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In this paper we shall study the existence, uniqueness and stability

1. Introduction

of differential difference equations in a Banach space. The motivation for
this work is to provide precise results in the theory of multipass processes.
These are control processes defined over some region of space Q where the
control mechanism takes place successively over some time interval [Q,r].

Each cﬁntrol strategy over @ and time B);ﬂ is called a 'pass' of the

system and the measurements and controls on the ith pass depend on the

system states in the (i—l)th pass. (For more details on multipass processes,
see, for example, Owens, [@],[7]).

We shall be concerned here with systems defined by distributed nonlinear
equations and to give precise results it will be convenient to define the
process as a differential difference equation in a Banach space. In section
2 we shall define the notation, for the convenience of the reader and in
section 3 we shall discuss the general set=up of our system equations.

In section 4 the existence and uniqueness of solutions will be considered and
methods for obtaining a solution over the entire pass length developed.
Lyapunov methods will be discussed in section 5 and a frequency domain
criterion (circle theorem) developed in section 6. Finally in section 7 we
shall give two examplés to illustrate the theory.

2. Notation and Terminology

The notation used here will be standard Banach space notation; in
particular, X,%,%,V will denote Banach spaces and H will denote a Hilbert
space. An operator A defined on any of these spaces will have domain
(not necessarily equal to the whole space) denoted by D(A). The resolvent
operator R(A;A) is the operator

-7t

defined for ail A ¢ o(A) (the  spectruim of A)
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N+ will denote the set of natural numbers (without 0) and C will denote
the complei plane.
The standard LP spaces will be used (e.g. we shall write L2[0,1] or
L2E0,1] for the space of square integrable complex-valued functions). Also
P[0, =;X]
will denote the space of maps f:[O,m)+X such that

F=/0 8]} de < =,

1/p p

with the norm of f defined as F . Also, the spaces % of sequences
x=(xi) which are pth power summable are used,
i
l=ll = 1 Ix
2P .
i=1

and if the sequence has values in a Banach space X, we write EP(X) and

define the norm of x=(xi)€ EP(X) by

- (T Il M

Iell
L EE) i=1

3, Nonlinear Differential Difference Equations and Equilibri

A general nonlinear multipass process is described by the system of

differential difference equations

t) i>l, tefo,1].

éi = f(Xi,Xi_l,. I,Xi~23
(3.1)
x.(0) = x,
i io
with the data
X, , i>1 given elements of some Banach space X. Suppose that the given

10

states X ,X_ € Lp(O,T;X). We shall seek solutions of the system

I B

in the space Lp(O,T;X), and for this purpose we shall reformulate equations

(3.1) as a difference equation in this space. This can be done simply by
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rewriting (3.1) in the form
t
(3.2) xi(t) =x, o+ J f(Xi(S)’ xi—l(s)’""’ Xi—z(s)’s)ds’
o

for EE[O,T].

Definition 3.1 By a (mild) solution of equation (3.1) we shall mean a function

x 1 N — 1P (0,1;%)
such that (3.2) is satisfied for almost every tGELTJ, where we denote
x(i)GLp(O,T;X) by Xy

Let us denote the direct sum of m copies of Lp(o,T;X) by Li(O,T;X); i.e.

m
LE(O,T;X) = oD Lp(O,T;X). Then, defining the map K: LE+1(O,T;X) —
i=1
LP(0,1;X) by
t
K(zl,...,£2+l)(t) & xio + i f(il(s),...,E£+1(s),s)ds,

we can rewrite equation (3.2) in the form
(3.3) x(i) = K(x@), x(1-1),..., x({i-2)) ,
which is, of course, a difference equation defined on LP(O,T;X).
Having derived a simple difference equation representation of (3.1)
we can now define equilibrium points and Lyapunov stability in the usual way, hence

Definition 3.2 The point z€ LP(O,T;X) is called an equilibrium point of the

equation (3.3) (and also of (3.1)) if

Zz2=K(=,...,2).

K

2+1 times

Definition 3.3 Let € LP(0,7:;X) be an equilibrium point of the equation (3.3).

Then 2 is stable if, for any £ >0, 3 6>0 such that

|x(i) - = || w B, A=l b,
1P (0,1;%)

for all initial conditions X o X such that

S EETEEPE S



The point = is an asymptotically stable equilibrium point if 3 & > 0

such that

_— -0 C
[]X(l) E||LP(O,T;X) as i
for all initial conditions X sX_joecesX g such that

|| x.-2|| <& , 1-g<i<0.
1P, 1;3%)

Finally, we shall define an input-output stability for the system (3.1)

Definition 3.4 The system (3.1) is called (p,q) —input—-output stable if,

for any initial conditions xo,x_l,...xb_ﬁELp(O,r;X) and for any initial values
Xioe Eq(X) » we have for any solution
X :N+~+LP(O,T;X)
of (3.1) (or(3.3)), that
x € ﬁq(Lp(OST;X)) "
In this definition, the notation Rq(Y), for any Banach space Y,

+
denotes the space of maps y : N —Y under the norm

sl CI oyt
L7 (Y) i=L

We note that (3.3) may be written directly in the form of an
equation in Rq(Lp(O,T;X)) by introducing the nonlinear map
(3.4) K : 29@Po,r;x)) 24P (0,1;%))
defined by
K(x) = {K(x(1),x(1i-1),...,x(i-2))}

1<i<ew

for x€ 21@P(0,7;%)); x(-1),...,x(1-2) given in LP(0,7;X).
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Hence (3.1) is (p,q) -input-output stable if the map K in (3.4)
is well-defined and the solutions (if they exist) are given by
3.5) x = K(x).
Next, consider the semilinear equation
(3.6) X, = Axi + g(xi’xi-l,""xifl’t)
where A is assumed to generate a strongly continuous semigroup on X.
Then, by the variation of constants formula,
t
(3.7) xi(t) = T(t)xio + i T(t-s) g(xi(s),..., xiul(s),s)ds
_We could write this equation in the forms (3.3) or (3.5). However, it is
convenient to define the operator G on zq(Lp(O,T;X) by the relation
©(®), = gx(i),...,x({-0) , x € L1@P(0,15%))
and the operator M on Qq(Lp(O,T;X)) by
L
(M(Y))i(t) = J T(t-s)(y(i))(s)ds
)
9P ; i
for almost all te [Q,T] and all y €2 (L"(0.1:;X)). Then, if

h, (£) = T(t)x. s
L 10

h = {hi}1<i<me Rq(Lp(O,T;X)) and so equation (3.7) may be written in the form
(3.8)  x=h+wox, xe 23@P©,11).
Let us note finally that if g is linear in e SRS and
independent of X., we can write
g(x(i-1),...,x(i-2)) = L1 ®(i=1) +....+L£x(i—2)
where each Lj is a linear operator on LP(O,T;X)D and (3.7) may be written in
the form

(3.9) A1) = LYE-1) + (i)

where
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X ) = (x(i=241),.000, x(1) € LP(0,75X)

L=/0 I 0.......0 € i(LE(O,T;X)) )

(I,0 represent the identity and zero operators on LP(O,T;X) respectively) and
§ T
peajie) = €, v, TEEDR, 37
e 10
21

Therefore, in the case where (i) = 0 for all i (zero initial
conditions when t = 0), the equilibria of the system are given by elements
of Ker(I-L)C Li(O,r;X). Hence, for this system existence and stability
questions are easily answered. ?he solution of equation (3.9) is given by
; i 4 i
L@ =1l + § 17 @)
j=1
and the solution is stable if the spectral radius r(L) satisfies
r(L) <1
Having discussed the general forms of the system we shall now proceed
to obtain existence results in the next section. The method we shall use
will be a contraction mapping type argument applied for a small time Tlﬁ[p,j],
giving a local (iﬁ time) solution for each i. We can then use stability
arguments to extend the solution as far as possible. This, in general,will

mean a trade-off between the size of the initial conditions and the length of

time the solution can be shown to exist.
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4. Existence and Uniqueness of Solutions

We shall consider first the general equation (3.1) which we have

written in the form of a difference equation on Lp(O,T;X);

i.e.
(4.1) x(1) = K(x(i), x(i-1),...,x(1-2)).
Theorem 4.1 Let K : Lg+1(0,?}x) -+ LP(O,?}X) (for each ?f[b,T]) be a

(nonlinear) mapping such that

(i) IRGr,2),. . 02)) = K@w,2),..0,2 ) ||

< llo L oll s 12,0 seees 15,01 Ilvmel

for some function k : ([R+)E+2

Tefo,1].

(11) E| Tl€ [O,T] and a>o, such that

2

- . —
+~ R, where norms are taken in Lp(O,T:X), for

”K(Zl,.-e,z,q,'{']_) “LP(O’T]-;X) ia
for

||Ei” LP(O,TI;X) ia 3 1iliﬁ’+1

and k(al,...,a ) <1 , for all aiE mf such that

0+2
o, < a, l<i<g+2,
Then the differencecm&ation (4.1) has a unique solution defined on

P . 5 e e
T (D,TI,X), provided the initial values XO’X—I""’Xl—ﬁ sariafy the inequaiisiss

ll=, |l TCRIPIRL I
Proof. The proof is by induction. Consider the case i=l. Then we have
the equation
(4.2) x(1) = K(x(1),x(0),...,x(1-2)).

With x(0),...,x(1=-0) fixed (in B(o,a) = ball of radius a in

Lp(O,Tl;X)), the mapping
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K{=,; x(o)seenax(1=0)) 3 Lp(O,TlsX)+ LP(O,Tl;X)
maps the ball B(0,a) into itself by (ii). Moreover, using (i) and (ii)
this map is clearly a contraction on B(o,a), and so there exists a unique
fixed point x(1) & B(o,a): i.e. equation (4.2) is satisfied. Assuming now
t at t e result is true for i=n, this same argument shows that the result is
true for i=n+l. This completes the inductive argument. O

Im theorem 4.1 we have proved a local (in time) existence result for L

the difference equatiom (4.1). If T, can be taken to be T, then the conditions
of the theorem are satisfied on the whole interval [O,T] and so we then have a
global existence theorem. It is difficult, however, to obtain more precise
global results in the general case and so we shall now consider the semilinear
equation,
(4.3) % (0) = Ax, (0) + £(x; (), x;_,(6),....x,_ (0)).
where, for simplicity, we shall assume that f is independent of t. In order
to consider fairly general types of nonlinearities f it is necessary to assume
that the semigroup generated by A has some 'smoothing' properties. (For example,
the map £(x) = xz does not map L2(O,1) into itself. In fact,

£:1%0,1)+ 11(0,1) .)
Hence, following Pritchard and Ichikawa ([4]), we shall assume that, for some

Banach spaces £,V,% and some t.> O,

i
(a). A generates a semigroup Ttéiii(Z,V)rwxﬁg,V) for t>o

and

T2l ¢ < 8Co) [zl 4

t>o, z€Z, z € %
T 2|l , < &) [zl 5
where gpr[O,Tll, g€ LP[O,T]:[ s T4€ [O,T]
(b) If VR+1 denotes the direct sum of 2+1 copies of V, then

r = 4 ¥
£: v % andir voe Lo,V L l<d<as,
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with |IV.H = < a , there exists b (=b(a), depending on a)
P[0, Y]
such that
| £ Gyoeensv DI _ <b
L o 5B
(e) | ECrattin s o oW, ¥ = B0, 00 guwuall ) .
1= 2 2771 g Ls[p,Tl;z]
< %(]] v, |l IR A ar
= I LIEO,Tlivj’ 2 LrEO,Tliv:l_ 5 L Lr[O,Tl;V]
|l v, vl
Lz 1" [0,735V]
where X . (TIR“)'“P2 -+ [P\+ .
(d) if vl < a , vl € 8 5
L Lr[p,rl;V] ’ 2 Lr[b,rlgvj
| w. Il . < a , l<i<p then
I [.O,'rl,V:I
Il gll X v, |l | v, |l
Lq[O,Tl_l 1 Lr[O,Tl;V] 3 2 Lr[O,Tl;V] ’
| w. || ) < 1.
. Lr[O,Tl;V__'

(In the above conditions, p,p,r,s,a,b are positive real numbers, and

B 1 1 1
p>r>1,p> @21 , 821, and & = = + =

=2 Le )
We can now prove
Theorem 4.2 Let conditions (a)-(d) above be satisfied, and suppose that
the elements X, belong to the set
(4.4) tzeZ: | g I=ll, + Ilell - bza }
r e
L'fo,r] 2 14,1

for 1 > 1. Then the equation
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O o |
-

(4.5) xi(t) = Ttx. +

‘o e f(xi(s),...,xi_g(s))ds

(the "mild' form of (4.3)), has a unique solution in Lr[O,Tl;V].

iProof First define
t
PR = e
KGp,eeen® (0 = Tx, 4 iTt_S £(2,(s),...,%) ,(s))ds

We shall show that with K so defined, the conditions of theorem 4.1 are

satisfied. For (1), we have

| Rvz o2 (0) = RG,Z L2 ()]

t
- ||£ Tt-s(f(szl""’aﬁ) —f(w,zi,...,zh)){lv

t
if E(t—s)]|f(v(s),!l(s),..,ﬁg(s)) - f(w(s),% (S)""’ERCS))||E ds
o

1A

Since the RHS is a conwvolution,

| K(va2 5. 2)) RO,z .02 ) ||

. 1 LrlO,TI;V]

2D

i” -g” ” f(V,.El,...,-z'R') "f(wszls'

10,1, | Ls[o,—rl;i:[

and condition (i) of theorem 4.1 follows from (c) .
Condition (ii) of theorem 4.1 follows from (a),(b) and (d) in a
similar manner and so the result is a simple consequence of theorem 4.1.0
The following two corollaries follow as in Ickikawa and Pritchard ([41).

Corollary 4.3 If we assume that'rte.jﬂ (E}Z) for t>0, and

e 30l < 5w I3,

where E;DP[b,Tl], j} = 1-% , then the solution of equation (4.5) (which was

shown to exist in LrB),rl;Vl) lies in C[O,TI;Z], jm}



- 11 =

Corollary 4.4. Let _\-T-_f_'.- Z be a Banach space such that

(i) Ttegf,(z,'\?), t>o, with || thll g =], o,

p
where gle L 1[5,11] 0N C[e,i'l:l for some e>o, Plil and Tt can be

extended to a strongly continuous semigroup on Z .

(ii) 1. €L @&V, tvo, with || Tzl 2,0zl 5. too,
Py
and gze L [:O,le, Pzil'
Let s be as in theorem 4.2 and suppose that mipl, W£P2'
P
: 1 L _31 1 s
Then, if gli 1. [s,'rl__[ and = R + : 1 , the solution ® (+) of (4.5)

£l—=p9

lies in ]'_'.m[e,'rlg-v:[ , for all n>1 , and if g€ C[E,Tl:l and + —;— =1,
then in(') € C[E,Tl;Vj for all n>1. I

We can now consider the extension of the solution beyond T

Since Tt is a CO— semigroup on Z , 4 constants M, w such that

Il < Mt
1 @)
and so. ,if 0<)<l,
Tl <l T N |l B o M|
> Wre 9N raE)

_ el
A I AR

| A

g((1-0) M e g (-1t )
2 2

= () ; say -

Hence, from equation (4.5), we obtain

t
ioll .+ 7Tl | _

| = ()] < |l o)l || .
1 v £ (Z,V) ZE o LE, )

Il £ (aYamnsmy_ (e de
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t
< y(o) || xiOH . + :: y(t-s) || f(xi(s),...,xi__g‘(s))u Vds
Let %iﬂt) = || x. || . Then

L1 o,t3v]

(4.6)  X.(t) < |~ =, Il _+ [l vl G LT A O P, SR L) 1
i Lr[O,t] iol = quo,t:] i Rt T | i-g .
where we have assumed that yeg Lq n Lr and
fLoc foc

f(O,wl,...,wE) = 0, Y ws € V.
Suppose now that X _qoeeeoXi have been extended beyond the time T, say
to T2>11, and that

=0, <a o, i-ecici-l,

17 x [Q,Tz;Vj
Then by (4.6), if
(4.7) ||y|| ¥ (a,0,8,.:.,8) < u(t)<l
Lq[o,t]

we have

4

Yo < vl o] | Xio”—z-— + X (Du(t),  oster
and so

Fal

L) < L vl =, [I_ 3.

N C1CH Lo, i Z

Hence, if
(4.8) 1 (vl I, l_3<a, ostr

T=u(t) L'[o,£] *° % ’ L

then the solution %, can be extended beyond Tt The condition (4.8) shows

i 1°

the way that the maximum time interval of definition of a solution depends

on H Y” ,X, a and the initial value ||xi | . In the case

1900, ¢] o' g
of a stable semigroup, we have w< 0, and so it may be that
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I vl ] =
1" [0,]
and so if a is small enough so that (4.7) is satisfied for t = =, then a

global solution exists if

-1
< a(l-x(a,0,a,...,a)|| vl| | vl

= Il _
2 5 130,%] 110,

Note that if we estimate ||T(t)xi0]|v by g(t)|| Xio” . s

then we can replace condition (4.8) by the condition
(4.9) 1 {] ell = 3 < a,

T=u(t) L lo,£] *° g
and a solution will exist for as long as (4.9) holds,

S Lyapunov Function Method

In the above local existence and extension results we have shown
that, under the conditions (4.8) or (4.9), the solution xi(t) which starts

in the ball of radius

-1
a_ = a(@-u(e))| vl
1 L [o0,¢]
or a, = a(l—u(t))||g’|_i
1" [o,t]

will remain in the ball of radius a in Lr[O,t;V]. If t can be taken to
be greater than or equal to t(the pass length) then we have a kind of stability
for each pass (cf. Owens, [6] 3 Another approach to obtaining such a

stability along the pass is by the use of a Lyapunov function which will be

v(t) = < Xi(t), Xi(ﬁ)>z

where we shall now assume that all spaces %,%,V etc under consideration are

Hilbert spaces . We assume that



DMA) EVEC(B) CZCEC
where the injections are continuous and each space is dense in its successor,
and that for veD(A), J B f (%), DQZ((V,Z)
such that

2

<Av,v>Z + <v,Av>E Ef“ DVHZ - <Bv_,v>z
Then, again following Ichikawa and Pritchard ([4]), we have
Theorem 5.1 Assume that the conditions of corollaries 4.3, 4.4 hold, with

e ¥ —%
m = 2, so that xie szﬁ,rl;Vj, izl LE xié iV [;,Tl;z ] where
1/s + 1/s' =1, and s is as in theo¥em 4.2, then

1
5.1 x Gl 2 -l @) < -5 [ox R AORROE
pod Z (= % Z

R ACHICHORIIOIE NG LI L

’
This result enables us to obtain estimates of I[Xi(Tl)“ in terms of
2
i by taking € small and noting that x, € C[D,E;Z]. By summing

7
inequalities (5.1) over i, we obtain the following simple corollary.

[

Corollary 5.2 Under the assumptions of theorem 5.1, we have

2 2 5 2
sy | x(T1H| 9 - || =) || 9 L * [H Dx(s) || 5

27 (8) L7(2) 2 27(2)

- <Bx(s),x(s)>

RZ(Z)

—2<x(s),£(x(s))> , lds

2@ ,02 @)

where x(t) = {Xi(t ﬂii; s and

diag {D,D,...}E,f,[ ® % ,
i=1 i=1

D

I & 8
[t}
L

|
!

diag {B,B,...}
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(5.3) _ﬁCx(sﬁ = {f(xi(s), xi_l(s),..,,,x].__l(s))}ii1 : B
6. Frequency Domain Conditions — The Circle Theorem

Consider again the semilinear equation

(6.1) x, () = T(t)x, + E T(t =s)£(x;(8),...,x%, ,(s)ds
and write it in the form
(6.2) x(t) = I(thx_ + th T(t-8)£(x(s))ds |
where ¢
T(t) = diag{T(0),7(t),...}eL[ 0 H, o B,
i=1 i=1

for each t20, and f is defined by (5;3). (We are now restricting our systems
to be defined on a separable Hilbert space H. The introduciton of the spaces
Z,V,E-etc. above was necessary to account for a large class of nonlinear
systems. The cost of obtaining a circle theorem will be the considerable
restriction on the type of nonlinearity which can be handled.)

We shall consider the system (6.2) as being defined on the space
H=6 H and for the purposes of this discussion we shall let the pass
1en;;; T and search for conditions which guarantee that the solution of
(6.2) belongs to ﬁZDJ,W;EJ for any X € H . How H is a separable Hilbert
space with inner prod%:t defined by

); . € H ,

i>1 =

Gy =L <nohy. . b=

1=1 +

and E_is a semigroup on H with generator
A = diag{a,A,...} : E D(AY"H
i=1
Clearly, o (A) = 0(A) and so
R(s38) = R(s;A)
(where R denotes the resolvent operator.). We can therefore use the results
of ([:2]; see also [3] . [8]). Let

Es :C/{s} —C
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be the complex—valued function defined by

g, () = 1, forall seC .

Consider the following two conditions:

The region traced out by the set valued map wE,. (g(A)) does
g (1w

)

(G1) not contain a curve which encircles or passes through the point

[—2 (a+b)-.1 ,O] 3

The region traced out by the set valued map w+5(im) (o(A)) does
not intersect the region R(a)e L for -—w<y<w, where
(2) R(a) = disc of radius %(a—l—bul) with centre
(c2) 1 -1
[-i(a "+b ),0] if a>0

half plane Reszjb_l if a=0

| o) R@
L (o) R(a)

exterior of the disc in (a) if a<0 B

We then have the following result:

Theorem 6.1  Suppose that the operator A satisfies conditions (Cl), and
(C2) and that f satisfies

{Em+ah , EW*hY, >0, Y heH

Then, for any solution x(t) of (6.2), we have
X €. Lz[O,m;_Iﬂ . O

Corollary 6,2 If A satisfies (Cl), (C2) and function f satisfies

<f(hl,...,h£+1) *ah, , f(hy,.,hp ) + bR >0,

1 1

Y hl""’h£+1€ H , then the solution x(t) of (6.1) satisfies

X € Lz[b,m;gj . H
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7. Examples
In this section we shall give some examples of the types of systems

to which our results apply. We shall consider first the case of a
diffusion equation which, for simplicity will be taken as the heat equation.
Example 7.1 (Heat diffusion equation).
Consider the equation
(7.1) 2l gl gt
(where we have now denoted the pa§s number by a superscript), subject to the
boundary and initial conditions:

zi(x,o) = zi (x) zi(‘o,t) ='Ei(l,t) =0,
and we shall assume that the equation is defined on the spacial domain [b,l].
Then we take Z = Lz[b,lj and
the semigroup T(t) generated by the operator A defined by

Az = E o ze D) ,

D(A) = Hz[:o,l]ﬂﬁi [0,1] .
We shall define V = L2“[0,1] , & =1%[0,1] , o21. From the Sobolev
embedding theorem [I]

H6[0,11 c Lzo‘[o,l] for 6> i-ix

we have the following inequalities for the semigroup

o 2.2 1
(T(t)z)(x) = Z e > B t sin nrx [ sin (nnpE(p)dp
n=1 o)
(1) | Tzl , < __¢ l=ll, = @]zl
v t1/4:1/4u 2 z
(ii) | o)zl < C zZlls = g |5, 1lco<2
< e, 171 1z, 1<
lzllz = swllzllg, o2,

= C
Fr@slly < 7778,

where C is a generic constant.
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We also have, for the nonlinearity, the inequalities

(iii) Ivzllz < llvilyllzlly

(iv) vyl <llvyv,lly 12l
and finally,

) Tzl , < lzllz = szl , 1za<2

L
t1/4
ol C||E“ 7z E?t)||§||g 4 a>2.

The consitions (d) (before theorem 4.1) and (4.4) now become

(7.2) I gl o<1
Lq[o,rlj
and
(7.3) g |l l|= I, + Il &l g q

tTo,7.] °©

40,7, ]

; 2
(since we may take b = a”)
Hence, we see that a solution exists for each finite'f1 and sufficiently

small initial values.letting T.= T (pass length) we see from (7.2) that

1
||§'” a2 < a
Lo, 1]
and so if
(7.4) ledl . & ta = o5l y/ llg |
LA 1o, 7] L [o,1]
and
(7.5) <]l <a < 1
Eleiv] K

g

1o, 7]
then a solution exists for the whole pass length.

Note that (7.4) and (7.5) represent a trade—off between the initial time

conditions X and the difference equation initial conditions X.. Thus,
-1
if the x. are taken to have the largest value ” E” 4 then
J L"’L EQ ;t]
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the x. must be zero.
io

Thus, for example (choosing appropriate r,q,s etc.), we findi that,

under conditions (7.4), (7.5), a solution exists in
8-¢ 4 o 2

Lo %[o,7;1"[0,1]] n c[o0,7;17[0,1]],
where ¢ is arbitrarily small. One could also show that the solution lies
in other LP spaces by using interpolation results (cf.[jl,A,i]).

In order to use the Lyapunov theory, note that

1 2 2
fO ZX (x)dx iﬁ”Z” C[O,l] "

and so,by theorem 5.1 ,

. . t ; i-1 2 -
2 2 g i d
(7.6) |zt ]| 5 = ‘|11(€)|I g 272 'é'lzl(s)W| C[O,l]( || = (S)I|Z ) ds

If we assume that Hzo(t)HZ < 2 for all tyo, and that I|z;H < 2, then it

Z

follows by induction (letting e+0 in the above expression) that the solution is

defined for all t and i and we have

(7.7) RO ZZ <2 , Y t>, i>0.
Moreover, from (7.6), we obtain
o2, -lx©l2 < -2 alzel?, -
2°(2) 2°(2) © 27(cfo,1])

co

I di=" @l g, ll#* @l os
1= -

But, if H':'.o(t)HZ < 2 for all t>o, we obtain from (7.7) that

lzl? < llz@l?
22(%) 27(Z)

el

for all £>0. Hence, if ||Z(O)|F2 = ) |[gil|§ <
ao(z) =1 °

2 : . p

then ]]i(t)\| ” < : We have therefore obtained the following input-
27 (2)

output stability for this system; namely, if |{Eo(t)||§ <2 ,Ytro,

1 s did i ; A <9 s i
an e initial values 20 satisfy I|ZO||Z S , Vi>o and {E0}1>1 belongs to

22(2), then z(t):= (zitt))cﬂe 12 (2),
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Example 7.2 In this example we shall consider the parabolic system

= 2 P 3 . i '
(7.8) zi Aji -+ f(Ei, i-1° ’1i—£) . zle H (Hilbert space)where A

generates an analytic semigroup, and the spectrum of A is contained in the

sector

sd,¢ ={A : - @ <|arg(r-d)|<m, A #d}.

We shall also assume that £ : Hﬂ'+1 + H and satisfies

(7.9) <f(%,h "’hz) + a%, f(z,h ..,hg) + bz)Hg_O

i 1’

i,hl,...,h2 H and for some b>a>o.

If we assume that f is Lipschitz then we can apply the existence and
uniqueness theory here as in example 7.1. We shall now show that the theory
of section 6 applies and that we can obtain frequency domain criteria for the
stability of (7.8). The map E(iw) in section 6 is easily shown to map the
sector Sd,¢ into the circle of radius 1/2d dndcentre (1/2d,0). Hence
assumption (7.9) means that conditions (Cl),(C2) are trivially satisfied and
so by corollary (6.2), the solution & = (2ia31 of equation (7.8) belongs to

1.2 [0,=;H].

A specific example of an equation of the form (7.8) is the system

defined by
2
o, (t,x) = 3r (6,%) + pr. (%) + zi(t,x)lzi_l(t,x)l
ot sz
where p>o and 9% =0 when x = 0,1.

3%

Then the operator A defined by

Ag =072 + p¥

with domain

D(A) = {z€L,(0,1) 9%z e L,(0,1) , 3% =0 at x=0,1}
2 9 x

o x

generates an analytic semigroup and A has the spectrum

3 2 -2 ;
Aj =g EgeEly T 321
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Also, for amy o<a<b ,
1
2
SOoERLeO(fE, )|+ a) (R _ (x)] +Db) dx > O
o i-1 11 —

and so the general theory applies in this case.
8. Conclusions

In this paper, we have discussed the existence, uniqueness and
stability of nonlinear multipass processes which are modelled by partial
differential equations. We have shown that, under fairly mild conditions,

a local (in time) solution exists and by placing other restrictions on the
system we may extend the solution for a finite time. The length of the

time interval over which we are able to extend the solution is dependent on
the 'size' of the initial values - generally, the smaller we take the initial
values the longer the solution can be shown to exist.

The circle theorem has also been generalized to the case of nonlinear
differential difference equations in a Hilbert Space and we have given a
frequency domain criterion in terms of the spectrum of the linear part of the
system. However, as is the case with the circle criterion, one must impose
much stronger conditions on the nonlinearity than with the Lyapunov methods
of section 5.

Finally, we have given two examples to illustrate the theory. Both
examples are of the diffusion type, but it should be noted that the method
works for hyperbolic systems such as the wave equation,
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