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Random Processes in Nonlinear Systems

Dr. S. A. Billings

Department of Control Engineering,. University of Sheffield

1. Introduction
Most systems encountered in practice are nonlinear to some extent due

‘to inherent distortion introduced by the components of the system such as !
saturation or because they include deliberately introduced nonlinear
effects (e.g. bang-bang controllers). Any system for which the super-
position principle does not hold is defined to be nonlinear. Nonlinear
systems exhibit phenomena like jumps, limit cycles, hysteresis and chaotic
motions which are not possible in linear systems. It is these characteris-

tics which often dictate that the study of nonlinear systems is restricted

to specific system structures.

The statistical analysis of nonlinear systems is in general an
extremely difficult problem and a unified theory applicable to a broad
class of systems does not exist. Systems which contain two or more single-
valued nonlinear elements, multivalued nonlinearities or nonlinear functions
of two or more system variables are particularly difficult to analyse and

recourse is often made to either simulation or piece-wise linear analysis.

The present study briefly reviews some of the methods which are
available for the statistical analysis of static and dynamic nonlinear
systems, linearisation methods and identification algorithms. Because
of space limitations only a few of the established approaches to the problem

are presented and throughout the reader is referred to the references for

further details.

2, Static Nonlinear Systems

Consider the system illustrated in Fig.l where u(t) is applied as an

input to a single-valued instantaneous nonlinear element N(-) to produce

T e N T

an output y(t).

_E(t) ;y_(t)
N (u)

Fig.1
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1f the input is stationary in the strict sense the k'th order
probability density function of y can be obtained from fu(ul,uz,...uk;
tl’tz"tk) the density of u [1]. To determine fy(yl"yk; tl"'tk) gsolve
the system of equations N(ul) seee¥y = N(uk) for Upsee ety and assuming
a unique solution

.f (u e a e ; t § 888 )
. u g peesty i By snvaly,
fy(yl"'yk’ tl’.'tk) = —‘—N. (ul)I...IN' (uk)—l o-.(]—)

For example consider the evaluation of the density fy (y;t) when
y(t) = uz(t). When y>0, the eqn y = x2 has two solutions u = Yy and

i, -/y. Further since ldy/dul = 2/y, then from eqn (1)

£ 0A5t) + £ (=550
27y

fy(y;t) =

If y<0, then fy(y) =0,
The momentsof the output y, Fig.l, can however be expressed directly
in terms of the probability demsity function of the imput. The auto-

correlation function of the output is for example given by

Ryy(r) - L{ y,¥, £(y,55,30)dy,dy, | .. (2)
or Ryy('r) = [ N(ul)N(u'z)f(ul,1.112;-r)d1..11du2 .. (3)

An analytical expansion of this integral can be obtained when u is

stationary and normally distributed

‘ 2 2

u, +u, =-2pu,u

Exp{—(l ; 212\ ... (8)
20 (1-p7) /

where E[u(t)] = 0
E[uz(t)] = 02 s sn kD)
E[u(t)u(t+1)] = ozp ()

and p(t) is the normalised covariance function of the input. Using

Mercer's formula [2] eqn (4) can be expanded as

2 2
1 [ ("’1 ta, ~2paja,

—— 2
2w/1—p2 2(1-p")
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a a -]
= [exp(— (% + —g-)} /2% nzo ann(al)Qn(aZ) .ee (6)

where Qn(a) is the n'th order Hermite polynomial

SP R RPN C )l P ' -
Qn a exp () . y=— B exp (~ asa (7)

and a. = u./o.
i i

Combining eqn's (3), (4) and (6) yields

[=-]

2
i ¥ a’
where ki = {wN(Ga)Qn(a)exP(—?fDda )

The autocorrelation function of the output eqn (8) is given therefore as
a power series of the normalised autocorrelation function of the input

where the coefficientski, eqn (9), depend on the form of nonlinearity.

For symmetrical non-linearities, N(u) = -N(-u), all even coefficients
ij vanish, and for nonlinearities which can be expressed as truncated
power series with zero coefficients for power greater than j, then ki =0
for i>j. As an example, the output autocorrelation function for the
bang-bang nonlinearity

y=1 , u0

y =-1, u<0

is given by

2 o=l
RYy(T) = ;-Sln p(T) o0 (10)

Although the input-output cross-correlation function Ruy(T) can be
determined by following a similar procedure to the above a slightly more

general result can be obtained by introducing separable processes [3].

Let f(ul,uz;T) be the second order probability density function of the

stationary process u(t) in Fig.l and define

g(uz,t)'ﬂ {wulf(ul,uz;r)du1 ... (11)




If the.g-function separates as N

g(u,,7) = g (u)e, (D¥u,t ... (12)

then u(t) is said to be .a separable process, where

. u f(uz)
gl (UZ) = “—g—z—(a)—— ...(13)
g, (0R (1)
- % bu ve. (14)

g (1) = R__(0)

The separable class Qf'random processes is fairly wide and includes

the Gaussian process, sine wave process, pseudo-random-binary-sequences etc.

Define the cross-correlation function
'ng('rr) = L{ ulN(u2)f(u1,u2;T)du1du2 .o« (15)

substituting from eqn's (12) through (14) yields
Ruy('r) = J'N(uz)g1 (u,) g, (1)du,
R (1)

uu '
= Ll (uz)uzl‘:‘(l-lz)chl2
uu

=C (1) 5 ... (16)

FRuu

where CF is a constant scale factor.

Equation (16) which is known as the invariance property, shows that
Ruy(T) is directly propoertional to Ruu(r) for any static nonlinear

characteristic N{(*) providing u(t) is separable.

3. Nonlinear Systems with Dynamics

3.1 Functional Series Methods

’

A functional representation of nonlinear systems which is a generali-
sation of the linear convolution integral was first studied by Volterra

early in the twentieth century. Volterra investigated analytic functionals

and introduced the representation [4]



© n
y(t) = § f —_— hn(Tl,...tn) 1 u(t-ti)dri
n=l Q i=1

= ) v (t) o (17)
n
n=1 )

which has become known as the Volterra series. The functions hi(rl,...ti)
in egn (17) are referred to as Volterra kernels. The kernels are bounded

and continuous in each T., symmetric functions of their arguments, and i
for causal systems hi(rl,...ti} = 0 for amy 1j<0. Systems which contain

nonlinear memory elements such as hysteresis or backlash are excluded from
the description of eqn (17).
Consider the Volterra series representation of the system illustrated

in Fig.2.

y(t)

u(t) x(t) 2
B x()+x () ——

—™1 h(®)

Fig.2
From the convelution integral

x(t) = Ih(T)u(t*T)dT
But y(t) = x(t)+x2(t) and therefore

y(r) = fh(Tl)u(t—Tl)drl + ffh(rz)h(Ta)u(tHTZ)u(t-ra)d12d13 ...(18)

is the Volterra series representation.

Taking the Fourier Transform of the n'th order kermel in eqn (17)

yields the n'th order kernel transform [ﬁ]

-}

Hn(le,-..Jmn) = {w...f hn(rl,...Tn)exp{-J(w111+...+wntn)}d11...drn
vue (19)

Similarly, considering just the n'th order component of the output yn(t)

and taking Fourier transforms relates the multispectral density

Yn(jml""jmn) = Hn(jml’“"jwn)U(jwl)"'U(jmn) aos (20)

to the input spectrum U(jw), from which the output spectrum can be

L .



evaluated as
P
{w...f Yn(jm—jul,jul-juz,...jun_l)dul...dpn_l
ws 3 K2L)

The statistical analysis of systems described by a Volterra series
when the kernels are known has been studied extensively particularly with
reference to communication systems [5—8] and Gaussian, sine wave plus
Caussian or random pulse train inputs. An excellent review of the use

of functionals in the analysis of nonlinear systems is given by Barnett
[o].

Consider the evaluation of the autocorrelation of the output, input-
output cross—correlation and associated spectral densities for a system
with known Volterra kernels assuming the output is strict-sense statiomary.

Define the correlation functiomns

Ruy(T) = E[y () u(t-1)]
-V R_(® awn (22)
n=1 uyn
R (D = Ely (£)y (t-1)]
= z R ? (T) ..0(23)
m=1 n=1 ynym

To evaluate the above expressions it is necessary to determine the partial

correlation functions Ruy (1), Ry ¥ (1). Rather than evaluating the

general expressions which are givgnmin the literature [5—8] consider the

system illustrated in Fig.2 to illustrate the procedure.
Thus from eqn (18)
Ruy(r) = fh(rl)E{u(t—Tl)u(t-T)}drl
+[[h ()bt Elult-1)u(t-1)u(t-1) }d1,dT, ... (26)

R (D) = [[a(eh(r)E{u(t-1 Jult-1-1,) }dt,dT,

+ [[[h(rh (r )b (1 )E{u(t-1 Jult-T-1,) u(t-1-7,) }d1,dr,d74

NS e B T
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+ Iffh(rl)h(Tz)h(13)E{u(t_T1“T)U(t'TZ)U(t—TB)}dtldedTB

+ fIIfh(Tl)h(Tz)h(T3)h(T4)E{U(t—T1)U(t“Tz)U(t—T-TB)U(t"T‘T )dt d’rzd'r3d'r4
. (25)

In general all the moments of the input process up to order mn must be known
before eqn's (24) and (25) can be evaluated. When the input is a zero

mean white Gaussian process where

E{u(tl)u(tz)...u(ti)} =0 i odd ' ... (26)
=3 g 6(t -t ) 1 even
infm O

and the summation is over all ways of dividing i objects into pairs, eqn's

(24) and (25) reduce to

R = h(t oo GETY

uy(T) (0

Ryy(r) = [h(r+t,)h(r,)dT,

+ foh(1+r dh (r+1, )h (10 (1, ;) 4147, «en (28)

Spectral densities are computed by taking Fourier Transforms of the
associated correlation functions and using eqn's (19)-(21). An algebra
of nonlinear systems based on the Volterra series has been developed by

George [IQ] and this simplifies the notation considerably in many problems.

3.2 The Fokker-Planck-Kolmogorov Equation

Consider the class of dynamic systems which can be represented by the

stochastic vector differential equations
dx/dt = A(x,t) + C(x,t)V(t) oxs (29)

where x = {x } are the n-state variables, A(x,t) = {a } and C = {cij} are
coefficient matrlces and V(t) is an m-dimensional Gau551an white noise
vector with the properties E[Y(t)] =0, E[Y(t)y(s) } =Qé(t-s),

Q = diag{uiiz}. V(t) can be used to represent random external disturbances,

modelling discrepancies and random parametric perturbations.

Because Caussian white noise is not mathematically meaningful, rewrite

eqn (29) in terms of the incremental Wiener process dW(t) = Vv(t)dt to

N
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yield the Itd [11,12] stochastic differential equation

dx = A(x,t)dt + C(x,t)dw(t) .+ (30)
where

E{dw} =0 , E{dg(t)dg(s)T} = Q8 (t-s)dt

Equation (30) generates a Markov process x(t) since {x(t)}and w(t) are
independent with independent increments. Consequently, the solution of

eqn (30) is completely characterized by the first order probability density

function f£(x,t) and the transitional probability density function

f(x t, /x,t ) for t,>t both of which can be shown to satisfy the Fokker-
Planck-Kolmogorov equatlon [1,11,12,13]
2
£(- =
S ] o (o GuOECD) + 73— —ach, 0
i=1 i=1 j=lox. axJ

.+« (31)

In general it is of more practical value to determine the moments
W E[xinj of the system states rather than the probability density func-
tion £(x,t). Using either the method of moments or Ito's fundamental
lemma it can be shown, for example, that the first two moments are given

by the solution of the ordinary differential equations [13,14]

dE (x.)

——Egi— = E(ai(§,t)) .ee (32)

dE (x.x%.)
)

e E(aixi+ajxj}+E((§Q§T);lj) ce. (33)

for (i,j) = 1,2...n, and given initial conditions x(to).

To illustrate the procedure consider a linear first order system with

1 . . . r z 5
35T driven by unity variance Gaussian white noise.
The system model in state-space form is

transfer function

Tdx = —-xdx + dw .o. (34)

and from eqn (31) its associated Fokker-Planck-Kolmogorov equation is

2
a(xf) , 1 2°f ver (35)

ax 2T axZ

=]
n
=3 |
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The first two moments are, from eqn's (32) and (33) ,
_d—t— = _fml -o-(36)
dm
2w =2 1
-E_t— = Tmz + 7 --.(37)
T
with solutions
_ |
m (£) = m (O)e t/T ... (38)
-2¢/T | 1 4 ~2t/T
mz(t) mz(O) 2T(1 e ) wx« (39)

where ml(O) and m2(0) are initial conditionms.

1f the system equations (29) are nonlinear in the states the lower
order moment eqn's (32) and (33) are in general functions of higher order
moments and closed analytic solutions are not possible. Similarly the
probability density function f(x,t) which sat1sf1es the Fokker-Planck-
Kolmogorov equation cannot be found except by 11near1zat10n or approxima-
_tlon methods. An alternative is to simulate the stochastic difference

eqn (29) and evaluate the required moments by averaging over the realisa-

tions[13—15].

4, Linearisation Methods

The relative simplicity of the methods of statistical analysis for
linear systems compared with the inherent complexity of the analysis out-—
lined above has led to the development of approximation methods based on

linearisation techniques [16].

The simplest form of linearisation is based upon the expansion of the
nonlinear function in a Taylor series about some operating point and
retaining only the linear terms in the analysis. Thus the nonlinear
function g(xl,...xn) is replaced by the approximate expression i

n
g(x)50 0% )oc g(il....,ﬁn) + izlg'xi(;l,...,xn)(xi-Ei) ... (40)

Ao o

where x. is the mean of x, and g' = 9f/9x. .
i i X, i
Although eqn (40) is linear with respect to fluctuations it is non-

linear with respect to expectations.
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Equation (40) is valid only for continuous functions with continuous
first derivatives, and cannot therefore be used to study the characteris-
tics of discontinuous components such as relays or limiters. To linearise

such characteristics the method of statistical linearisation was developed.

The earliest method of statistical linearisation was developed by
Booton [17] for static nonlinearities and stochastic inputs with zero mean.
Booton's method conmsists of replacing the nonlinearity N(-) by an equiva-
lent gain which is selected so as to minimise the mean square of the

difference between the output of the devices.

u(t) nonlinear y (t)
GTET;O element N
= e(t)
u(t) -
T K
eq y' (L)
Fig.3

Consider the system illustrated in Fig.3 where

e(t) = y(t) - KeqU(t)

Bo ey = 5P LD - 2K, G(D)y ©) + Kzequz(t) ... (41)

Selecting Keq 80 as to minimise e2(t) yields

K, - u(t)y(t) _ fytzif_(U)du s {42)
uz(t) Su £ (u)du

When the input is Gaussian white fuzf(u)du = 02 and hence
K =-L ryuf(udu (43)
- Uz o
It can readily be shown [18] that Keq in eqn (43) is equivalent to the
first term in the Wiener series representation eqn (53) of a nonlinear

Zero memory system.
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Somerville and Atherton [19] extended Booton's method to include

cases of non-zero mean input signals as illustrated in Fig.4 to yield

K - y(@®
T )
u(t)y(t) - u(t)-y(t) ... (44)
eq

o(e) = ule)

u{r) - nonlinear y€£2 )
element
u(t) # e(t)
ch
. K
. T eq
u(t)-u(t)

Fig.4

To conserve the spectrum of the output Pupkov [?0] proposed replacing
the zero memory nonlinear component N(¢) by a dynamic stationary linear

system

t
N(u(t)) = chu(t) + [m h(tl)(u(t—tl)-u(t—tl))dt1 wes (45D

where h(t) is determined to ensure the autocorrelation equivalence of the

left and right hand sides of eqn (45)
{i h(t)h(t )R (-t -t )dc dt, = Ryy(T) oo (46)

and ch is given by eqn (44).
If h(t) in eqn (45) (u(t) = 0) is selected to minimise the mean squared

error this leads to the Wiener-Hopf equation

Ja(e IR (t -1)dr = Ruy(r) s s (A7)
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Although this equation is in general difficult to solve for h(t), when

the input is a separable process [3] from eqn (16)
. Ruy('r). = C.R (O

and the optimum linear approximation to the nonlinear element is Booton's

equivalent gain CF = Keq'
Harmonic linearisation, which yields the describing function [21]
consists in the simplest case of replacing the nonlinear element by a
linear one whose transfer function is equal to the complex ratio of the
fundamental component of the output to the sinusoidal input. The method
has been used extensively to obtain mathematical descriptions of a large
number of nonlinear systems and several modifications have been developed

including describing functions which relate all the output harmonics to

the input fundamentals.

o 18 Identification

Identification algorithms for nonlinear systems can be categorised as
functional series methods, algorithms for block oriented systems and

parameter estimation techniques [22].

Identification using the Volterra series representation eqn (17)
involves the measurement of the Volterra kernels. To illustrate the
approach consider the identification of a system which can be described

by just the first two Volterra kernels
y(t) = bfhlf'rl)U(t—Tl)drl‘- éfhz(‘rl,Tz)u(twrl)u(t—rz)d'rld'rz ... (48)

Defining the mean squared error as E{(z(t)—y(t))z} where z(t) is

the measured ocutput and applying calculus of variations yields

E{z(t)} = | hl(tl)E{u(t-Tl)}dTl
0
+ ff hz(Tl,rz)E{u(t~Tl)u(t—12)} dg,dt, ... (49)
4]
E{z(t)u(t-o)} = fhl(II)E{u(t—Tl)u(t—o)}dII

0

+ ”'hz('rl,Tz)E{u(t—rl)u(t-tz)u(t—o)}d'rld'r2 ... (50)
0
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(=]

E{z(t)u(t-o,)u(t-0,)} = {{ 111(1:1):E{u(t--'rl)u(1:-01)u(t-~r.1r2)Irdr1

+ Jf By (g1 )E{ule-r du(t-t,)u(t-0, Jult-0,) }dr,dr, ... (51)
0]

The solution of this set of equations for a general stochastic input is
extremely difficult. However, if the system input is white Gaussian then
eqn's (49)-(51) reduce to

oo

z(t) = [ h, (t,7)dt
0

Ruz(ul) - hl(ol) s s 0i32)

Ruuz(ol,cz) = 25(01—02) + 2h2(01,02)

and the solution for hl(t) and hz(t1’t2) is direct providing the mean level
z is removed. Identification of systems which contain higher than second

order kernels is very difficult usiné this approach. Alternative schemes

involve approximating the kernels by an expansion of orthogonal functions

and estimating the coefficients [22].

Wiener used a Gram-Schmidt orthogenalisatiod - procedure to comstruct
a new functional series where the functionals {Gn} are orthogonal for a

Gaussian white stimulus. The first two terms in the Wiener series are

6 [k ,um®] = J k, (Du(t-1)dt «x s (53)

=00

Gz[kz,u(t)] = {i k2(Tl,Tz)u(t—'rl)u(t-'rz)d'rld'r2

(=]

- P Lkz(-rl,'cz)d'rl .o (54)

where P is the power spectral demsity of the white noise input. In general
the Wiener kernels are not equal to the Volterra kernels. Numerous methods
have been developed to identify the kernels in Wiener's series [22] the

most popular being a correlation method by Lee and Schetzen [4]. The
procedure consists of computing multidimensional correlation functions

between the white Gaussian input and the system output to yield

e I

o ih T AT i T Y
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k_(t

n-1
(rpaeeet) = s () = )G [l u(n]huleT)
m=0

. u(t—tn) A TysTpeoTy «w ¢ (55)

In an attempt to reduce the computational burden associated with the
functional-series methods various authors have considered the identifica-
tion of block oriented systems [22] which can be represented by inter-
connections of linear dynamic systems and static nonlinear elements.

Consider the system illustrated in Fig.5 to illustrate the approach.

u(t)+b : y (t)
- h, (1) N(-) h, () "

Fig.5

By extending the theory of separable processes [22~24] it can readily

be shown that for a Gaussian white input with mean level b

R'uyu(c) = CFthl('rl)hz(U—'rl)d'rl : ... (56)
2 -
Ru2y..(°) = Cpglhy” (0=t (r)dy cer (57)

where providing hl(t) is stable bounded-inputs bounded outputs CFG and Core
are constants and the superscript ' indicates a zero mean process.
Estimates of the individual linear subsystems hl(t) and hz(t) can be
obtained by decomposing eqn's (56) and (57) [24] and the nonlinearity

can then be determined. Similar results, which provide estimates of

the individual component subsystems, are available for feedback, feed-

forward and multiplicative block oriented systems [24].

Parameter estimation methods for nonlinear systems where the structural
form of the describing differential equations are known are fairly well
established [22]. When little a priori information is available and the
process is treated as a black-box, the usual approach is to expand the

input/output using a suitable model representation, which is usually
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selected to be nonlinear in the input and output variables but linear in

the parameters. For example, by considering an observability condi tion

it can be shown that [25] the model

ig a

q{-}

y(m+l) = Q{y(m—l),-..y(mfN),U(m-k),...u(m-k—ﬂ)} ...(58)

general representation for a wide class of nonlinear systems when

is a suitable nonlinear operator. Parameter estimation algorithms

developed for linear systems cannot in general be applied to estimate the

: - .
parameters in the model of eqn (58) because even additive measurement noise

introduces multiplicative and bilinear noise terms which produce bias in

the estimates. Algorithms which overcome this difficulty are however

available [25].

6.

task.

Conclusions

The statistical analysis of nonlinear systems is in general a difficult

Whilst some of the techniques currently available have been briefly

described above details of other alternative approaches are readily

available in the literature.
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