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Abstract ‘ 2w, K1

A simple condition for the noncontrollability of homogeneous
bilinear systems is derived in terms of the impulse response of the
associated linear feedback system. The result can frequently be

checked simply by inspection of the transfer function poles and zeros.

The last decade has seen considerable progress in the under-
standing of the structure and properties of nonlinear systems (see,
for example, references (1)-(6)) with particular inﬁerest being
focussed in the study of internally bilinear systems (see, for example
references (3), (4) and (6)) with emphasis on the important problems
of controllability and characterizations of the reachable set from a
given point in finite time (see, for example, references (2), (3),
(4), (&) and (7)) in terms of Lie algebraic properties of the defining
state equations. It is unfortunately true however that we are still
at the stage when the available analytic results are difficult to
check computationally and it is consequently of great importance in
practice to obtain 'easily checkable' (necessary or sufficient)
conditions that can be investigated to provide some indication of

the possibility of controllability or its absence. It is the second

problem that is of interest here.

In this note we derive conditions for the homogeneous (in the

state) QL-input bilinear system

%(t) = (A + B(u(t)))x(t)
L

B(u = ) wu,B.C (1)
i=1 £ I 3

not to be controllable in R -{0} in terms of the properties of the



impulse response matrix

(A-kBC) t
e

H(t,k) =C B wwe (2)

of the linear system S(A,B,C) with

B=[B/Bys..uuBy] c=(c —)
e
CE
and subjected to unit negative feedback with scalar gain k. In

certain special cases, the required properties can also be identified
in terms of the pole-zero structure of the associated 'open-loop'

transfer function matrix

G(s) = C(sI_ - a) tp vus {4Y

The system will be termed controllable in Rn-{o} if, and only if, for

: . . n ; . ‘o .
each pair of points X and % in R -{0}, there exists a finite time

tf>O and piecewise continuous control inputs ui(t), 1<i<®, defined

on ED,tf] such that the unique solution of (1) originating at xO at
time t = O is driven to the state Xe at t = tf. All matrices
A'Bi'ci (1<i<) are assumed to be real and constant of dimensions
nxn, NXr. and rixn (1<i<f) respectively and, without loss of generality,
we will take rank Bi = rank Ci =X 1<i<q. We will also require the
partial ordering in L(RP,Rq) defined by the relation

D >0 1ff Dij >0 for 1<i<g , 1<j<p ...(5a)

D>0 iE D >0 and Dij > 0 for some i and j

... (5b)

Our main result can now be stated:




*
Theorem: If there exists]cEER such that H(t,k) satisfies the relation

H(t,k) > O YV t>o V xe[k",«[ s 1)

then the bilinear system (1) is not controllable in Rn—{o}. Moreover,
under these conditions, all trajectories originating at time t = O in
the cone PB é {x(SRF : X = Ba for some azo} generated by taking
positive linear combinations of the columns of the B lie in the cone

P, 8 (x€r" : cx > o}
Proof: Write the model (1) in the form
x(t) = (A + B(uo)) + B(u(t) —uo))x(t) s %5 (07

™
where a = (—k,—k,...,—k)EER& and k is arbitrary. The solution of

this equation is also the solution of the integral equation

(A+B(u ))t t (A+B(u )) (t-s)
x(t) = e 2 x(o) + f e © E(u(s}—uo)x(s)ds
[&]
v e £B)
9
Noting that B(u ) = z (-k)B.C, = -kBC and that B(u(s)-u ) =
(@] §21 1 1 o
L
Y (u, (s)+k)B.C, = B block diag{(u, (s)+k)I_ } C, it is seen that,
, i i7i i r. ,
i=1 i lflii

after multiplying by C and choosing the initial condition x(o) = B« # O

with uzO, we obtain
t
Cx(t) = H(t,k)a + [ H(t-s,k)block diag{ (u, (s)+)I_} Cx(s)ds
o) i lzizk
. (9)

Consider now control on the time interval {b,tf] with tf arbitrary and

*
choose k > max{k , sup max [ui(t)l}. Clearly H(t,k)a > O,
Ogtgtf l<i<g



Ostst,, and H(t-s,k)block diag{ (ui (s)+k)I 1}
i l<i<®
Noting also that Cx(s) o CBa = H(0)a>0, a simple argument using

z o, Ofsftftf.

(9) indicates that Cx(t)>0 for all t&[o,t ], and hence that the state
trajectory does not leave PC. The result follows as both control

input and tf were arbitrary.

Remark 1l: The identification of (6) with the monotonicity of the
system step response matrix immediately yields a simple corollary to

this result. This is omitted.

Remark 2: The factorization of B(u) defined by (1) is non-unique as

. . -1
can be seen by the identity B,C, = (B,N, ™)
ii : g )

(NiCi) valid for any real
nonsingular rixri matrix Ni' Suitable choice of the Ni may possibly

help in satisfying (6). Also transformation of the control wvariable

to the new input vector v(t) = Tu(t) could help.

The sufficient conditions for noncontrollability have the advantage
of being expressed in terms of a quantity (the 'impulse response')
familiar to practicing control engineers. The natural engineering
approach to checking the validity of (6) is to use Laplace transforms

and the identity
H(t,k) =i_l{C(SIn - a + kxBo) tB}
I (T + kG(s)) Ta(s) } < w 010)

(where m = rl+r2+..+r£) to compute H(t,k). For example, consider

the two-input system

—1+ul(t) 1
x(t) = x(t) R o 1 B
1 -l+u2(t)



1 2
-1 1 1 0]
A= ) B1=C1T= ) 132=c2T= ... (12)
1 =i (o] 1
and hence B = C = I2' Using (10) it is easily verified that
s+1+k 1
=1 1
e =17 }
o +
(s+k) (s+k+2) 1 atlik

-kt, -(k+2)t -kt -(k+2)t
e te e -e

L4

=%

-kt -(k+2)t -kt, -(k+2)t
e e < e +e

°° Vtzo Y xExr < (1)

v

and hence that the system (11) is not controllable.
To conclude, the following proposition identifies one particular
situation when condition (6) can be easily investigated by 'visual'

inspection of G(s) only:

Proposition: Condition (6) holds if £ =1, r. = 1 and the transfer

function G(s) has the form

6ls) = 155 (s-p.) et S
Py Po)eenees P
where the poles {Pj}lfjfn and zeros {Zj}lfjfn—l are all real and
satisfy the 'interlacing condition'
Py < 2] <SPy <2, eeeen <z . <P, wwarsn LaliD))



Proof: The interlacing property ensures. that the transfer function

n
G(s) = ) R,/(s-p,) ... (16)
o1 3 i |

where the residues {Rj} are either all positive or all negative.

n
In fact R.>0, 1l<j<n, as lim sG(s) Z R, =g_2>0 by assumption
1 |5 | j=1 J
and hence

4 n p.t
r(t,0 =d e} = ) Rye J >0 Y tso THY ol
=1

v

The result now follows by applying a-similar argument to (l+kG(s)}_lG(s)
noting, from elementary root-locus arguments, that this transfer
function has real, interlaced poles and zeros and gain equal to g,

for all choices of k.

Remark 2: The conditions £ = 1 and r, = 1 indicate that the system

has only one input and that rank B(u) = 1. Equivalently the bilinear

system is generated from the single—input/single—outpﬁt system y(t) = Cx(t),

x(t) = Ax(t)+Be(t) with input e(t) defined by the parametric feedback

law e(t) = u(t)y(t). Clearly controllability is impossible if the

linear system is 'interlaced' (the gain condition is irrelevant here

as, if 9,.<0, introduce the new control variable v(t) = -u(t)). This
is a nontrivial point as many physical systems possess the interlacing

property.

Remark 3: The computational problems arising in the verification of

the conditions of the proposition are relatively minor, even for high

order systems.
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