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ABSTRACT
The paper considers the problems of controller design for unknown or
badly-defined multivariable systems if the decision is taken to use
fixed proportional plus integral controllers with no adaptive or self-
tuning mechanism. Attention is focussed primarily on the case of
discrete/sampled-data systems with synchronous input and output
sampling. It is shown that controller design can very often be
undertaken on the basis of a 'rough and ready' plant model that is
a multivariable generalization of the classical notion of a first
order lag deduced from open-loop plant step response data. The
consequent controller is capable, despite possibly large modelling
errors, of generating high-performance feedback systems exhibiting
fast response speeds, zero steady state errors and small loop inter-
action effects. The transient effect of bounded nonlinearities such
as measurement dead-zone and/or quantization effects is also discussed.

Several numerical examples are described.




1. Introduction

Almost without exception frequency domain methods for the design
of feedback control schemes for both scalar (Raven (1978)) and
multivariable systems (Rosenbrock (1974), Owens (1978), Harris and
Owens (1979) and MacFarlane (1980)) rely upon the existence of a
model of the process to be controlled (the plant) in a form suitable
as a basis for design calculations such as simulation, transfer
function matrix or frequency response evaluation, calculation of
poles and zeros etc. There are many instances however when a plant
model is not known or the available plant model (obtained perhaps
from a detailed analytical modelling exercize) is so complex that
design calculations other than simulation are not feasible with
available computing facilities. In either situation the plant model
is (at least partially) unknown for the purposes of controller design
yet the problem of constructing the control system still remains'

At the present time, there appear to be three general philosophies
providing possible solutions to the problem:

(a) Identification (Eykhoff (1974)) of a low-order approximate system

model from off-line analysis of input/output data obtained from plant
records or simulation of a more complicated plant model. The
resulting model is then used as the basis of controller design and
the success of the approach assessed by on-line tuning at the
commissioning stage or by extensive simulations of the controller
using the real plant model.

(b) Self—tuning control of the unknown system (as described in other

chapters) using a control strategy based on an assumed low-order
parametric system model and on-line identification of the required

controller parameters.



{c) Robust design of the control system in a manner ensuring that

closed-loop stability and performance are insensitive to the unknown
components of system dynamics.
All three philosophies have their own problems and areas of

applicability and it is not the purpose of this chapter to make

abstract judgements. We will however restrict attention to the
notion of robust controller design for unknown systems and highlight
its place in the scheme of things using the following observations:

(1) If a controller designed on the basis of an identified
plant model produces satisfactory closed-loop performance from this
model, it is not necessarily true that the real plant is even stable
and, if stable, the design is not necessarily insensitive to
modelling errors, time-variation of parameters or nonlinearities.
This is particularly true if high performance specifications are
demanded for the closed-loop system!

(1i) Self-tuning controllers are known to be capable of
providing useful solutions to practical design problems and a number
of stability conditions are known (see other chapters) when the plant
model and the identified model have the same order. Little is known,
however, of the general effect of order mismatch on the performance
of the algorithms or of the effect of nonlinearities!

(iii) Both identification and self-tuning concepts require
either access to sophisticated identification software or the use
of high-level control hardware and software.

In this chapter it will be shown that it is possible to identify
a class of unknown multivariable process plant for which robust
proportional plus integral control systems can be designed without

encountering the difficulties (i)-(iii) above. Clearly if a given




piece of plant belongs to this class, robust design is a powerful
alternative to the other strategies. This power is, however,
obtained at a price - it is (in theory) necessary to have certain

@ _priori information on the system structure! In many cases this
structural information may well be self-evident from the physical laws
governing dynamic behaviour, but, in other cases, it may be necessary
to assume that the structure is correct and assess the validity of

the assumption by the success (or failure) of the final design.

The conceptual basis of the ideas, as illustrated by the well-
known technique from classical control of approximating plant dynamics
by a first-order lag, is described in section two together with its
theoretical justification from root-locus ideas. Section three
extends the notion of a first-order lag to the case of multivariable
process plant (Owens 1978, 1979) and outlines how simple two term
controllers ensuring fast system responses with the required overshoot
and damping characteristics and small loop interaction effects are
easily designed without the need for other than 'back of envelope'
computing facilities. In section four the use of the 'first-order
controller' for the control of higher order plant is described (Owens
1979, Owens and Chotai 1980a) with emphasis on prediction of stability
and transient performance and an evaluation of its sensitivity/
robustness (Owens and Chotai 1981) to data errors. Section five
describes some illustrative applications of the theory and, in section
six, it is noted that the design technique is easily extended to cope
with assessment of the effect of measurement nonlinearities (Boland
and Owens 1980, Owens 198la) such as guantization and deadzone.
Finally, in section seven, a brief review of current work in the

area is given.



Throughout the chapter attention is focussed primarily on the
intuitive source of the ideas, the form of the rigorous mathematical
results and their interpretation in practice. The proofs (which
rely on extensive use of linear systems theory and functional analysis)

can be found in the references.

I The Single-input/Single-output Case: A Motivation

In order to illustrate the basic notion underlying the technical
content of this chapter, consider the single—input/singlé—output system
described by an n-dimensional linear, time-invariant model of the

state-space form

% (t) Ax(t) + Bu(t)

y(t) Cx(t) Lo (2.1)
or the equivalent differential equation

P(D)y(t) = Q(D)u(t) e (2 42
over the range of signal amplitudes of interest. Here A,B,C are

real matrices of appropriate dimension and P,Q are polynomials in the

'D-operator' D = d/dt. Denote the system transfer function by

G(s) g C(sIn—A)ﬁlB

O
n

vea(2.3)

g
n
-

and consider the problem of designing a two-term controller K(s) for
G(s) to ensure the required stability, transient performance and
tracking characteristics from the closed-loop system shown in Fig.l(a).
It is clear that controller design for the plant is possible in
the normal manner if G(s) is known or, at least, if the frequency
response G(iw), w>0, and the number of closed right-half-plane poles
of G is known. Suppose that, for reasons such as those outlined in

the introduction, G(s) is not known but that the system response y(t)




to a unit step input has been obtained from plant tests or a
simulation of an available complex model. A ‘'rough and ready'
approximate model of the process is easily obtained from the well-
known graphical construction shown in Fig.2 and can be represented

by the first-order transfer function

A a
GA(S) = T+ s% ... (2.4)

which is defined and non-trivial if a#0 and y(t) has non-zero

derivative at t = O+. An alterxnative form is

. T(s) = sa +a ) A #£0 .. .{2.5)
[¢] i o

where, from the initial and final value theorems, we have the useful

identities

= lim sG(s) = CB
t=0+ t=0+ S-»c0
e (R46)
(from which we note immediately that CB # O and that the system

transfer function must have rank unity) and

Bl = & = y,(4=) = y(=) = LimG(s) e (2.7)

4 50
The unit step response yA(t) of the approximate first-order model may
be very similar to y(t), particularly if there are a large number of
dipoles present in G(s), but, in general, it should not be anticipated

that the approximation is good in open-loop conditions.

Suppose now that the two-term controller

ki) = B> (1 + 23 ) T>0 ... (2.8)
a sT

is designed for the approximate plant GA to ensure the required



stability and transient response characteristics from the approximating
feedback system shown in Fig.l(b). This is a straightforward exercize
but it is of no great value unless the results enable us to make

useful predictions about the stability and performance of the real
closed-loop system Fig.l(a) incorporating the final design. It is

at this stage of the theoretical work that it is necessary to make

some assumption concerning the structure of the unknown real plant.
More precisely, we will suppose that, by means unknown, it is known

that the plant G is minimum-phase! Remembering from the above that

we also require that G has rank unity, a simple classical argument
yields the observation that the root-locus of the configuration Fig.l(a)
for gains p>0 has one first order asymptote and n dipoles in the left-
half plane at high gains and hence that
(a) the real closed-loop system is stable for all high enough
ggigg_p, and
(b) the closed-loop response has a first order character at
high gains.
These ideas are illustrated in Fig.3. The first observation is
reassuring as it indicates that controller design on the basis of
a rough and ready first order model can be successful. The second
observation provides some intuitive justification of the use of the
first order model for prediction of closed-loop transient performance,
The justification of the above ideas can be obtained from the
rigorous multivariable arguments outlined in Owens (1978) , Edwards
and Owens (1977) or, in more detail, in Owens and Chotai (1980a) .
Our main concern is to consider the generalization of this procedure
to the case of multivariable sampled-data systems (Owens 1979, Owens

and Chotai 1980a). This is described in the following sections but



it is useful at this point to highlight the essential features in
the context of the scalar case.

Suppose that the system input and output are actuated and sampled
synchronously with sample interval h. Assuming piecewise constant
inputs, the input and output W a u(kh), ¥ = y(kh) are related by

the discrete state-space model
= +
T R
Ve = ka ...(2.9)

or by an equivalent difference equation

B el
Pz )yk = Q(z )uk ...(2.10)
where ﬁ,é are polynomials in z_l and

2] Bdt v (2 Y1)

The system z-transfer function is denoted

-1 .
A -1
Glz) & clzr -0y Ta =22 ) el (2.12)
n -1
P(z )
A 'rough and ready' approximate model of the process can now be
obtained from a known response from zero initial conditions to a unit

step input by the construction illustrated in Fig.4 to yield a

first-order z-transfer function

_ a
G0 =T ... (2.13)

which is defined and non-trivial if a # 0 and y(h) # O. An alternative

form is

G. “(z) = (z-1)B + B , B #£0 ... (2.14)
s} i 5 o}



where
B -1 = yA(h) = y(h) = lim =zG(z) = CA s s (Za15)
° |z [+
and
_l .
B1 =a = yA(m} = y(») = lim G(z) s v [2:16)
z+1

Clearly the real and approximate plants have identical initial and
steady state response characteristics.

Consider now the question of identifying situations when a two-
term controller designed using the simple first-order model will
produce a stable closed-loop system with the required performance
characteristics when applied to the real plant G. This problem is
non-trivial (Owens 1979, Owens and Chotai 1980a) but the intuitive
basis canrbe motivated using the results for the continuous case.
More precisely, we have seen that the use of 'high' control gains
is sufficient to ensure success in the continuous case. Interpreting
the use of 'high' gains as the generation of 'fast' closed-loop
responses and noting that fast closed-loop responses will require
fast sampling conditions in the discrete case, it is intuitively
obvious that the use of 'fast' sample rates will form part of a set
of sufficient conditions in the discrete case. Noting also that,
under fast sampling conditions, a discrete system will tend to behave
(roughly speaking) like a continuous system we must alsc expect that,
as in the continuous case, the underlying continuous system will need
to be minimum-phase with rank one transfer function. In summary,
on intuitive grounds, the following conditions can be expected to be
sufficient to guarantee the success of controller design based on the

first-order approximate model:



-1
(a) The sample rate h =~ must be 'reasonably high', and
(b) The underlying continuous system should be minimum-phase
with rank one transfer function.

These statements are in fact correct and carry over to the multivariable

case provided that a little care is taken over the choice of control

system! The generalization is described in the following sections.

B Discrete First-orxder Lags: The Multivariable Case

The generalization of the material of section two to the multi-
input/multi-output case relies upon the generalization of the idea of
a first-order lag (Owens 1979, 1981b and Owens and Chotai 1980a).

By analogy with the scalar case (in the form of equation (2.14)) an
m-input/m-output system with synchronous output sampling and control
actuation of frequency hhl and with mxm z-transfer function matrix

GA(Z) is an mxm discrete first-order lag if, and only if,
¢, Mz) = (z-1)B_+ B | (3.1)
A i O l 5 8 & L]

1 with [BO| # 0, In the case of m = 1,

this definition clearly reduces to the familiar scalar first-order lag.

for some mxm matrices BO,B

The suggested controller for GA has the multivariable proportional

plus summation form

(1-k.) (l-c.)=z
J J

D) } - B 0. (3.2)

1<j<m

K(z) = B diag{l-k.c., +
o = J 3

parameterized in terms of the parameter matrices Bo'Bl and scalars

& & The controller can be realized via the state-

k ,..,km and cl,.., i

1

variable model

Geir T % t



e LY e

u, = B diag{(l—kj)(l—cj)}lfjimqk

+ (B diag{2-k.-c.} - B, )e N (g |
0 = 1

1<j<m k

or, in cases where (l—kj)(l—cj) = 0 for a number of indices j, a minimal
realization of this model obtained by deleting the states in g that

correspond to these indices.

After a little manipulation, the closed-loop z-transfer Ffunction

matrix
H (z) £ (I +G(2)K(z)) G(z)K(z)
& m
= diag { - (o (@iagl®k, -s,]
= el YR Y (2-a.) : Z ldiaglemr,mey ;
J i° l<ism 1<j<m
-8 g J % (B Lo« diagll% o ] )) 3.4
5 1 e M 1< sl 3

l1<j<m

which takes the form

gidel =0 ) = [lekoe )
J Ji]

= o J
Hc(z) diag{ T 1 } . ...(3.5)
J J 1<j<m
in the special (and very important) case of BO_lBl = 0. Clearly
the closed-loop system is stable if
-1 < kj <1 ' -1 < cj < 1 (1<j<m) s ww (36

with rise-times and reset times in loop j obtained by suitable choice
}

of‘tuning parameters kj,cj respectively and zero steady state errors

in response to steps if Cj #1. In particular, if BO_ B1 = 0,

equation (3.5) indicates that the closed-loop system also possesses

small interaction effects between its loops.
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In summary it is seen from the above that the given controller
(3.2) is capable of producing the required rise and steady state
responses from GA by suitable choice of parameters, and, in a given
special case, the closed-loop system is also approximately non-
interacting. A more detailed analysis (Owens 1979, Owens and Chotai
198la) also indicates that the special condition BO_lBl ~ 0 can

always be achieved under fast sampling conditions and hence will

frequently be encountered in practice.

4. Control Design for Unknown Discrete Multivariable System

using a First-order Approximate Model

Consider an m-input/m-output sampled-data system with synchronous
-1
input actuation and output sampling of frequency h and described
by a state-variable model of the form of (2.9) which is supposed to

be generated by the underlying continuous model (2.1).

4.1 Construction of First Order Approximate Model

The approximate model (3.1) is characterized by the matrices BO
and Bl. The method of estimating them depends upon whether or not

the large, complex model (2.9) is known. If it is then BO can be

defined by the natural generalization of (2.15) to the multivariable

case,
...l N
BO = lim zG(z) = CA ga s 18a1:0)
| 2]t
provided that CA is nonsingular. It turns out (Owens and Chotai
1980a,1981) that the choice of B, is not too critical. If we require

A

the approximate model to reproduce the same steady state characteristics
as the plant, the natural choice is the generalization of (2.16),

namely



= 1P w
-1 : -1
B = 1im G(z) = C(I_-9) ~A -..(4.1.2)
1 n
2+l
if In—® is nonsingular. Alternatively the choice of Bl = O can be

acceptable (Owens 1979, Owens and Chotai 1980a) and has the advantage
of considerably simplifying the form of the approximate model. In
more general situations it may be possible (Owens and Chotai 1980a)
to choose B1 to achieve other desirable properties but such
considerations are outside the scope of this chapter.

Supopose now that the model (2.9) is not known but that plant
tests are undertaken to estimate thé output vector sequence

{yl(l),yz(l),...} generated by a unit step input in the T plant
input from zero conditions and that these experiments are repeated

for all indices, 1<i <m. Defining

(1) (2) (m)
Y=y o e vy Ml . ko e (4.1.2)

then it is clear that

CA = Yl )

and, if the plant is stable, that

gz -3 R & Ty eo.(4.1.4)
n k
k-

Relations (4.1.3) and (4.1.4) can then be used in (4.1.1) and (4.1.2)

respectively to obtain computed estimates of Bo and Bl'

4.2 Stability and Performance of the Real Feedback System

Consider now the problem of predicting the stability and
performance characteristics of the feedback system of Fig.l(a) (with
the controller (3.2) deduced from a first order approximate plant
model) in terms of the characteristics of the approximating feedback
system of Fig.l(b). Several approaches are possible (Owens and

Chotai 1980a) based upon refinements of the following result:




-

Theorem 4.1: An unknown m-input/m-output discrete multivariable plant
(2.9), known to be generated from an unknown continuous multivariable
plant (2.1) that is both minimum-phase and of uniform rank one (ie CB
is nonsingular (Owens 1978)), will be stable in the presence of unity
negative feedback with forward path controller (3.2) deduced from a
first order approximate model if

{a) the tuning parameters kj' cj, 1<j<m, satisfy (3.6) (ie the

approximating feedback system Fig.l(b) is stable),
(b) the sampling rate h—-l is sufficiently fast
Moreover, under these simple conditions, we have, for each

reference demand sequence {rk} , the relation
k>0

lim (y, - (y. ). ) =0 cwal{@a2 1)
hsot X Bk

holds uniformly on the integers k>0.

Remarks: (i) In more general situations (Owens and Chotai 1980a) it is
necessary to add in the condition that the procedure for choosing Bl

is such that BO—lBl+O as h»0+., This will always be the case if the
procedures of section 4.1 are followed!
(ii) It is not necessary that the real plant is stable, nor

that the real and approximate plants have similar stability

characteristics.

Despite its simple form, the theorem requires careful interpretation
for the purpose of application. More precisely, the result states that,
if direct computation (using a model when available) or a combination

of physical insight and intelligent guess work suggests that the
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discrete plant under consideration has underlying continucus dynamics
possessing the structural properties of being minimum-phase (Owens
1978) with CB nonsingular, then the procedure of approximating open-
loop plant dynamics by a multivariable discrete first order lag using
the techniques of section 4.1, designing the controller using this
model using the results of section 3 and finally implementing the
designed controller on the real plant will be successful if (a) the
controller stabilizes the approximate plant and (b) the sampling rate
used in the implementation of the control scheme is fast enough.
Success is, of course, measured by the consequent stability of the
final design implemented on the real plant and, in particular, the
fact (deduced from (4.2.1) that, under fast sampling conditions, the
closed-loop responses of real and approximating feedback systems will
be almost identical.

The application of the result is illustrated in later sections.
It is important to point out that, except in certain special cases
(Owens and Chotai 1980a), it is not possible to provide computable
estimates of the 'slowest' sampling rate (h"f)_l that will guarantee
stability. This is a direct consequence of our assumed ignorance of
those parts of the dynamics of the plant that cannot be modelled by
first order dynamics and cannot be removed unless.more detailed
information is used. For a given choice of sawmpling rate it is
clear therefore that the success or failure of the approach will only
be discovered when the controller is finally tried out on plant or
plant model. If the response characteristics obtained are not
satisfactory, the theorem at least points out that the use of an
increased sample rate will improve matters. If the responses are

satisfactory, then ........
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4.3 Sensitivity and Robustness (Owens and Chotai 1981)

An important interpretation of the above results is that careful
design of the proportional plus summation control system and the use
of reasonably fast sampling will yield a closed-loop system that is
insensitive to a large class of perturbations to plant dynamics that

leave the chosen values of BO and Bl unchanged and also do not

violate the minimum-phase requirement. The control system is said
to be robust with respect to this class of perturbations. The

available proof of the results however (Owens and Chotai 1980a) does
rely on exact evaluation of the BO and Bl' Clearly this is not going
to be possible in practice either because of computational errors,

the effect of noise or errors in plant measurement equipment.
Fortunately it can be shown (Owens and Chotai 1981) that stability

of the final closed-loop design will be achieved even if large errors
are introduced and, in particular, that stability is most sensitive

to errors in estimation of Bo.

5. Illustrative Examples

In each of the following examples the 'unknown' system will be
represented by a known linear model for the purposes of obtaining

comparative responses. This fact will not be used in the controller

design however.

5.1 Level Control: & Single-input/single-output Example

Consider the problem of the construction of a proportional plus
summation digital controller for the system illustrated in Pig.5 in
order to regulate the liquid level in vessel one to a specified
equilibrium level. It is assumed that input actuation and output

sampling are synchronous.



- 16 -

Assuming linear dynamics the plant has a (assumed unknown)

model of the second order form

l( 1 1 1 1
i = p ___) Kol
a1 R B 21512 2y
x(t) = x(t) + u(t)
; . ELW o
42712 %2 P12
y(t) = [ 1 0 ]x(t) , i 3 088 adind)
. il . -1 -1,
which has CB = a, # 0 and one zero at the point -a, R12 in the

left-half complex plane ie this system is always of uniform rank one

and minimum phase! Taking, for numerical simplicity,the case of
a; =a, = 1 and Rl = R12 = 1, the system has poles at s = -0.3 and
s = =-2,7. Assuming a sampling interval of h = 0.1 (which intuitively

corresponds to a fairly fast sampling rate for the system), then
analysis of the response to a unit step input from zero initial

conditions following the procedure suggested in section (4.1) leads

to the data BO = 11.02 and Bl = 1.00 defining the approximating
first order plant model. The unit step responses of real plant and
first order model are compared in Fig.6. They clearly differ but the

first order model captures the 'essential' features of the plant
response.

The design of the two-term controller for the approximate model
boils down to (dropping subscripts) the choice of k,c. But k and c
can be interpreted as governing the rise and reset characteristics of
the approximating feedback system in the sense that (equations (3.4)
and (3.5)) k can represent the fast pole and ¢ the slow pole of the

system. We will therefore choose k = 0.5 and ¢ = 0.95 for illustrative
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purposes. Theorem 4.1 now tells us that, provided that the chosen

sampling rate is fast enough, we can expect that the resulting

controller (obtained from (3.2) and the given data) will stabilize

the real plant with response characteristics very close to those
predicted by the first order model. That this is the case is verified
by the responses of real and approximating feedback systems to unit
step demands shown in Fig.7. The design procedure has clearly been

successful in this case!

5.2 Digital Control of an Open-loop Unstable Multivariable Plant

Consider the digital control of the two-input/two-output unstable
batch process discussed by Rosenbrock (1974) with continuous model

defined by the matrices

r 5

1.38 -0.2077 6. 415 -5.676
-0.5814 -4.29 0 0.675
A =
1.067 4.273 -6.654 5.893
0.048 4,273 1.343 -2.104
v 3
O 0]
5.679 0] 1 O L =1
B —, 7 L& =
1.136 -3.146 e I &= e
1.136 o |

R - T M

This model is assumed to be known but we will suppose that the designer
wishes to attempt controller design using only simple calculations with
verifying simulations. It is easily verified that the system is
minimum-phase with CB nonsingular and that it is open-loop unstable.
Assuming a sampling interval of h = 0.02, simulations of the open-loop

responses to unit step demands in each input in the manner described
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in section 4.1 leads to the data (equation (4.1.3))

0.0018 9.17
B = swre (B 241 )

-16.07 0.0057J

but, as the system is open-loop unstable, (4.1.4) does not hold and

we must use (4.1.2) to give

0.141 0.296
B = vi3 (5u242)

0.995 2.455
The responses of the first output of the real and approximate model
to a unit step input in the first channel are given in Fig.8 for
comparative purposes.

The design of the two-term controller for the approximate model
relies purely on the choice of tuning parameters. Remembering that
k. and c, are poles corresponding to rise-time and reset characteristics
in the jth loop, choose kl = k2 = 0.5 and ey =gy = 0:95 for
illustrative purposes and note that the elements of BD—lBl are small
so that we can expect a high performance controller with little
interaction between the two loops of the approximating feedback
system. Again theorem (4.1) tells us that, if our choice of sample
rate is high enough, the resulting controller (obtained from (3.2) and
the given data) will stabilize the real plant with response
characteristics close to those predicted by the first order model.

This is indeed the case as illustrated by the closed-loop responses

of the real and approximating feedback systems given in Fig.9.
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6. Effect of Measurement Nonlinearities (Boland and Owens 1980, Owens 1981)

The assumption of linear plant dynamics is very often
justifiable in engineering applications, particularly if the primary
function of the controller is to act as a regulator about a fixed
operating condition with only occasional and small deviations from
this point. Also the assumption of control linearity is reasonable
as the control calculations are performed 'inside' a computer. It is
frequently the case however that the control actuators and, in
particular, output sensors possess simple nonlinear cﬁaracteristics
such as dead-zone or quantization. We will restrict our attention
to the case of measurement nonlinearity illustrated in Fig.l0, where
the element N is a time-invariant, memoryless nonlinearity satisfying

the constraint (Boland and Owens 1980)

q
Nn - S ve e (61
lon = | <3 (6.1)
for all mxl real vectors n. Here’[x” = max ]x,| is the normal uniform
" 1<j<m
noxrm on m-vectors. This class of nonlinearity covers the case of

quantization and deadzone and can be extended to cover more general
cases (Owens 1981).

The precise problem that must be considered if the plant model is
unknown and controller design is undertaken in the manner outlined in
section four is the relationship between the dynamics of the approximating
linear feedback system of Fig.l(b) and those of the real nonlinear
feedback system of Fig.lO. The level of ignorance of system dynamics
assumed prevents a precise answer to this question that covers all
possible conditions. Following the general ideas illustrated in
theorem 4.1, it is possible, however, to prove the following nonlinear

analogue (Boland and Owens 1980, Owens 1981):
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Theorem 6.1: Under the conditions of theorem 4.1, for each reference

demand sequence {rk} » the responses of the approximating linear
k>0

feedback system and the real nonlinear feedback system satisfy the

relation

<. (6.2)

LA
N

lim || (y) - (v._) I
WO+ By B m

for each k>0, the limit being uniform on this interval.

The practical interpretation of this abstract result follows

from the definition of the uniform norm [ Im ie, under the stated
conditions, the maximum modulus of the transient error involved in
the use of the approximating linear feedback system to predict the

dynamics of the real nonlinear feedback system is less than the non-

linearity constant q/2 under fast sampling conditions. The result

can, of course only be applied in an approximate manner in real
(finite sampling rate) conditions, but it can be a good working
approximation (Boland and Owens 1980) and, at minimum, provides a
reassuringguarantee of stability (in the bounded-input/bounded-output
sense) and an estimated upper bound on the transient magnitude of any

possible limit cycles.

7. Conclusions and a Review of Related Work

The chapter has reviewed the conceptual basis and some formal
mathematical results available for the design of stabilizing two-term
controllers for a well-defined class of multivariable process plant
for which detailed knowledge of process dynamics is not available and
illustrated the application of the results by two non-trivial examples.

The power of the techniques lie in the guaranteed ability to design
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high performance, small interaction feedback systems using only a
small amount of system data deduced from plant step responses, an
assumed knowledge of some elementary structural properties of the
underlying continuous system and the implementation of a reasonably
fast sampling rate. The ideas do in fact apply in the case of
analogue control (Edwards and Owens 1977, Owens 1978, Owens and
Chotai 1980a, 1980b, 1981 and Owens 1981) and can be regarded as

the natural generalization of the well-known classical notion of
fitting a first order model to plant dynamics. In this case, it is
a partial generalization (in the delay-free case) of the well-known
"tuning' technique of Ziegler and Nichols (1942) as the designed
controller has a simple form, being defined in terms of elementary
plant parameters together with a number of 'tuning parameters' that
can either be adjusted on-line to produce the required performance
or estimated from analysis of the approximate first-order plant model.

The material can be extended in a number of directions to
increase its applicability and the information available. Some
indication of the effect of nonlinearities has already been obtained,
with encouraging results, and the use of more complex approximate
models is envisaged to cover cases where a first order model carries
insufficient information to make it a useful vehicle for design.
This is the topic of present study.

Finally we note that there are clear connections between the
ideas expressed here and those expressed in chapter six and the work
of Davison (1976), Astrom (1980) and Pentinnen and Koivo (1980)
which provide distinct and viable approaches to cover other aspects

of unknown systems control. All of these techniques do provide
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information on stability of the final design but the ideas expressed
here (when applicable) have the added bonus of providing information
on detailed transient performance in both the linear and nonlinear

cases.
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