The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of On the Optimal Control of Residual Stresses in High
Temperature Materials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76063/

Monograph:

Banks, S.P (1981) On the Optimal Control of Residual Stresses in High Temperature
Materials. Research Report. ACSE Report 149 . Department of Control Engineering,
University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

5 067596 01

iy

ON THE OPTIMAL CONTROL OF RESIDUAL STRESSES IN

HIGH TEMPERATURE MATERTIALS

by

S. P, Banks

THE UNIVERSITY LIBRARY
SHEFFIELD

Research Report No. 149

University of Sheffield.
Department of Control Engineering, = ‘
Mappin Street, Q s
Sheffield. S1. 3JD R~

CoGNosCERE

APPLIED SCIENCE LIBRARY

o =

Class No.%. Ny 629 S/ (5) .......

Book No. . ... Oé)u/l bﬁcjé:’ O



" Summary

When a material body changes temperature nonuniformly,stresses are
induced due to nonhomogeneous straining and if these stresses exceed the
plastic yield limit, a proportion of them may be 'locked into' the material
in the form of residual stresses. In this paper we study of the problem !
of controlling the temperature field, using point controllers on the boundary

of the material, in order to minimize the residual stresses. The optimal

selection of the control points is also considered.

Key words: Optimal control, residual stresses, plastic behaviour,

distributed parameter systems.



T Introduction

In any material body an increase (or decrease) in temperature T is
associated with a corresponding expansion (or contraction) of the body, the
linear change of length being proportional to the coefficient.of thermal
expansion ® . (The body will be assumed to be isotropic in this paper and so

o 1s independent of the direction in which it is measured.) If follows

\

that a body which has been heated to a fairly high temperature (for example
in metal forming , and in particular hot rolling) will tend to contract more
in the outer layers than in the interior, since the centre will cool down
more slowly than the periphery. Hence, stresses will build up in the
material as it cools down and when the body is finally at room temperature
throughout, a 'residual' stress field will be present which will affect the
loading characteristics of the body, and may also cause buckling if the body
is divided into smaller pieces.

It is therefore of importance to minimize the residual stresses as mﬁch
as possible. (Of course, in certain circumstances, prestressing can be
important, but in this paper we shall be concerned only with the case where
residual stresses are undesirable.) There are many ways of relieving residual
stresses in a body once it has cooled both destructive and nondestructive.
In thermal stress relieving, the body is reheated in the neighbourhood of a
stressed region until the yield stress of the material is small enough to
overcome the imposed stress field. However, this method has certain
disadvantages associated with reheat cracking and possible weakening of the

material.
A less ad hoc approach was used by Kusakabe et al [5] in the case of

hot-rolled H-sections, and consists of locally reheating the body on the

surface at various points before it has cooled down in order to attempt to
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achieve a uniform temperature field throughout the body. However, in this
paper the authors did not consider the problem as an optimal control problem,
but merely tried various control inputs and numerically optimized over a
certain small number of such inputs.

In this paper we shall consider an isotropic body of any shape and we
shall carry out a theoretical study of the optimal control problem of minir
mizing the average temperature in the body by using heat inputs at various
points on its boundary. It will be shown that a Riccati equation can be
developed fér the optimal control and in the case when a certain operator
has a simple spectral respresentation, the solution of this equation can be
written down in terms of the‘exponential’of an infinite matrix.

Having obtained the optimal control we shall consider the problem of
optimally selecting the points at which to apply the controls. This will

be done by writing down the Kuhn-Tucker conditions for this problem.

Z, Thermoelastic Equations

When a body is heated to a given temperature distribution and then
allowed to cool down, the nonuniform temperature fields produced during
cooling generate stresses in the material. If the body were perfectly
elastic at all temperatures, these stresses would vanish when the body
returns to its original temperature. However, if the thermally induced
stresses exceed the yield stress of the material then the material flows
plastically and the stresses are 'locked' into the body. Hence a dis-
cussion of residual stresses in heated materials necessitates not only a
consideration of linear elasticity but also the effects of yielding on the
stress field must be taken into account.

Consider first the equations of thermoelasticity. It can be shown
[5] that, in the absence of heat sources in a body, the temperature field

T and the volume change e (e = sum of normal strains) are related by
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2 2 .
PI=-1T=ne =0
u
where 1 depends on the initial temperature TO. In this paper we shall

assume that the strains are very small and so we may neglect the term &
in this equation. The temperature field may therefore be uncoupled from
the stress field. Hence,
uV2T='i'
The equations relating the temperature distribution and the stress

field can be obtained from the Duhamel-Neumann relations ( [51), namely

1 y
L= o+ =— (g..m —L1— o
ElJ {xTc‘SlJ 5G (Gl_] Ty @51-_})
where @ = o;;- In this equation, 15295 represent the ijth strain
and stress component resPectively and G,¥ are elastic constants. T is
the temperature change from a stress—free state of the body. It follows
( [8]) that
2 0E - T,. =0
A+ .+ GV u, - —— ’1 2
( G)e,l Ui -2
for i = 1,2,3, where
== = 1 +
e Eii 3 Eij z(ui,j uj’i)-

These equations can be solved by introducing the thermoelastic potential
P such that

YTV
(Note that in the above f’i represents af/axi). This will then lead to

the equation

2 1+y
= —= gT. . (2.1
U Tl )
If the boundary of the body is stres—-free then
.. n, =0 2
%I ek

where n is the unit outward normal to the surface.

Equation (2.1) can be solved in particular by the function
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Y(x) == (1+Ma . ¢ ). v (2. 3)
Ty Ta '
where r' = ||x-y|[ ,x,yelP\. How ev er, this solutim willon ot satisfy the

boundary condition (2.2) and so we must solve an ordinary stress problem

(i.e. independent of temperature) which has the -stress boundary conditions

013 = “[u(¢, + ¢ g ¥ (AV b - Ty)6, ]39 (2.4)

where y=(3A + 2p)o. (This boundary condition follows from the relation {
o,., = 2ue,. +(e = Ty)S..
i ij ij
and the definition of ¢ .) For example, in the plain strain case, we can

solve the biharmonic equation

together with the boundary conditions

¢’yy T Yxx
brax T Uy;'
¢’xy ) HGX;
where di} is given by the right~hand side of equation (2.4). The potentials

Y and ¢ then give the complete solution to the problem.

However, the above solution is only valid as long as the yielding limit
is not reached by the stress. As the material cools down and non-uniform
temperature fields arise, there may exist a time when the stress at some
points reach this limit and hence plastic regions develop in the body.

The elastic.plastic boundaries are dynamic (i.e. change with time) and so the
problem of an analytic determination of the complete stress field would be
extremely difficult (if indeed it were possible at all). However, an
approximate idea of the plastic regions might be obtained by solving the
thermoelastic equations above and regarding the plastic regions as those where
the maximum shear stresses violoate the yielding criterion. If the optimal
control solution which we derive in this paper is successful , these plastic

regions might be expected to be fairly small and so this procedure should
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give at least a first order approximation. Of course, this solution may
also be compared with that obtained without control to get some idea of the
improvement which the control achieves.

We shall take the point of view as in the previous paragraph since
we are interested mainly in developing the optimal temperature control,
which we will see can be done independently of the knowledge of the plastic:
zones for small strains.

3. The Optimal Control Problem

Consider a bounded body {1 subject to temperature control on the boundary

90, as in fig. 3.1. We shall suppose that the control takes

Fig. 3.1

the form of passive cooling distributed over 3Q apart from N small areas

of surface 65& surrounding points picaﬂ(lfifN) where the temperature is
controlled to Ti' It will be convenient to measure the temperature relative
to the amb;ent air temperature Ta' Hence, iq these units we may set Ta= [0

Let 68 = U 6Si and define
i=1




¢, (@) = jl if pean\sS
L0 if peds

if pea\s§

b, (p) =
2 if pess

I
£y
= O

Then the boundary condition on 30 is (by Newton's law of cooling)

¢ N i
g oL, &

HT = =A3T
afl i=1

30 an

where H is the coefficient of heat transfer.
However, ifleCm(aQ), then N
_ 3T HT, ¢, 41 > (3.1)
CHT|goa¥ D= L]0 V8 5 ¥ + _Z< Yo
n

1=1

where
<f,g> = IBQ f(p)g(p)ds (= surface integral over 3Q)

and so if each region SSi is small with area a: , then

N
<Hﬂamw>:ﬁ<_@g’ ot AL LY (3.2)
Bn af 1-1

Therefore the boundary condition is approximately
N
+ ) HT,a, 8(p -p,) {3.3)
a9 i=1 17

HI|,o = -A3T
ah

where

<8 -p), v2= ¥bp,) for y e (30)
provided that the inner products and the expression (3.3) are now interpreted
in the distribution sense. Since the temperatures Ti are the controls we

shall denote them by uy and then (3.3) becomes

N
HT = -)8T + ) Hu.,a, 8(p - p,) (3.4)
Y f=g *
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The dynamic constraint for this problem is, of course, the heat conduction

equation :
aT 2
2 = ¥ 3
S WNT (3:5)
together with the boundary condition (3.4). However, the normal control

problem takes the form

X = Ax + Bu (#*)
and so we would like to define an operator B so that the heat conduction
equation (3.5) becomes

T 2.
a_t R UV T + Bu (3.6)
T

where u = (ul,...,uN) .
In order to determine the interpretation (3.6), it is necessary first
to define what is meant by a solution of (3.5) which satisfies the boundary

condition (3.4). Since the boundary value of T is not a smooth function,

we can no longer expect to obtain a classical solution to (3.5). The correct

interpretation for a solution of (3.5) is now that if a weak solution; to

define such a solution we need Green's theorem which states that

2 2
IQ(¢V Y - YV d)dv = - faé¢ 3y = ¢ fg ) dS (3.7
on on
for any sufficiently smooth functions ¢, y. Consider now a smooth function

T*, take the inner product (over ) with (3.5), and apply (3.7). Then,

S 9T .T* dv = S VZT.T* dv
Q — Q
ot
= uf_ T vk av - uSo. (T% 3T = THT*
Q ‘ a0 — —— ) dsS
on on
- ® B
wo T.V°TH dv + pf, T7HT -ds -y _[ T*(p, )Hu.a,
i=1
+ uf. T 3T* ds (3.8)

afl "
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Now consider the problem defined by the equation

ok _ -wvi T f (3.9)

at

with the boundary condition 3T#
on Q
for some sufficiently smooth forcing function f.
It is well known that this has a unique classical solution T*(x,t)
for xeq, t>0. Using this solution in (38) and integrating with respect

to t over the interval [O’ttl’ we obtain

ky % 81 W
[ 1 f(x,t)Tdv dt -/ JuT* HT dSdt+/ p Y T*(p, ,t)Hu, a.dt
o 0 o 9n o i=1 t
(3.10)
* 3
+ ufg T (X,O)To(x) dv 0,

where

T(x,0) = To(x)

T*(x,tl) =0
are respectively the initial and final conditions of the equations (3.5)
and (3.9).

Definition 3.1 A weak solution of (3.5) and (3.4) is a function T(x,t)

which satisfies (3.10).

It should be noted that the concept of weak solution is the appropriate
setting when studying distributional solutions (see [4]). However, for
control theoretical reasoms, it is not particularly convenient to use weak
solutions and so we consider the problem defined by the partial differential
equation

pH
ot i

I~

1 u.a, 6(P'Pi) (3.11)

subject to the boundary condition
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_ =AT (3.12)

HT -
o8 on

af

Intuitively, of course, equations (3.11) and (3.12) represent the problem

of heat flow in a body subject to passive cooling on the whole of the
boundary, together with control injected at the points P, - Note that

if equation (3.11) is multiplied by T* and integrated over £l and t (from

0 to tl), then we again arrive at (3.10) and so the weak solution§of (3.5{
and (3.4) are the same as those of (3.11) and (3.12). However, (3.11) is
now in the appropriate fiorm for control purposes; the main difficulty is
that the operator B in equation (*) is now an unbounded operator.

In studying the control problem defined by equatioms (3.11), (3.12),
it is convenient to introduce the semigroup S(t) generated by the operator
A with domain

D(A) = {T ¢ Lz(ﬂ): T e Hz[ﬂl s

HT = =Xx9T

20 Bn

of2

defined by

AT (x) u VZT(X)

(cf. [2],[10]) The mild solution of (3.11) can then be defined as the

solution of the integral equation
t N
T(t) = S(&)T_+ [ S(e=$)uH - Y ( u.a.6(p-p,)Ms (3.13)
o i=1 . .
However, extreme care must be taken in the interpretation of (3.13), since
2 -1~ .
6(p—pi) # L Bﬂ. In fact 6(p—pi)€ H? E[ﬂ] and so the operator B is

; : -i-¢
a continuous linear map from [RF. to H?® “[Q] ; i.e.
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Bed( IRN, H_é_E [ﬂ]) (e is arbitrarily small)
(For a discussion of the spaces HS, see [l].) In order to justify the

equation (3.13) we note that

s(t)ei(H"%'E[Q_'], [ ) , 0
and we have

|s(e)T|] 2 L[] —T:T;—"'||T|| ~3m€ (3.14)
(cf.El]). The condition (3.14) means that the semigroup generated by
A is 'smoothing' and shows that equation (3.13) is well-defined. The
following result is proved in [2].
Lemma 3.2 A mild solution of (3.11)(3.12) is a weak solution of (3.5) and
(3.4).13

Hence, we can work entirely with mild solutions of (3.11). The
final ingredient necessary to define our optimal control prob}em is the
cost functional. This can be derived by remembering that we require the
temperature variation throughout the body to be as small as possible. Also,
it is shown in [5] that it is preferable to achieve this with as low temperature
inputs at the points P is possible. Now, the average temperature over the
body at time t is

1
T J'Q T(t,x) dv

where V is the volume of the body. Hence, we would like to minimise the

difference

V. T=1 ,T(E,x) dv
T Vv fﬂ

in some sense, over Q. The most obvious way to do this is to minimise
||VT|IL2(Q)' Denote by K the operator defined on LZ(Q) by
1
= —— T 1
(KT) (x) v fT(x") dv

(i.e. KT is a constant function on a). This operator is well-defined since

LZ(Q) c Ll(Q), provided £ is bounded, and it is, in fact, bounded, since
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& rrEnarn? et = L5 rex nav ’
27 ‘q 4 |
<
1% (9)
Now,
| v..Il : (I-K) T, (I-K) T
2 TS L

and since I-K is bounded, we may define the transpose K* of K. thus,

| v = <T,(I-R*(I-0T>

L2 () L™ (Q)

putting M = (I-K)*(I-K), we see that it is desired to minimise the quantity

<rMr>,

L°()
over some fixed time interval [b’tlj’ say. Note that M is clearly a positive
operator. '
Now, we also require to minimise the control effort, 11€WF,
and so, if R ﬁ,fﬂﬁy,lﬁy) is positive-definite and symmetric, then we can take
J(T,u) = <:T(t),MT(t)>>2 + ;1{<?(S),MT(S):7 9 +<p,RU>?N }ds
L7(Q) o L7 () R
to be the correct cost functional.

4, The Riccati Equation

The optimal control for the problem posed in section 3 can now be
found using the following theorem.
Theorem 4.1 [2] The optimal control which minimizes J(T,u) is given
by the feedback
uk(£) = B 1B*Q(t)T(t)
where Q(t) is the unique solution of

t
Q(e) = U*(t,,t)MU(t,,t) + st U*(s,t) [M+Q(s)BR™B*Q(s)]U (s, t)ds
t
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and U(t,s) is an 'evolution operator' which satisfies the equation
t
-1
U(t,s) = S(t-s) - [ S(t-p)BR Q(p)U(p,s)dp -
s

Moreover,
o e LW @) 12 @) , uee,0) € £ @), 12 0)
for almost all t,s. 0

It can be readily shown that Q also satisfies the differential equation

15 O, k> + LQ(e)h, Ak > + <Ah,Q(E)K> 4.1)
= <Q(t)BR—1B*Q(t)h,k> - <{Mh,k >
with the finai condition Q(tl) = M, where h,k €D(A) .
Now, it is easy to see that the operator K is, in fact, self adjoint and so
M= (IHK)Z = I =2K + KZ.
But K2 =K (i.e. K is idempotent) and so
M=1I-K.

Consider finally the dual operator B* of B. Now

3 N T N
Bu = yH igl uiaié(p—pi) for u = (ul,...,uN) e,

I
and so if v(x) € H2+E(Q) , we have

N
{v, Buy = { v, H izl u.a 8(p-p,) >

N

= uH izl ai<;v 3 uid(p~pi):>
N

= uH izl aiui v (pi)

N
= izl 4: uHai v (pi), ui:)r;K

= C s
<< v U:;ﬁ

; . .. 1+
where the duality is with respect to the pairing between HZ E(Q) and

s e
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(Q), except in the last two lines,

B*v = Cv = (uHaiv(pi))T € ﬁkN.
Hence, apart from multiplying constants, B* is the map which evaluates
the argument at the N points PysesrsPye
In order to write the Riccati equation in a more easily understandable
form, we must now use Schwartz's kernel theorem [7,9], which states that
a distribution on ( may be written as am integral operator with an appropriate
kernel function. Thus, we may write
Q(E)T) (x) = Jowu(x,y,t)T(y)dy.
Hence, the Riccat equation (4.1) becomes
fﬂfﬂxt(X,y,t)h(y)k(x)dydx R P quk(X)&(x,y,t)h(y)dydx
£ Sl ur R % (%,y, Dk (y)dydx
22 o

N
= fﬂfﬂk(x)x(x,y,t) uH izl aié(y—pi){ jzl rijajfﬂx(pj,yl,f:)h(yl)dyi}dydx

- [ RGOk dx + IQ% B (x)dx/ k(x)dx

where R_1 = (r

. " ;
rij)lfisjEN' Hence, using Green's theorem (3.7), it follows

that

2
fﬂfﬂ!ﬂt (x,y,t)h (y)k(x)dydx + fﬂfﬂuk(X) VX (x,y,t)h(y)dydx |

- IQISQ X,¥,t) 9k (x) h(y)dsxdy + IQIBQU_@__K.(x,y,t)k(X)h(y)dSXdy

anX anx

2
¥ i
+fgfguk(x)vy (x,y,t)h(y)dxdy fﬂfaﬁu.m(x,y,t)§:(y)k(x)dsydx

uix(x,y,t)h(y)k(}{)dsydx (4.2)

+
IQIBQ
on

N N
5.9 _ —
izl { jElfﬂfQ v H k(x)h(x,pi,t)K(pj,y,t)aiajrijh(y)dydx-§

IQIR h(x)k(y)§(x-y)dxdy + IQIQ h(x)k (y)dydx

<=
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Note that we have used the fact that Q is self-adjoint as the
gsolution of a Riccati equation and so the kernel X(x,y,t) is symmetric in

X and y -

However, h,k e D(A) and so

Hh| = -2 3m
of on | 30
|
Hk = = ok
af on | o

and so, if we choose X to satisfy

Hx(x,y,t) + A 3 w(x,y,t) =0 , ¥ x € 3q,ye€ 2, teof,]

on
* (4.3)

Ha(x,y,t) +2 3 x(x,y,t) =0 ,Vxe Q,v€ E}Q,t€|:o,t1]

on
¥y

it follows that (4.2) may be satisfied by the solution of the equation

6, * WPk % + S(x-y) - 1
E X v v
(4. 4)
N N, -
- ) ) wH” X (x,p.,t)x(p.,y,t)a,a, ..
sy el i i 13743

subject to the boundary conditions (4.3) and the final condition
LG,y t) = BGemy) = L. 4.5)
v

The optimal control u* is then given by

u*(t) = T alfQ (plgy,t)T(y,t)dv \ - uH (4.6)

ayfo (Pys7,0)T(y,t)dv /':
5. An example
We shall now consider the example of a beam of uniform rectangular
cross section with sides of length o, B, and we shall assume that the control
can be applied uniformly along the length of the beam. The problem is then

two—dimensional, and to solve the equation (4.4) for K{t,xl,xz,yl,yz), it is
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convenient to use the basis of D(A) defined by the eigenvalues of the

2 7 ;
operator V2 = 32 + 9 , 1in the present case. It is easy to see
2 T2 -
8x1 sz

that these eigenvectors (which, of course, should satisfy the boundary

condition (3.12)) are given by

e;n(xl,xz) = (-2 @D . cos{@PMx} + sin{@imx D -

H o
o a
(-A(a-PT cos{(n-1)I x,% ¥ sin {(n—%H)xz}) (5.1)
B B SRR ..,
B B
:Ehgi.

(for l<m,n<ed) . However, these vectors are not orthogonal for (m15n1)

# (mz,nz) and so we shall use the Gram-Schmidt procedure to obtain the new

vectors
®m - Ym n
where
1 _ 1
71 1 5 = Yy
Y = - Z ¥ var 5 =6k - Z 415 8, > 6., mn>2
- Ym Y sY Y- ’ A - gt & s>
T2
HHH Bk

i

. : 2 2
and the inner products and norms are with respect to L [b,u] and L [p,ﬁ].
0f course, the new vectors e n still satisfy the boundary condition (3.12).

Now put

x(x,y,t) = r I L L a (the (2 x,)e (v ¥,).
o1 ool kel Qo1 Mokt Ty 2 ELTL,72
Then, by (4.4), we obtain
PN ARRY
was v v by Uy & & . -

+* 4 § 3 E .5 ®° (t)
mel nol kel pe1 "M { opg vy 8y 6 4 Tyn .6
$e mi ink { =1 mni ik ¢

H
g

YmOnfki¥idy * i£17m6nYk nyidi }

N~ =
=

i=1
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1
+8(xy) - F

S O T T T T S (O M Xiy8, (0%2)} X
2 5 m=l n=1 k=1 =1 mnk ¢ Y n T \P; 104 P,

i=l j=1
‘§ =] © © © Xl X2 -
z L 5 L a (B)y_(.) 6 () v, 6 }a.a--rn,
m=l n=1 k=1 1=1 mnk £ m"] nj ki ij
*1 X
where P: s pi2 are the X15%, components of 1 respectively, and
2 m
d " : :
;m =Y = L Epivi
dxl i=1
20 w0
d zn =5 = 151nn16i
dx2 n

for constants Eni®Mpni®

Hence, taking the inner product withYmﬁnYk g0 W have

A z z
Skl TP T A i T A Min
= 1=
(s e] Z ]
TouE fmittik T ) mokiie )
| (5.2)
k2 1
LS |
* m n Vv ImJnIkJQ
B N 2. 2 > > X X -k
= z T opgc {: I a (£) v, (p.1) 6 (p.1) I J X
i=1 j=1 ky=1 L =1 kgt LT LT TR

0 of X X -~
o)
{ ! z a'mn kE(t)Ym (pjl) n (pj 2 Im Jnl}&i&'r

Jjij
ml 1 nl 1 11 1 1 E
a
where I =) vy dx
m m 1
o
J = f8 § dx
n n 2
o
and 6k={1 ifm=k
T (0 ifm#k

together with the final condition

k g

3
amnk!(tl) - Sm 6m v I'ranI 4

kg
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Consider now a general index pair (i,j) and associate with i the numbers

il,i2 such that

(11—1)2 <iiii and i, = [(k+1)/2]

where lfkf?il—l and [q] is the integer part of a. Then put
mi = 1l . ni = 12 if k is even
m, = 12 " i 1l 1if k is odd

Similarly associate with j the numbers kj, Ej defined in an analogous way.

=’
|

Then we define the matrix jk with (i,j)th element

f.,. =a

1] m,n. k..
11737

s
Similarly, we introduce the matrices 3',J3 where

Py = I
j"1’_1 Lo, e, k.JE./ v
i1 173

where we have introduced the notation

ef ={1 if pP>q
0 otherwise

and, finally, we introduce the matrix tfdefined by
N N X X

2.2 1
J.. = w5 Y Yy, 6. b, o
1] o T kJ. o Q,J. o

2 ]
b L T
5

%1 %9 =
Ym.(pe )6n.(p )Im.Jn.} aaaBruB .
1 1 11

Then, it can be seen that equation (5.2) becomes
o+ e AT+ 1-% - KUK (5.3)
where I is the infinite identity matrix, together with the final condition
i(tl) =1-%.
-l+e 2 -l+e
Note that Q(t) € ¥ (H (), L°(2) ) and D(A)E H (2), so Q(t) e £ (pa),

2 . . .
L7(Q) ). However, A is a representation of Q with respect to orthonormal
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bases of D(A) and LZ(Q), so that

ke £l ok .

2% Eﬁz is the subspace defined by the commutative diagram

D(A) g L2

~ ¢ VA"
2 2
Ql c 2

It is well-known that the Riccati equation can be replaced by an equivalent

linear equation together with an initial condition. This can be achieved

by putting

= yx

=) - (5 )0

or Z = Fz,say, and

where

¥(0) = (I=H)X(0) -
It is convenient to set X(o) = I, and then Y(o) = I—j. Since the solution
of (5.4) exists in iuljﬂjﬁf(flj@, we can rearrange the terms as we desire.
Hence, if
F=[F F‘X e 2 (2216221 e )
3 4

i3 lji,j<m , l<r<. we shall define

T S, e
where
fij = fl.. f2.. 1<i,j<o |,
1] 1] » -
f3 f4
ij ij

Making a similar obvious definition of Z, %e see that (5.4) is equivalent

to the system



&l
e =Y
|
]
r |
|
|
~~
(@]
p—
1]

=
=
o

Hence,

1]

Z(t) = exp(Ft)Z(o) , - ig 0 Pal*

A ol tel).
where  oxp(Ft) is the gamigrewp 5@3\”‘&“{ by FGL(E' o )2
1f now v represents the obvious inverse isomorphism of 2 =8 @2,

then
et
z(t) =(x<t>) = exp(Ft)Z(o) ,
Y (t)

and.&&can be determined from X and Y; i.e.

=1 =1
fo= Y(eDX(E) T = EE
where éxp(fﬁl)ifo) = ( El) ;
.E2
6 Optimal Selection of the Control Points

The optimal control problem has been reduced in the preceding sections
to the problem of solving a nonlinear partial differential equation (4.4)
and in the case when the spectrum of the operator A can be found, the
solution can be written explicity as an infinite matrixcexponentiali This
optimal solution, of course, will depend on the placing of the control
actuators, i.e. on the points P;s 1<i<N. It is therefore of considerable
interest to be able to optimally select these points to give the best
performance. This can be achieved by first recalling the result,
Lemma 6.1 ([2]). The optimal cost for the control problem in sections 3,4
is given by

Jk(p sevespy) = KT, )T >,

whereQis the solution of the Riccati equation (4.1) (which depends on pi)
and TO is the initial temperature distribution.®

We shall suppose that the surface of the body under consideration
consists of a number of subsets of certain algebraic varieties. Then, we

can assume that it is defined by a set of j inequalities and m—j equalities,
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8i(x) =0 , jHl<im,
o3 2 . .
where Xe[R (or xe¢ R’ for a two-dimensional body).
It follows that we must minimize the objective function

f(r) = f(pl,...,p ) = J*(pl,...,pN)

N

3N N
where T = (Py;sPy)sP 3sPy1sPypsPygs e Py sPygsPyg) € R T (or RY  for 3

two—dimensional problem), subject to the constraints
8ra( -1)N) = 8;(P)) <0, 1N, I<i<j
g2+(i_l)N(r) 0 1<2<N, j<i<m

and, of course, p, = (r5.) 1y41 T3(a-1)+2,53(1-1)+37.

Introducing jN slack variables T 1<i<jN , we have the problem

minimize f£(r)

subject to g2+(i—l)N(r) + rS,E+(i*1)N =0, 1<R<N,1<i<j -
gl+(i—1)N(r) =B s Ll<a<N,j<i<m
rS’k 80 1<k<jN

Forming the Lagrangian

= _iN
F(r’rS,A) = )\Of(r) E )\1 [rsi+gi(r)]
i=1
mN
- g, (r) ,
i=jN+1 1. "L
where (ki)lijmN is a Lagrange multiplier, we have the necessary conditions
mN
* %
A agér ) _ y Ai Bgi(r ? S0, j=l,....3N
j i=1 arJ
g;(r¥) =0 , i€l (6.1)
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~
for an optimal solution r#*, where I, I are the index sets corresponding
to active and inactive constraints, respectively (cf Hadley [3]).
Now,

f(r) = J*(Pl,---sPN) = <TO’ Q(tO)TO>

= Jolq K(x,¥7,t )T (x)T_(y)dydx

and % is a function or r. Hence, the necessary conditions (6.1) become
|
mN og
ok = S (r%
hofﬂfﬂ_— 3¢(XsYitosr ) TO(X)TO(Y)dde .Z Aiw_&ﬂr )=O, j=1, ., 3N
or, i=1 “or.
] ]
gi(r*) =0, 1el (6.2)
1. =0, iel,
i

Returning to the example of section 5, we have a two dimensional
region defined by the constraints

xlxz(xl-a)(xz-B) =0

together with the inequalities

o > >
1...O

B 2x, 20.

2
We can therefore define the constraints as follows (for simplicity we
assume that N = 1):
81(X13X2) = _xlfo

8,(x;5%,) = x,-0g0

g3(xl,x2} -ngo
g, (x>%,) = x,7B<0

gs(xl,xz) = x xz(xl-a)(xz—a) = Q.

Now let
(x,,5) = T 1 (x,) 6. (x,)
T (x,,x = Z t..y.(x §.(x
g =2 jel 5l 1] "k % il
Then,
I . J_ 3 s
20 o X(x,y,t ;1 )TO(X)TO(y)dydx
]
ob +s) o oo 3

=8 (t ,r%) t t
2 3 5
m=1 n=1 k=1 151 rj mnkl " "o mn ki



-0 -
_ (oA
- tr(ar.ﬂ&jo)
Ol | i
5E 3E
_ 2 -1 __ - -1°%%1 _ -17,,
— o of ( '-'-1:;- El E2E1 AT El ]'J 0)
=t B.E_z E-l-A——aElE_l i
T or 3P 1 i | 8. (r*), say,
| ]
Whereﬁj = (4.) = (t t _),
o o“ m.n. Kitj

and so the necessary conditions (6.2) become

(r)-()\ﬂ

T (rf-a) - (r3-6) +Agrirs (v} p))

|
o

2

1]
(@]

Oz(r*) - (-A3+A4 Sr* (r*~u)(r*—B)+A5r{r*(r*—u) )

These equations must be solved for r?, rg together with the equations

g; (r¥) =
for the active constraints 8, - This can be done by numerical search
techniques by first allowing only the 8s constraint to be active (in which
case Al AZ 3= 4 0) and checking to see if the r# satlsfles the remaining
constraints. If not we allow antother constraint to become active and
repeat the procedure, until all constraints are active. (This numerical
procedure can be achieved by assuming that X(s,u,t) is represented in terms
of a finite number of modes emn)

7. Determining the Stress Field

As we stated earlier, we shall not attempt to obtain a complete solution
for the dynamic plastic boundaries, but merely solve the thermoelastic equations
in terms of the temperature T. After finding X and the optimal points p; we
can solve (3.11) for T. For simplicity we shall again return to the example
of section 5 and assume as before that N=1. Hence (3.11) becomes

3
az wvlr + uHuas (p-p)
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(dropping the suffix i and replacing Py by p), and so by (4.6),

o1 = T - ()’ [x(F,y,t)T(r,t)dv 8(p-D)

ot

where we have normalized R (which is now just a scalar) to 1.

Using the basis on of D(A) as before, we obtain

' = . T .y. 5
Tmn(t) L izm Tinglm " izn ml‘Lln
2 [ee] (o] oo [o o] - _ _ _
— (uH2) ) Y)Y ) a Y. (p,) & (. NT,_ (B)y (p )6 _(P,)
k=1 4=1 mTI nfl mlnlki ml 1 n, 2 ki ml 1" n*2
where
= .y
' izl jzl i3
and so

’% _ E’ 'T +(F'1[-"-J’Q(E))T

= A 4 : v .
where * and % are as in section 5, and ‘T ,| " are column vectors defined by

m.1l. s
11 1

T, =T ™, = Ym.@]_)an% ()

(i,mi,ni are as defined earlier). Hence
Y= W0l T, |
. ‘ i ol [TV gy
where U-U,JS) ¢ the evelaluon ortg-nd{,ch ﬂrw..e_m‘\,d i‘j 3 T*i"\\) T s)
; ; ; 2 : i
where again LL(t,S) exists in L. (25,2 ) as before. Having determined
T, it follows from (2.3) that

v(x) = -(+9a_ [ T(y) L dv
4T(1-v) r'
000 = =[G+ L G +OT WIS, ]

for =xedQ. Then gBQ is a tensor-valued function defined on the boundary of Q.

It remains therefore to solve the biharmonic equation

V' ¢ =0
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subject to the boundary conditions

(‘b,yy - (VBQ)XX
¢,xx - (Wéﬂ)yy
¢,xy - —(Uéﬂ)xy '

However, this is now an elementary exercise in partial differential equations
L
and so we shall not bore the reader by writing out the details.

The general stress field is therefore given by

o The AS; e Y2 Goe; +(a 6/0 x, j)( M L 1,2 (7.1)

where Eij = (ui,j+uj,i)/2 and u, = aw/axi.
This stress field is only valid, as we states earlier, as long as no
yielding takes place in the material. However, some indication of the plastic
zones can be obtained by finding the points xefl where the stress values which
are larger than those given by the yield criterion. Therefore, using Von
Mises yield criterion, for example, the yield set ﬂy(t)Eﬂ is given approximately
by those points xeR where
. s T
(O () L
2 2 2
where oy is the yield stress of the material (which, of course, depends on the
temperature) and Uip are the principal values of the stress field given by
(7. L),
8. Conclusions
In this paper we have given a theoretical study of an optimal control
problem in the area of residual stress relieving. As we have seen, it is
possible to write down the Riccati equation and solve it in a particular
case in terms of the,%xponentialjof an infinite matrix. Of course, numerically

it is sufficient to consider a finite number of modes in the expansions of the
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various functions involved and so these functions are calcuable and lead to
an expression for the optimal cost in terms of the points at which the control
is applied. We then applied Kuhn-Tucker theory to derive necessary
conditions for the optimal selection of these points. Finally, the
derivation of the termal stress field was considered and an approximate method
ofi determining the plastic regions was discussed. Since our interest is
mainly in the optimal control problem, we did not persue the complete
determination of the plastic regions, which, of course, would be necessary to
obtain an accurate picture of the residual stresses. (This, in itself would
be an interesting and complex problem.)  However, if the optimal control
is effective, the residual stresses should be small and the plastic regions
should not be too important.

It is hoped that this paper has shown that this area of engineering has
some interesting applications for the abstract theory of optimal control of
partial differential equations, where the control is naturally restricted
to the boundary. The reasoning requires some fairly sophisticated ideas of
mathematics, but, as we have seen, these are necessary for a proper
interpretation of the boundary control, and hopefully this will not deter

the engineer from reading the material presented here.
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