M.)

inverse T.F.M.

inverse T.F.M. of multivariable first-order lag
approximation

diagonal elements of G*

diagonal elements oflgﬂ*

liquid capacitances p.u. length of rectifier and
stripper

vapour capacitances p.u. length of rectifier and
stripper

distance along column (measured from feed point in
Section 1 and from ends from Section 2.2)

length of small cell of column

normalised distance (h' k/V)

transfer functions of accumulator and reboiler
{=he(p) where identical}

unit diagonal 2x2 matrix

rectifier and stripper coefficients of cross-flow
{evaporation) p.u. length (=k where identical)
controller gain matrix

diagonal elements of K

lengths of entire rectifier and stripper (=L' where
identical)

normalised value of L'

molar flows of liquid in rectifier and stripper and
small changes therein

cell number

Laplace variable for transforms w.r.t. T



A=l

IR

(p2+2p)0'5

vector of difference and total of vapour and liquid
composition changes

vector of associated equildibrium values

Laplace variable for transforms w.r.t. h

time

normalised time (=tk/H2)

normalised time-constants of accumulator and reboiler
(=T where identical)

vector of total and difference vapour and reflux
rate changes

molar flows of vapour in rectifier and stripper and
small changes therein

molar flow rate of bottom product

liquid compositions (mol fractions) in rectifier
and stripper

small changes in X and X'

Ye'/a

small changes in Xe'

vapour compositions in rectifier and stripper

small changes in Y and Y'

Xe/a

small changes in Ye

feed liquid composition

feed vapour composition

superscript denoting Laplace transforms w.r.t. h and X

" n 18] LA T T Only
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Appendix 1

Calculation of steady-state composition profiles

For the symmetrical colummn, this involves the solution of
p.d.e.'s (16) subject to the special case boundary conditions

(21), (23), (29) and (30), ignoring all time derivatives.

Hence, setting Q(h) = 1-Y(h) ... (Al
and Q (h) = 1-Y (h) .. (AL,
e e
we have to solve
dQ/dh = QE_Q i , 0 f h f L
: dQe/dh - Qe_Q ... (AL,
' - L '
dXx'/dh X'-X_ }, L <h<0
dX "/dh = X'-x !
e e
, 1f L1 = L2 =L
subject to QL) = aQ_(L) ..
X'(-L) = axe’(hL)
oYy 4 oo = 4 ;
and X' (0) + 0) = 2/(a+1) nr

Q(0) + X'(0) = 2/(a+1)

It follows immediately from the two pairs of d.e.'s that

constant

dQ/dh dQé/dh S ¢

... (AL

If
]

and dX'/dh dXe'/dh = @' constant

Now from the second pair of boundary conditions (Al.5) it is

clear that

Qo) - Qe(O) = X'(0) - “e'(O) ... (A1,

so that, from (A1.3), (Al.6) and (Al.7) it follows that

G = G ... (AL

so yielding equation (31) in the main text.

From the system symmetry it is clear that

Q(h) = X'{(~h) and Qe(h) = Xe'(-h) s o G

so yielding equation (36) in the main text.

D

|

.6)

7)

8)

9)
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Calculation of G
From (Al.3) and (Al.6)
G = Q- Qe = Qo) - Qe(O) ...(A1.10)

and from (Al.5) and (Al.9) we get

Q (0) +Q(0) = 2/(a+l) s CAL2 1)
so that, eliminating Qe(o) between (Al.10) and (Al.11)

2Q(0) = G + 2/(a+l) ...(A1.12)

or, eliminating Q(0),we get

ZQE(O) = =G + 2/(a+l) ... (A1.13)
But Q(L) = Q(0) - GL
and Qe(L) = Qe(O) - GL

and from the terminal boundary conditioms, (Al.4), we therefore

obtain
Q(0) - GL = aQe(O) - aGL
or Gel, = ‘QQe(O) - Q(0)

so that, eliminating Qe(O) and Q(0) using (A1.12) and (Al.13)

produces
¢ = 2¢/{(a+1)(2eL +a+ 1)} ' .. (AL.14)

as stated in the main text.

Calculation of Q(0) and Qe(O) etc

Substituting for G in the foregoing expressions for Q(0) and

QE(O), i.e. equations (Al.12) and (A1.13) respectively yields

2 (a+el) /{ (x+1) (2eL+a+1) } o (AL 2 15)

Q(0)

2(1+eLl) /{ (u+l) (2eL+a+1) } ...(A1.16)

1

and Q ()
e
from which by subtracting the composition change GL, we deduce

20/ { (2+1) (2eL+a+l) } o CBALy 17

]

0{L)

and QE(L) 2/{(a+l) (2eL+a+l) } s CAT 518)

{The results cross—check since subtracting either (A1.18) from (Al.17)
or (Al.16) from (Al.15) produces the result




Q - Qe (= constant) = 2e/{(oa+l) (2eL+a+1)} = G ... (A1.19)

as expected from (Al.10).}

Equations (Al.14) to (Al1.19) form the basis from which the linear

composition profiles of Fig.4 are constructed.
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Fig. 2 General Rectifier Section

Cross flow
(evaporation)

n+l

Sh' Cell n

h' = néh'

Feed point



Fig. 3 Vapour/liquid equilibrium curve and its piecewise linear approximation
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