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Abstract
Abstract quantitative measures of the robustness of multivariablei
feedback systems with respect to feedback perturbations are presented.
The approach provides a means of considering a class of unstable plant
perturbations and gives some indication of the effect of the choice

Ve

of controller structure on robustness.

In recent papers [1J~[4] the problem of providing quantitative
measures of the robustness of the multivariable feedback system
illustrated in Fig.l(a) with respect to stable perturbations AG of
the forward path system G. Attention has been focussed on the effect

of additive perturbations G + G+AG and multiplicative perturbations

G + G(I+AG) of the forward path system G. One disappointing aspu:t
of these studies is that only stable perturbations are allowed whereas
it is intuitively obvious that the feedback system can be stable in

the presence of many (but not all) unstable perturbations. In some
applications, for example in the nuclear industry [5], small variations
in plant parameters over a long period of time can convert an open-loop
stable plant into an unstable plant. Clearly the control system must
be robust enough to cope with such unstable perturbations. Some
topological aspects of unstable plants have been introduced in [6]-[7]

but computable quantitative measures are not provided.



This paper provides a robustness analysis with respect to a class
of perturbations corresponding to (possibly) unstable linear
perturbations to the plant G in the modified linear configuration
shown in Fig.l(b) and simultaneous nonlinear perturbations to feedback
F. The 'forward path controller' K is separated from the plant G as
it will be assumed that the control system characteristics are known
to high accuracy.

An abstract functional analytic approach is taken. The plant G
is regarded as a linear map of an input vector space U into an output
vector space Y, K a linear map of Y into U and F a linear map of Y
into itself. The spaces U and Y are not assumed to be topological
spaces but we suppose that there exists suitable linear vector sub-
spaces UOCZU and YJCZY endowed with chosen norm topologies with respect
to which both UO énd YO are Banach (sub)spaces. A system G (say) is
stable (in the bounded-input/bounded-output sense) if inputs uEEUo
are mapped into outputs yGEYO or, more formally, the restriction
G]UO of G to U0 has range in Yo' In the case of a linear system
this is equivalent (with suitable continuity assumptions) to the
requirement that G|UG is bounded. No causality structure is assumed.

Consider initially the linear system of Fig.l(b) defined by the

relations

e = r-Fy wue (L)
It is trivially verified that these relations define a linear map

r vy on Y written

y=1ir e @)



We will suppose that this closed-loop system is stable in the sense
that Lc|Yo maps YO into itself. Consider now a perturbation AG of

the plant G of such a form that G+AG has a representation

v = G((u-v)

v = Hy TEY 6 i)
corresponding to a feedback perturbation of G as illustrated in Fig.2.
Assume also that the linear map H is well-defined and stable in the

sense that it is defined on the range of G and maps R(G)N YO into

U .
o}

Remark 1: It is not assumed that G, K or F are stable, nor that the
perturbed plant G+AG has any particular stability characteristics.

In fact G can be stable and G+AG unstable (or vice versa) as is
illustrated by téking U =Y = space of rational functions of the
complex variable s and U0 = YO = Banach subspace of functions bounded

and analytic in the 'Nyquist set' {s : Res>0, |s|<R} g Q with R

< (s) . If G is represented by multiplication

'large' and = sup

s€af)
by the transfer function 2/(s+l) then G is clearly bounded on UO but
choosing H to be the (negative) identity v(s) = -y(s), it is

trivially seen that G+AG has transfer function 2/(s-1) and hence is

unstable.

Remark 2: Using U, Y, UO and YO as in remark 1 with G represented by
multiplication by a transfer function G(s) = n(s)/d(s) of rank

(the degree 5(d) of d - 3(n)) equal to k>1, then the class of admissible
H can be written in the form n'(s)/d'(s) with rank < l-k or,

equivalently, as the sum of a polynomial in s of degree < k-1 and a



strictly proper transfer function with poles outside the closure of the
Nyquist set. The set of all possible plants G+AG generated by such
perturbations is hence represented by the set of all minimum-phase,

stable or unstable transfer functions of rank k with zero polynomial

nd' and characteristic polynomial dd'+nn' where d' is Hurwitz and

a(n')-3(d") < k-1.

We now prove a simple result providing a quantitative measure of
robustness with respect to the defined class of linear feedback

perturbations:

Theorem 1: If the feedback system of Fig.l(b) is stable, then the

system is also stable in the presence of linear feedback perturbations

of plant dynamics if |
(i) the control mapping K has an inverse, and |

(ii) LCK_IH | Yo_has range in YO and is bounded in the sense that

Moreover, under these conditions, the responses y and y' of the real

and perturbed systems satisfy the relation

A
ly'-vll < 1= ¥l «s s £

A -1 |
A= LK CH] <1 55 s 05)
(Note: (5) provides an upper bound on the response error y'-y

introduced by the perturbation).

must have a stable inverse or, in transfer function terms, that K is

minimum-phase. This is clearly no restriction in practice.

Remark 3: Conditions (i) and (ii) (in practical terms) imply that K



Proof of Theorem 1: The closed-loop dynamics of the perturbed system

can be written as

y' = G(u-v) 5 v = Hy'

u=Ke N e = r=Fy' .54 (6)
or, after a little manipulation,

y' = Lc(r - K_lHy) (D

The result is now a trivial consequence of the Banach contraction

theorem [8].

Corollary 1: With the above assumptions, the feedback system of Fig.l(b)
is stable in the presence of any bounded feedback perturbation
satisfying

=il
gl <1/ |t "l )

1

Proof: TFollows trivially from (4), writing HLCK~1H|[ < }|LCK_ "l .

These results have a structural similarity to others (see, for
example, ]1]) but has the advantage of (a) allowing unstable plant
perturbations and (b) providing an intuitive insight into controller
effects on robustness. More precisely, if we interpret K as an abstract
controller 'gain', the presence of the inverse K_l in (4) and (8)

suggests that high gains tend to increase the robustness of the system.

This is, of course, rather simplistic as LC depends upon K also, but
it does suggest the existence of the possibility (see [9], [10] for
specific examples of this idea in practice). To illustrate this

point, consider the example of remark 1 and let K be represented by

the proportional gain g>0. It is seen that LC = (1+GK)-1GK = 2g/s+1+2g



with HLCK—IH = 2/(1+42g) and hence, using (8), the closed-loop system
is stable in the presence of feedback perturbations of norm
HH]| < g + { which increases monotonically with gain. In fact,
if g>l, this perturbation set gemerates unstable plant pefturbations
as is seen by choosing H to be the negative identity.

An interesting corollary to the theorem relates the work to the

inverse Nyquist array design technique [12], [13] and provides a direct

robustness interpretation of that method:

Corollary 2: Let G, K and F be mxm rational transfer function matrices

with the diagonal structure F(s) = K(s) = Im and G(s) = dlag{gj(s)}lgjgm'

If the feedback configuration of Fig.l(b) is stable, then it is also

stable in the presence of stable feedback perturbations H(s) satisfying
m

sup max z "w——%i———— H.Q(s) z 1 p—C )
s€an l<jem 2=1|1+g," (s) .

Proof: Follows from the theorem using the spaces described in [13].

Remark 4: We recover the classical diagonal dominance condition from
(9) by writing H = (G-HXG)_I—G_1 whenever they exist and are analytic
in © and choosing the diagonal terms of H to be identically zero.
Equation (9) then reduces to the requirement that I+(G+.’_\G)*1 be

diagonally dominant on 3Q.

Finally, although robustness with respect to linear perturbations
of the plant is an extremely important practical notion, it is equally

important to examine whether or not this robustness is maintained if



nonlinear effects are introduced. The problem considered below is
the robustness of the configuration of Fig.l(b) when the plant is
subjected to linear feedback perturbations of the type discussed above
and the linear feedback F is simultaneously replaced by F+N where N is
a memoryless map of Y into itself of the form

N =N, +N ...(10)

where Nl and N2 map Yo into itself, N1 has finite incremental gain k1

such that

vy - Npz]| < &y [ly-z]] b3 7,2€1, ... (11)

and N10 =0 and N2 is bounded in the sense that there exists a scalar

g>0 such that NZYC:Y0 and

Iyl <3 V yex ... (12)

Theorem 2: If the feedback system of Fig.l(b) is stable, then the
system is also stable in the presence of simultaneous linear feedback
perturbations of the plant and nonlinear perturbations of the feedback

dynamics if conditions (i) and (ii) of Theorem 1 are satisfied and also
A -1
p = (1-2) HLCH ky <1 s (13)

Moreover, under these conditions, the responses y and y' of the real
and perturbed feedback systems are related by the inequality

1
ly'vll < =

1 q
+ A= + |lu || 2 ——————
i i(l—l) HY|| ” c||2 (1-2) (1-u)
eea (14)
Proof: The feedback relations of the perturbed system are

y' = G(u-v) 5 v = Hy' , u = Ke

e =1 - Fy' - Ny' —riy



which can be written as

y! =% ifE - K_lﬁy‘ - Ny") e (16

or, bearing in mind the fact that (4) implies that (I-l-LCK_IH)“1 exists

TH Y
o

y' = (I+LCK"IH)'1LC(r—Ny') e (17)

This equation has a unique solution y'E}YO for each choice of réEYO if
(I+LCK_1H)_1LCN is a contraction. Taking initially the case of

N2 =0 (ie q = 0), this is cleariy the case with contraction constant

A as

H(I+LCK'1H)'1LC(Ny—Nz)H

1A

Il ez &7 7 -l kg 1z ]]

Il ||
lf}\ ! Hy—z” ...(18)

using (4). We can in fact verify (14) in this case by choosing the

first iterate yo' = 0 in the successive approximation sequence and
; ~1... -1 =1 . =1 ;
note that vyt = (I+LCK H) Lcr = (I+LCK H) "y to give
=1 =1 u =T ™
i .
15 (I1+L K "H) Tyl < T }](I+LCK H) vl e (19)

1
|

Using the relationship H(I+LCK_1H)h < (1—}\)_1 and the triangle

inequality then yields

1 1

ly'-yll <lly" - (I+LCK_1H)_ || + H(I+LCK"1H)_ LCK"lﬂyH



u
< ity ey v+ vl

. (20)

(I'%H ¥ (1 FS) ”y“

The case of N2 # 0 is treated by noting that it is equivalent to the
situation when rGEYO is replaced by r~N2y'EEYO. Stability is therefore

unaffected by N, and (20) holds with y replaced by y—Lchy‘ ie we obtain

2

ly'=sll < ly'=G-L 300 + Ity

A

< GE N = vyl o+ el g

1
(ﬁ“‘ N sl + Nz g+ 1L Il 3

... (21)

I A

which is simply (14). This completes the proof of the theorem.

Remark 5: If, as is usually the case in nonlinear studies, a causality
structure exists, the result holds with all vectors and operators

replaced by their truncated counterparts. The proof is trivial.

In conclusion, a partial answer to the problem of robustness of
feedback systems to unstable plant perturbations has been provided by
considering stable linear feedback perturbations to the plant. The
results are a generalization of those underlying known design techniques
[}4] and also enable the effect of nonlinear feedback perturbations on

both stability and response characteristics to be assessed.
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