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The problem of controller design for an unknown discrete or conti-

nuous multivariable system in the frequency domain based on open-loop

step response data alone is considered. The approach is based upon the

use of simple approximate plant models possessing the.property that the
resulting error in modelling the plant open-loop step response is both
monotoni¢;and sign definite as a function of time. 1In such circumstances
the frequency domain properties of the approximating feedback system and
the errof involved in predicting steady state‘characteristics is sufficient
data to predict the stability of the real feedback system. If integral
controller elements are included, the results also provide sufficient
conditions for exact tracking of step demands. Under certain circumstances,
the technique has strong connections with the well-known inverse Nyquist
array design method and can be regarded in part as a modification and

generalization of that technique to cope with unknown interaction dynamics.




Introduction

Frequency response methods ! for the design of a forward path
control element K for a m-input/m-output linear time-invariant plant G
in the noxmal negative feedback configuration illustrated in Fig. 1(a)
are now well-established, particularly in the unity-feedback case when
the feedback element (measurement dynamics) F is the identity. Almost

all of this work is based on the assumption that G is known exactly in

|

the form of a state variable model or transfer function matrix represen-

tation or that the model is close enough to the real plant that the

(assumed small) modelling errors are well within the tolerances implicit

in the standard techniques of ensuring adequate gain and phase margins.
The process model can then be used with confidence to perform design
calculations such as simulation, transfer function matrix evaluation,
calculation of poles and zerxos and, on completion of the theoretical

design exercise, to make confident predictions about the stability and

performance of th real plant in the presence of the designed controller.

This paper is concerned with the problem of controller design when
a plant model is not available in the sense that
(a) either the plant model is not known but open-loop plant step
responses are available from plant tests, or
(b} the plant model is known but is so complex that design cal-
culations other than simulation are not regarded as feasible
(or necessary!) with available on-site computing facilities.
In both cases, the plant model is (from the designers viewpoint)
'unknown' and controller design must proceed using time-response data
only or on some other basis. Two possible solution methodologies im-
mediately suggest themselves i.e. identification(G) of a low order
approximéte model from off-line analysis of input/output data and the
use of this model as a basis for control design studies or self-tuning

(7,8)

control using a control strategy based on an assumed low-order



parametric system model and on-line identification of the required
controller parameters. These are viable alternatives but they do
require extensive off-line or on-line (resp.) computing facilities
that may not be available to the design engineer at that place ami
time. Indeed, such facilities may be regarded as unnecessary. In
such cases it is clearly necessary to attempt the design of the con-
troller by some other technique. This topic is the concern of this
paper.

The procedure followed has close structural connections with'the
methods of first-order multivariable control(g_lé), being based upon
the idea of (i) designing the contrq;ler K for an approximate model
GA of plant dynamics to ensure that the approximating feedback system
shown in Fig. 1(b) has the required stability and transient performance
characteristics and (i) providing easily checked conditions that ensure
that the resultant controller stabilizes G in the real configuration of
Fig. 1(a). The results here however, are distinct in that they apply to
the class of stable process plant whereas others(g_lZ) are concerned with
minimum-phase (possibly unstable) process plant Also, we do not neces-
sarily assume here that the approximate plant model is of first-order
form.

The underlying stability theory is described in section 2, relating
the stability of Fig. l(a) to that of Fig. 1(b) and the modelling error
G-G_. The concept of meonotone modelling error is then introduced and it

is demonstrated that the stability conditions can then be checked in

practice without knowing the details of the dynamics of the plant G. The

construction of appropriate plant approximations and contfol schemes is
discussed in section 3. Although there are an infinity of possibilities,
a number of obvious cases are described to illustrate the range and power
of the ideas. A number of numerical case studies are described in

Section 4.
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Finally, we note that the field of non-adaptive 'unknown systems
control' has only recently been identified as a theoretically feasible

(9-16) (13) . (14)

proposition with contributions from Davison ; Koivo y
Porter(lS), Astrom(l6) and Owens(gqlz). The reader is referred to the
references to find the details of the alternative techniques described
there. The present paper is more in the spirit of the very recent pub-
_— . (23) , "
lication by Carlucci and Vallauri who have independently used similar
techniques to assess the stability of feedback systems for a plant with
known frequency response characteristics using a controller designed on
the basis of a reduced order model. We do not assume any detailed know-

ledge of plant characteristics in this paper however.

Stability Theory for Unknown Systems

The foundations of any theory of controller design for unknown systems
is inevitably based upon the construction of checkable conditions that
ensure that the stability of the approximating feedback systems Fig. 1(b)
implies the stability of the real feedback system Fig. 1(a). Sufficient
conditions for this are derived in this section.

Stability Theory for Discrete Plant

Suppose that the plant G is derived from an underlying linear, time-
invariant continuous time model with piecewise constant inputs and syn-
chronous input actuation and output sampling of frequency h_l. We will
denote the strictly proper plant z-transfer function matrix by G(z), and
the proper forward path controller and feedback transfer function mat-
rices by K(z) and F(z) resp. Suppose also that the plant approximate
model GA is described by the strictly proper z-transfer function matrix
GA(Z). Let Q = GK and QA = GAK be the real and approximate (resp.)
forward path systems (see Fig. 1).

The stability theorem proved later in the section relies upon the

; 17-193 .
use of the well-known contraction mapping theorem( ) in a suitable
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Banach space. The relevant space for the studies described below
is the space Em(s) of m-vector valued functions of the complex variable
s that are bounded and holomorphic in the open, connected region
A
S ={z:1< ’z[ < R}lof the complex plane. The parameter R will be normally
assumed to be large enough to make the interpretation of S as the 'unstable
. ; , m ; (20)
region' of the complex plane valid. The norm in E (S) is taken to be
A {
7] & sup  max |y, (s)] (1
s€S lgigm
or, as analytic functions in a domain always achieve their maximum on the

boundary of that domain,

[]y[[ = sup max }y.(S)l
s€as lgigm ¢ (2)

where 95 denotes the boundary of §. Clearly s = {z:]z] = 1or |z = R}.
Linear operators in Em(S) can be identified with mxm transfer function
matrices whose elements are bounded and holomorphic in S. In the case
when the elements of the transfer function matrix are rational functions
of the complex variable =z, it is trivially seen that the linear operator
can be identified with a controllable, observable and stable discrete
system. Conversely, every stable discrete system can be regarded as
generating a linear operator in Em(s). If T is a lihear operator in Em(S)
then the operator norm induced by the vector norm (1) oxr (2) is(zo)
m
llT], ¢ sup max E iTij(z)| (3)
S€9S lgigm j=1
The equations of the real feedback system of Fig. 1(a) are (neglecting
the effect of initial conditions for simplicity),
y(z) = Q(2)r(z) - Q(z2) F(z) y(=z) (4)
Adding QA(Z)F(z)y(z) to both sides of the equation and rearranging yields

) Yoz (2)

L

= +
y(z) (Im QA(Z)F(Z)
(I +Q,(2)F(2) (9, (2)-Q(2) ) Fy(z) (5)
Clearly, the system is input-output stable if, and only if, this equation

—__m
has a unique solution yéE_Em(S) for each demand r¢= E (S). Writing (5)



in the operational form y = Wy, the following proposition follows trivially
from the contraction mapping theorem by an argument similar to that used

in (20).

Proposition 1: If the approximating feedback systems of Fig. 1l(b) is

stable and the transfer function matrix (Im + QA(z))-l(QA(z) - Q(z))F
has elements bounded and holomorphic in S, then the feedback system of
Fig. 1l(a) is stable if

(1) The state-variable model generating the composite system
QF is both controllable and observable and

(ii) the contraction condition

A& | e,m THe, - @F|] <1 (6)
is satisfied.
Proof: Writing (I+QAF)_1Q = (I+QAF)_1((Q—QA}+QA) it is clear that W
maps Em(s) into itself. Morever W is a contraction with contraction
constant ). Stability then follows from the contraction mapping theorem .
the controllability and observability assumption guaranteeing the impos-

sibility of hidden unstable modes.

Other versions of this lemma are easily derived. For example,
writing‘the feedback equations in the form
y(z) = Fz)Q(z)r(z) - F(z)Q(2)y(z) (7)

leads, after a similar procedure, to the result:

Proposition:2: If the approximating feedback system of Fig. 1(b) is stable
and the transfer function matrix (I + F(z)QA(Z))_lF(Z) (QA(Z)-Q(Z)) has

elements bounded and holomorphic in S, then the feedback system of Fig. 1l(a)



is stable if FQ is both controllable and observable and the contraction

constant

AR e R o] <1 (8)

Clearly proposition 1 and 2 are identical if F = Iﬁ or m=1, but, in
general, they provide distinct sufficient stability conditions that can
be checked if G,GA,K and F are known. There is however, a technical
problem that arises if the controller possesses an integral/summation
component. In such cases, taking m > 2, the presence of G in the matrices
(I+QAF)—1(Qé-Q)F and (I+FQA)_1F(QA—Q) can mean that they will have a pole
at the point z = 1& 38. The conditions of both Proposition 1 and 2
can therefore be violated in a situation of great practical interest.
The way out of this problem is to write down the closed-loop system
equations in terms of the plant input u,

u(z) = K(z)r(z) - K(z)F(2)G(z) u(z) (2)

or, adding KFGAu to both sides of the equation and rearranging yields

u(z) = (I, + K(2)F(2)G,(2)) "K(2)x(2)
+ (I + K(z)F(z)G (z))_lK(z)F{z)(G (z)-G(z))u(z) (10)
m A A

and hence the lemma:

Lemma 1: If the approximating feedback system of Fig. 1(b) is stable
and the transfer function matrix GA(Z)—G(Z) is bounded and holomorphic
in S, then the feedback system of Fig. l(a) is stable if the state
variable model generating KFG is both controllable and observable and if
v & ||(I+KFG‘)_1KF(G'~G)|| <1 (11)
A A
Proof: The stability of Fig. 1(b) and the return-difference identity
-1 =],

I+GAKF] = |I+KFGA|indicate that both (I+KFG,) "K and (I+KFG,) "KF are
bounded and holomorphic in S. Equation (10) therefore takes the form
u = W'u where W' maps Em(s) into itself and is a contraction with con-

traction constant A". Stability follows from the contraction mapping
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2.3
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theorem, the controllability and observability assumptions guaranteeing

the impossibility of hidden unstable modes.

Note that the stability of Fig. 1(b) ensures that (I+KFG, ) “Ir is
bounded and holomorphic in S, even if K contains integral action! Note
also that GA - G is stable if both G and GA are stable but G can be
unstable provided that GA models the unstable part of G exactly.

Stability Theory for Continous Plant

If the plant G is described by a linear, time-invariant continuous
model with strictly proper transfer function matrix G(s) and the con-
troller and feedback element have proper transfer function matrices
K(s) and F(s) respectively, then the results of section 2.1 apply directly
in this case with S replaced by the 'Nyquist set' s g {s:Res > O,
|s, < R} withlboundary 95 equal to the familiar Nyquist contour. All
the results of section 2.1 remain valid and, in particular, lemma 1 still
applies. For these reasons, we will tend to use notation suitable for
the discrete case throughout the rest of the paper with the understanding
that the equivalent results for the continuous case are obtained by
replacing z by s and S by the Nyquist set.

Approximate Models with Monotonic Modelling Exrors

The application of the above results to controller design for an
unknown multivariable plant G is clearly frustrated by the need, in
general, to know the details of an exact model of G to evaluate the
contraction constant A". In mathematical terms, noting that a sufficient
condition for (1l1) to hold is that

A

Il

i1
[[tx + xre) “xr||.||(c,-c) || <1 (12)
A A
it is clear that it is sufficient to have the value (or an upper bound) of
the norm of the plant meodelling error GA = G. The problem considered below

is the identification of practical situations when this norm can be

evaluated easily using only steady state data obtained from plant open-




loop step response tests.

(11)

The appropriate concept to invoke is a generalization of the

monotone property used by Astrom(lG):

Definition: An m-input/m-output, proper, discrete or continuous system

will be said to be monotonic (resp. sign-definite) if, for each pair of

ij) of the ith system output from zero

Ty oy i ; ; th | . .
initial conditions to a unit step input in the j input is either mono-

indices (i,J), the response y

tonically increasing or monotonically decreasing (resp. takes only posi-

tive values or takes only negative values).

Some illustrative examples of these concepts in the scalar case are
illustrated in Fig. 2. Note that, if a system is strictly proper then
the property of monotonicity implies that of sign definiteness,

The important properties of such systems are given in the following

lemma :

Lemma 2: (see Appendix 7) An m-input/m-output, strictly proper, discrete
(resp. continuous)jmonotonic)sign—definite and stable system with

transfer function matrix T has Em(S) norm

[lT|] = H’I‘(l)llm (resp.|[T(o) ] ) (13)
m
where ]I.I| = max Z l(.),,| is the matrix norm induced in L(Rm} by
lgism j=1 +
the uniform norm |l.[|m = max f(.).| in R".
lgi<m *

The interpretation of this result is very important! Taking,
initially, the discrete case, suppose that plant tests or simulations
of a complex plant model of T are undertaken to evaluate the steady

(1) . th . s h
state response ti of the i output to a unit step in the j input.

If ( as should be self-evident by visual inspection) the system is stable,



_lo._
m .
monotonic and sign-definite, then [}Tl] = max E Itfj)l. An identical
lgigm 4=1 ©
result holds in the continuous case.
The main application of this notion is in the evaluation of

IIGA = Gll. The following results follows from the definition and

lemma 2:

Proposition 3: If yij) (3)

Al (k)) is the response from zero

(k) (resp. y

5 g t ;
initial conditions of the i B output of the discrete system G (resp. GA)

; . .th ; . . _
to a unit step in the j input, then GA - G is monotonic and sign-definite
. . i & (3) (3)
if, and only if, for each (1,3), the error response {YAi (k) - yi (k}}kao
is either positive and monotonically increasing or negative and mono-
tonically decreasing. In the case of GA - G monotonic, sign definite
and stable, it has norm

- G = E
ey = ell = [l&ll_ (14)
where E = GA(l) - G(l) has elements Eij that can be deduced from the

time-response relation

A (3) NG
Eij k—J;-Jl-i {yAi (k) - y,;”" ()} (15)

Proposition 4: If FJ)(t) (resp. y(?) (t)) is the response from zero
yl Al

. . ; B .
initial conditions of the i h output of the continuous system G(resp.
; i .th ; . ;
GA) to a unit step in the j input, then GA - G is monotonic and sign-

(j)(t)

definite if, and only if, for each pair (i,j) the error function yAi

yij)(t) is either positive and monotonically increasing or negative
and monotonically decreasing. In the case of GA - G monotonic, sign-

definite and stable, equation (14) holds with E = GA(O) - G(o), or,

equivalently, the matrix with elements

% g .
.= 1t {y(?) (t) - y.(j) (t)} (16)
ij e Al 1

In short, if the modelling error GA—G is monotonic and stable, we can
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evaluate IIGA - G], by inspection of the steady state characteristics
of the plant and approximate model only! The following theorem sum-

marizes the above and is the main result obtained in this paper.

Theorem 1l: Suppose that an unknown discrete (resp. continuous) linear
plant is approximated by a discrete (resp. continuous) model GA with

the property that GA -G isrmonotonic, sign-definite and stable. If

the controller K is designed to ensure that the approximating feedback
system of Fig. 1(b) is stable, then K will also stabilize the real plant
G in the real feedback configuration of Fig. l(a) if KFG is controllable

and observable and at least one of the following inequalities is satisfied

ma A m m

=1
A = sup max z y ,((I +K(z)F(z)G (z)) "K(z)F(z))..|-|E .1<1 (17)
(1) z€9S l<igm J=1 k=1 1k’ ] kj'

nnoA -

Au)={]u-+mmﬁ Kﬂ|4]QIm<l (18)

where E is the mxm 'steady state error matrix' defined in proposition 3
(resp. proposition 4).

Proof: We verify the conditions of lemma 1 will hold. By assumption
Fig. 1(b) is stable, GA - G is stable and KFG is controllable and

observable. Also, using (11),

n m s
A= swp max ] |((I + K(2)F(2)6,(2)) TK(2)F(2) (6, (2)-6(2)) |
Z€0S lgigm j=1 1]
m m -1
S sup max ] ]| ((IKRIFEG, () K@E®@) ]| (6, (-6 | (9)

z€9S 1lgigm j=1 k=1

and hence, as GA-G is stable, monotonic and sign-definite,

nn

{(GA(Z)-G(zl)kj[ is bounded by lEk_[ on 95 and (19) reduces to " < A(l)'
Finally
l n mn m
<A = sup max ((I +KFG - K y , l
(1) z€3S lgigm J=1 , m [
m 1 m
§ sup max ) | ((I_+KFG ) KF) ;| max Y ‘Ekg[

z€3S lciem j=1 1 1¢kem 221
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nn

-1
= |I(I+KFGA) KF]I“I|E[!H]=A(2) (20)

The theorem is hence proven as A" < 1 if (17) or (18) holds.

Checking the Stability Conditions:

The application of the result is best underlined by the following
step by step design procedure:
Step 1: Obtain the plant responses to unit step inputs from zero
inital conditions.
Step 2: Choose an approximate plant model GA with the property that
GA~G is monotonic, sign-definite and stable.
Step 3: Design the controller K for GA to obtain the required stability
and performance characteristics from the approximating feedback
system of Fig. 1(b).
Step 4: Check the contraction condition (17) or (18) by numerical or
graphical means.
Step 5: Check that KFG is controllable and observable.
Steps 1 to 4 can easily be undertaken without a detailed knoledge of
G. Step 5 does, however, require, in principle, some knowledge of G.
The required knowledge is frequently structural rather than numerical
and can hence often be deduced from physical considerations. For
example, if F = I, m = 1 and the controller K is propartional plus
integral and minimum phase it is only required to know that G is con-
trollable and observable with no zero at the point z = 1 (in the discrete
case)! or s=o0 (in the continuous case). Equivalently G is controllable
and observable with non-zero steady state response to step inputs.
The choice of model GA is discussed in section 3 and the design of

-5 .
K for GA can proceed by any available means(l ). It is worthwhile,
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however, considering the means of checking step 4. 1In general there is

nmmn nn

(1) or 1(2) from the

definitions and equation (3). There are however, two notable cases

no alternative to the numerical evaluation of A

when this procedure can be considerably simplified:

Proposition 5: The conclusions of theorem 1 remain valid if also the

-1
system (I+KFGA} KF is monotonic and sign-definite and (17) and (18)

are replaced by

IV lu, .5 |
A = max : H. . |.|E (21)
W igiem 321 k=1 Ky
and
A(2) :HH‘|m ',lEllm (22)

respectively. Here the mxm matrix H is just the steady state gain matrix.

4

B & Lim (o K(z)F(z)GA(Z))_lK(z)F(Z) (23)

z1
(if the plant is discrete) or

A

n 8 iy (Im+K(s)F(s)GA(s))‘lK(s)F(s) (24)

S0
(if the plant is continuous) and is defined in terms of the known objects
GA,K and F only.
Proof: Lemma 2 applied to (I+KFGA)_1KF in (18) implies (22) immediately.
Also, if (I+KFGA)_1KF is monotonic and sign-definite then so are its
elements and hence the supremum in (17) is achieved at the d.c. frequency
z=1 (in the discrete case) or s=o (in the continuous case). This proves

(21) and ends the proof of the result.

The above result identifies a situation when a knowledge of the
steady state characteristics of real and approximate plant is sufficient
to guarantee stability. The following result has clear connections with

(1,2)

the use of diagonal domonance ideas and the standard use of Nyquist

methods in classical control theory.
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Proposition 6: The conclusions of theorem 1 remain valid if also the

plant approximation GA' the controller K and feedback element F are
all scalar or diagonal multivariable (i.e. non-interacting) systems

and (17) and (18) are replaced by the single condition.

Kk 12V (2)
I+Kkk(Z)Fkk(Z)(GA(Z))

8 R ,Yzeds , 1<kem (25)
Ry

|E

3
kk v
E kJI

In particular, if (GA)kk,Kkk and Fkk have no zeros on 39S, (25) can be

written as

1+ F (2K 2 (2) (a ) T > e (2)) ? e | = 4 (2
xk ‘2! Fyx 2" kk ATURKD L) K k
V ze&9s , l<ksm (26)

(Note: the assumptions on the zero structure of GA' K and F can be
removed in the normal manner by indenting 3S into the stable region of the
complex plane).

Proof: -Equation (25) is equivalent (under the diagonality assumption)
to (17) and (18) as 9S is compact. Under the stated conditions (26) is

equivalent te (25). The result follows trivially.

A situation when this proposition can be applied is described in
Section 3.1.4

A graphical interpretation of Proposition 6 indicates that the
conditions (25) and (26) ;re easily checked in practice. More precisely,
writing

98 = als U 82 S 273

where BlS is the familiar set (the positive imaginary axis)

A
Bls = {s : s =tiw for some real frequency w > o} (28)



—_

in the continuous case, and the unit circle

{z : |z] =1} (29)

in the discrete case. The set

8,8 s {s : Res.> 0, |s| =R} (30)

is the semi-circular component of the Nyquist contour in the continuous |

case and

3,(8) = {z : |z| = Rr} (31)

in the discrete case. Verification of (25) and (26) on 9S boils down
to verification on BlS and 828. In practice the set 81 S can be iden-

tified with the normal frequency response plots of the various systems

whilst 325 "is present due to the mathematical technicalities. We make

the following observations:

(a) The validity of (25) on BZS as R > + » is most easily checked
analytically be noting that, as quAis strictly proper, it is sufficient
that

|Zfi2 |Kkk(z)Fkk(z)| <R_, l<kem (32)

(b) The validity of (25) on BlS is ensured if, for each index k in
the range l<ksm, the Nyquist plot of Kkkak/(l+Kkkak(GA)kk) (z.egasl)
lies entirely within the open disc of radius Rk and centre the origin
of the complex plane. This notion is illustrated geometrically in
Fig. 3(a).

(c) The validity of (26) on BlS is ensured if, for each index k

. ) il —d. -1
in the range l<k<m, the inverse Nyquist locus Fkk(z) Kkk(z) (GA(Z))kk

(zéErBlS) with superimposed 'confidence circles' at each frequency

& e&al S of centre F;i(z}K;i(z)(GA(z));i and radius dk(z) does not

contain or touch the (-1,0) point of the complex plane, This notion is
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illustrated in Fig. 3(b), and has a clear similarity to the diagonal
dominance concepts used in the inverse Nyquist array and method of dyadic
expansion design techniques(l'2). Note however, that the radii of the
confidence circles are independent of controller gain and feedback
element. This is the price that is paid for our lack of detailed

knowledge of plant modelling error dynamics!

Robustness of the Final Design

Although the analysis, and consequent design procedure, discussed
above is clearly capable of producing stable controllers for unknown
plant (and hence, if integral action is included in K, of ensuring accurate
tracking of step demands and total rejection of step disturbance signals)
it is important to recognize that the procedure is robust in the sense
that it will continue to stabilize the plant if, over a period of time,
its dynamic characteristics change by less than a computable amount.
More precisely, if the dynamic characteristics of the plant G change

to produce the plant é, we can prove the following:

Proposition 7: If the conditions of theorem 1 hold, then the closed-

loop system of Fig. l(a) will retain its stability if KFG is controllable

and observable, G - G is stable and

]G - al] < —— (33)
|| (z+xrG,) k||
where pu < 1 is any convenient upper bound for A" (e.g. l:;) or l:;))

Proof: For the configuration of Fig. 1l(a) to remain stable with G replaced
by é, it is sufficient (lemma 1) that KFG is controllable and observable
that G -G is stable and ||(I+KFGA)—1KF(GA—é)|| < 1. The first two

conditions have been assumed and the second follows from the inequality,
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..l ~
[](I+KFGA) KF(GAuG)||

-1 =1 i
< || (xre,) Trr(G,-6) || + || (1+xre) TkE(C - @[]
1

<u + [](I+KFGA)_ xF||.||c - G|

< 1 (from (33)) (34)

3 Construction of the Approximate PLant Model

The success of the techniques described in section 2 rely primarily
upon our ability to construct an approximate plant model GA with the
properties:

(i) GA is simple enough to make possible the design of K
using available facilities,
(1i) the modelling error GA_G is stable, and
(iidi) GA - G is also monotonic and sign-definite

It is acknowledge that there exists examples where the simplest
solution te this composite problem is the (notionally unobtainable)
solution GA = G. In the following sections some example solutions to
the problem are described together with conditions when the solutions
exist. It will become clear that a solution certainly exists and can
be easily computed if the unknown plant G is (a) stable and (b) non-
oscillatory, but that, if one of these conditions is violated, the
construction of GA can become rather more complicated. Fortunately, the
properties of stability and non-oscillation are commonly encountered
properties of systems in the process industries.

3.1 Approximate Models for Discrete Plant

In principle there exists an infinite number of choices of GA
with the required properties that G—GA is stable, mconotonic and sign-
definite. In practice, however, GA must be constructed using simple
operations on transient data and should preferably be of a desired

complexity i.e. of a simple form if 'back of envelope' calculations
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are to be used or of a more complex form if it is thought to be
necessary and suitable computing facilities are available. This
checice should be open to the designer! A number of useful possi-
bilities are described below.

The Case of G Known Exactly.

If a model of the plant is known exactly (i.e. practice, to a
(21)

reasonable accuracy) we can follow the technique of Vidyasagar

and express
G=G +G_ (35)

as the sﬁm of a stable system G_ and an unstable system G+ using, say,
the standard technique of partial fraction expansions. A suitable
choice of GA could then be GA = G+, when G - GA = G_ is clearly stable.
A check for monotonicity can then be undertaken by simulation or pole-
zero analysis.

To illustrate the technique, consider the unstable discrete plant
described by the second-order transfer function G(z) = 1/z(z-1). Using

partial fraction expansions, express G in its stable and unstable

components

11
Z

=i = (36)

G(z) =

and choose the unstable approximate.model GA(Z) = 1/(z-1) when the
(deadbeat) modelling error G - GA = - 1/z is clearly monotonic and sign-

definite with ||G—GA’i = 1. Choosing proportional control and unity

feedback for simplicity, the approximating feedback system of Fig. 1l(a)

'is clearly stable if |K-1| < 1 (i.e. K © > %) and KFG is trivially

controllable and observable. The conditions of Theorem 1 will then be

mwn
satisfied if A(2) < 1 when the stability of G in the presence of K

is guaranteed. It is verified by graphical and analytic methods that
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un K 1
A(2) = sup —-—-K—— = max {IKI ’ 1 } < 1 (37)
IZI =l l + /(Z—l) K _12[

| 2| =R

(gnd hence that the given controller can be quaranteed to stabilize the

2

real plant)if O0< K< /.. This predicted range should be compared

3
with the actual range of gains O < K < 1 that ensure stability. Clearly
the range predicted on the basis of the approximate model is pessimistic
but not unduly so. In fact, bearing in mind the large modelling error

G - GA' the results are highly successful for prediction of stability
characteristics. The transient responses are compared in Fig. 4 for

the choice of Kk = l/3 and compare quite favourably.

Plants with Asymptotically Monotone Step Responses

If the plant model is known, then the technique of section 3.1.1
can always be applied. It is however, impossible to apply if G is not
known or is too complex to handle. In such cases we can work with tran-
sient step response data cbtained from plant test or complex model
simulations if the plant has the following property (see section 3.1.3

for a relaxation of this property) =

Definition: An m-input/m-output, broper, continuous or discrete system
*
is said to be asymptotically monotone if there exists a time t > O such
. R ¢ (3) . th
that, for each pair of indices (i,3), the response yi of the i system
e . . : .th
output from zero initial conditions to a unit step demand in the j
input is either monotonically increasing or monotonically decreasing.

(Note: in the discrete case, attention is restricted to the response at

the sample times only).

Some illustrative examples of this concept in the scalar, continuocus

case are illustrated in Fig. 5 where we see that asymptotically monotone
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systems are simply systems whose dominant modes are nonoscillatory.
This is frequently the case in many process industries and is easily
identified from the transient data.

We now state, without proof, the following simple result relating

the continuous and discrete cases:

Proposition 8: An m-input/m-output asymptotically monotone continuous

system, under synchronous sampling and input actuation, gives rise to

an asymptotically monotone discrete system.

The importance of the notion of asymptotic monotonicity in relation

to the work of section 2 lies in the following fundamental result:

Proposition 9: To each m-input/m-output, proper, stable and asymptotically

monotone discrete plant G, there exists an infinity of approximate models

GA with the property that G - GA is stable, monotonic and sign-definite.

Proof: We prove the existence of one GA' the existence of an infinity

following trivially by inspection of the constructive argument used.

(3) . th .

Let yi (k) , Kk 2 O be the i output response seguence obtained from the

plant from zero initial conditions to a unit step input in channel j and
* *® * s .

let £ € k h (k integer) be as defined in the definition. Using the

technique outlined in ref. 22, set

(3)

z_k{yij)(k) = ¥y (k-1)} (38)

k
(Gy(2)) ;= E
s th ’ . .
to be the (i,j) element of GA(Z) i.e. the approximate model GA is
deadbeat and has identical step responses to G in the (discrete) time
* *
interval o € k £ k and is constant for k > k . Noting that the step

responses of G--GA are obtained simply by subtracting the step responses

of GA from those of G, the monotonicity and sign-definiteness
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of G - GA is trivially verified by the graphical argument illustrated

in Fig. 6.

It is clear therefore that the construction of GA is a simple task
if G is asymptotically monotone but, if t* >> h (i.e. k* >> 1), the model
may have to be of high order. In many process control applications,
however, it is anticipated that this will not be a problem if the plant |
step responses are monotonic ( and hence t* = 0) and relatively slow
sampling is used. The dimensionality problem does not occur in this case,
nor does it in any case where t* is 'small' and the sampling rate is not

too fast.

Asymptotic Monotonicity under Minor Loop Feedback

It is possible to partially extend the above notions to systems
that oscillate in a straightforward manner provided that we can find a
constant (say) feedback Ko such that G'é{I + GKO)—lG is asymptotically
monotone. The simple control scheme of Fig. 1l(a) can then be extended
to that shown in Fig. 7(a) where the 'plant' G' seen by K is asymptoti-
cally monotone. An approximation GA to G' can be constructed as in
section 3.1.2 and the analysis of section 2 applied with G replaced by
G'.

Although conceptually appealing, it is generally true that the
removal of oscillation by constant minor loop feedback requires the use
of positive feedback e.g. for the case of the oscillating (continuous)
system G(s) = l/(s2 + 2s 4+ 2), the removal of oscillation requires that
KO < - 1 and stability requires KO > - 2. This positive feedback loop
may be removed by noting from Fig. 7(a) with r = o that vy = - GKy -
GKOy = - G(K + Ko)y and hence that the stability of this configuration

is identical to that of the configuration shown in Fig. 7(b).
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Multivariable Systems with Monotonic Iteraction Effects

In the multivariable case, although a suitable approximate model
could be constructed using the techniques of section 3.2., the con-
troller design on the basis of GA can still be a complex problem due
to the presence of interaction terms modelling the interaction effects
of G. In such cases, it is natural to search for conditions when a
diagonal/non-interacting approximation can be constructed. This problem

is answered easily as follows:

Proposition 10: If the m-input/m-output, strictly proper, stable and

asymptotically monotone discrete plant G has monotonic interaction effects

yéj) (J # 1), then there exists an infinity of non-interacting approximate
models GA with the property that G - GA is stable, monotonic and sign-
definite.

Proof: Simply set (GA(Z))ij as in equation (38) if i = j and equal to zero

if i # 5.

A particularly interesting and easily applied graphical stability
theorem bearing a close resemblance to the well-known inverse Nyquist
array(l’z) results and directly applicable in these situations has
already been given in Proposition 5 and the following discussion. The
applicability of the result in any given case depends upon the steady-
state magnitudes of the interaction effects Ekj' k#j. 1If interaction
effects are large then the use of a diagonal model GA ensures that the
radii Rk, 1l £k ¢ m (equation (25)) are small or, equivalently, the
confidence circles have large radius. The theoretical conditions (25)

or (26) then clearly require low loop gains to guarantee stability and

hence the design may be too conservative. Conversely, if interaction
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effects are relatively small, the radii Rk are large and the confidence
circles small, leading to few problems in satisfying (25) or (26).

First Order Plant Models

One particularly exciting possibility implicit in the form of
approximation technique discussed in this paper is that it may be

possible to construct an approximate model GA with the required pro-
i

perties plus the bonus that the control design for GA can be undertaken

in an analytical/'pencil and paper' manner. One obvious candidate here

is a first-order multivariable mcdel(lo) of the form

1

G,(2) = ((z-1)B_ + B)) ", IBOI # 0 (39)

where BO and B, are suitably chosen constant mxm matrices. Taking

1

Bo = Bl' it may even be possible to consider the use of the pure-delay/
deadbeat model

G, (2) = z B; (40)

in a similar manner to that of Astrom in ref. (16). The simplicity of
the resulting stability criteria can be illustrated by considering the

case of the design of integral controllers K as follows:

Proposition 1l: Let the discrete plant G be m-input/m-output, strictly

proper, stable and monotonic and F = Im and consider the deadbeat approxi-

mate model given in equation (40) with

( (1) 4, (m){l)*
Y, R )

sl - ) : (41)

El) .{m)
- (1) . . « « « « o . ym (l{

nonsingular (see Fig. 8) and the integral controller K(z) = aBOz/(z—l)
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where o is a real scalar gain. The controller K will then stabilize
the unknown plant G in the configuration of Fig. 1l(a) if KFG is both
controllable and observable and the following inequalities hold

[1 -0 <1 (42)

lal. I1B I, -IIBl]_ <1 (43)

_i“l l-¢

Proof: We simply check the conditions of theorem 1 are valid. Certainly

{

KFG is controllable and observable by assumption and it is easily veri-

fied that (42) is necessary if K is to stabilize the approximate model

GA given in (40). Condit' 1 (43) is  ivalent to condition (18) as
=] -1

(1 +KFGA) KF = (zu/(z—l+u))BO and hence IJ(I + KFGA) KF[l &

(la[/(l—ll—a])) I|BO|I e This completes the proof of the proposition.

As a final caution, we note that the above result implies the
'hidden' design condition of slow sampling. To illustrate this point,
note that if sampling is fast then B;l is 'small' and hence BO is large'.
Examination of (42) and (43) then indicates that o must be small and
positive and hence (43) reduces to |fBO!|m||E|Jm < 1 which may not be
satisfied! In such conditions the theory is indicating that the approxi-
mate model is 'too crude' to be the basis for confident closed~loop pre-
dictions for the real plant. A better model could however, be con-
structed.using the technique of section 3.1.2 or a slower sampling
rate implemented.

Approximate Models for Continuous Plant

In many ways the choice of approximate model GA for a continuous
unknown plant G follows can be based upon similar considerations to those
of discrete plant. It appears to be the case, however, that the construc-
tion of such GA is not quite so straightforward as in the discrete case.

These similarities and problems are discussed below.
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It is trivially verified that the general procedure outlined in
Section 3.1.1 in the case of G known exactly carries through to the
continuous case with no change. Alsc the concept of asymptotic mono-
tonicity of G introduced in Sections 3.1.2 and 3.1.3 carries through.

In particular, the existence result of Proposition 9 extends with no
change other than in the proof where the deadbeat model construction
(which has no continuous counterpart) must be replaced by a trivial but !
indirect argument based upon the observation that an asymptotically
monotone continuous plant must have (at least) one non-oscillatory mode.
The main problem here is that, although a discrete deadbeat model with
the required monotonicity properties can be easily fitted to plant data,
using the construction of (39) it is not obviously so easy to fit a
model to continuous data. In such cases it may be necessary to resort
to trial and error!

In the multivariable case, the comments made in Section 3.1.4 still
hold in that, if a diagonal model will lead to acceptable results, the
resulting simplicity in controller design is very desirable. If G
has monotone interaction effects, then it is easily verified that
Proposition 10 carries through to the continuous case. This notion again
leads to a form of 'inverse Nyquist array' where the confidence circles
provide some measure of the confidence that can be placed upon the
approximate model that neglects the unknown interaction dynamics.

Finally, the essential principle introduced in section 3.1.5 of
using approximate models for which analytical construction of controllers
is possible clearly applies to the continuous case and the continuous

(249 12) is the obvious equivalent to (39). There

first order model
is however no equivalent to the deadbeat model (40) and hence
Proposition 11 has no continuous counterpart. It is clear therefore

that the construction of models GA for a continuous plant G requires

a little more thought. This is a topic for future study.



4.

4.1

Lowil.

- 26 -

Illustrative Examples

The material of section 3 is a convinecing Justification of the
fact that there are many ways of approximate modelling in an effective
but simple manner. The examples described in this section are designed
to underline this fact,to indicate the degree of flexibility available
to the design engineer and also to point out that a number of problems
can occur.

Controller Design for an Unknown Discrete Scalar System

Consider the stable, non-minimum phase, continuocus time system

with transfer function

(2-s)

(s+1) (5+2) L44]

G(s)

That is assumed to be unknow for the purposes of this study. Assume
however, that we have access to the unit step response given in Fig. 9(a).

Note immediately that the system is asymptotically monotone with

*
t = 10ge 2 = 0.693. For simplicity, we will take a sampling interwval

*
h =t and, for comparative purposes, note that

(3/8)
Glz) = T (45)

is the transfer function of the resulting discrete scalar system.
Consider now the results obtained from the choice of a number of
approximate models.

Design Based on a First Order Model

The very special choice of sample interval means that we can choose
a first order deadbeat model based on the choice of k* = 1 in equation
(38) . This approximate model is the trivial system GA(z) = 0 and,
using Proposition 3, it is seen that GA - G is stable and both monotonic
and sign-definite with the norm

e, - eIl = [[E[], = 2 (46)

computed from equation (15) and the steady state data deduced from

Fig. 9 (a).
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Restricting our attention to the choice of proportional, unity
feedback control (i.e. F(z) = 1), we see that any gain K will stabilize
the trivial system GA(z) = 0. BApplying theorem one; such a controller
will also stabilize the unknown plant G provided that KFG = KG is

controllable and observable and 1(2) < 1l. The first of these conditions

reduces to the requirement that G is both controllable and observable

whilst the second reduces to

K(z) F(z) _
i‘ﬁil L+K (2) F(2) G, (2) JlEll = 1% <1 Wil
| z| =R

which provides an initial estimate of the range of gains that will
ensure closed-loop stability. This is clearly rather a pessimistic
estimate when compared with the real range of gains -1 < K < 7/3 that
assure stability of the real plant. These predictions can be improved
however by increasing the order of the approximate model. This is
discussed below.

Design Based on a Second Order Deadbeat Model

*
Choosing k = 2 in equation (38) leads to the approximate,

second-order deadbeat model

_ 3/8
GA(_Z) = 5 (48)

Z

whose step response is given, together with the real plants in Fig. 9(b).
Clearly GA—G is stable and both monotonic and sign-definite with norm

(Proposition 3)

lle, - oIl = |Ie[], = 5/8 (29)

Using proportional, unity feedback control the controllability and
observability condition on KFG required by theorem 1 for K to stabilize
G again reduces to the need for G to be both controllable and observable.

The requirement that K stabilizes GA reduces to
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%- x| <1 (50)

mn

(2) < 1 is simply

and the contraction condition A

2

K 5
sup 2—23‘— g <! (51)
|z|=l z + g-K

|z| =R

or, eguivulently, bearing (50) in mind,

> |
= K|
%— max {|x|, K3 b= L R < 1 (52)

< -3
I~ gk 1 8[K]

Rearranging leads to |KI < 1 and hence, combining with (50), we conclude
that the proportional controlleryK designed on the basis of the second
order deadbeat model will also stabilize the unknown real plant if

IK[ < 1. Comparing this result with equation (47) indicates that there
is no extra benefit to be obtained by using this higher order model.

A somewhat surprising result? Suppose, however, that we accept this
guaranteed gain band as a reasonable basis for control synthesis and
attempt to augment the controller by an integral term,

K. z K

2 2
= + = K_ + +
Kiz) = By *o 1 7% z—1 (53)
The required condition that A(z) < 1 cannot however be satisfied as,
i i K2 # 0,
sup Riziz) | el
| 2] =1 1+K(Z)F(Z)GA(Z) 1
[z]=R
. K(z)F(z2) 5
> lim —
AT l+K(z)F{z)GA(z) 8
5
= - > 1 54
3 (54)

The theory cannot therefore be used on the basis for design using the
model of equation (48) if integral action is required. Perhaps a higher

order model is required?
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Design Based on Higher Order Models

The next stage of model complexity could be envisaged by showing

*

k = 3 in equation (38) to yield the third-order, deadbeat model
3
= lz + %)
GA(Z} = 3 (55)
Z

whose step response, together with that of the real plant, is given in
: |

Fig. 9(c). Again GA - G is stable, monotonic and sign-definite and
11
ey = ¢l = [lell, = 35 (56)

For illustrative purposes hwever we will retain the second order nature
of the approximate model but remove its deadbeat characteristics. More
precisely, we will attempt a second order 'delay-lag' model of the

form

o] w

€al®) = 2 m oL

where -1 < A < 1. Such a model certainly produces a step response matching
that of the plant up to the second (k=2) sample and, by suitable choice of
A, it may be possible to produce a stable, monotonic and sign-definite
modelling error Gﬁ - G. This must clearly be undertaken bx trial and

error in general but, for simplicity, we will cheat a little by choosing

A =% and verifying that it is areasonable choice by using (45) and &7)

to compute

(=3/32)

w EOSREL - e RS 58
Gule) =6l = S 58
which is clearly stable, monotonic and sign-definite with
= 59
[Jell; = % (59)

The plant and approximate model step responses are shown in Fig. 9(d).
The first step in the design of a proportional, unity feedback

controller for the unknown plant G is to design K for GA' To this end,
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the inverse Nyquist plot of GA is given in Fig. 10(a) in the half-
i6 . ) )
circle {z:z = e, - 7 £ 6 <0}. Bearing in mind the open-loop

stability of GA' it is seen that K stabilizes GA in the gain range

4 8
— o
3 K < 3 (60)

To ensure that K also stabilizes G, it is sufficient (Theorem 1) that

G (and hence KFG) is both controllable and observable and that the E

mnmm

contraction constant.l(z) < 1. Taking the positive gain range

0< K< 8/3, we see that

miae . “l
M2y = SR °a ® %
2 =1 I+ K et 4
}z|=R A
8
e —— , K} <1 (61)
4 -1 8
K =-1

if 0 <K <'§. Applying theorem 1, we deduce that the proportional con-
troller stabilizing GA in the range defined by (60) will also stabilize
G in the range
8

0 <K < T (62)
This prediction should be compared with the real range of (positive)
gains O < K < %u Although still a pessimistic estimate, note that the
increased effort devoted to obtaining an improved approximate model has
paid dividends in that the predictions are considerably better than
those obtained in secéions 4.1.1 and 4.1.2.

Choosing K = 1 for simplicity, the stability predictions are
verified again in this case by the inverse Nyquist plot of GAK with (Fig.. 10(b))
superimposed confidence circles. Note that the (-1,0) point does not
lie in or on any circle, that [K[.[[E]|l = % < 1 and hence that the

contraction condition is clearly satisfied. The closed-loop unit step

responses of the real and approximating feedback systems are given in

Fig. 11 for comparative purposes.
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Finally, if integral action is reguired, this approximate model
can be used as the basis of design, as, if K2 is small, the two-term
controller will leave the inverse Nyquist plot of Fig. 1lO(b) essentially
unaffected except in the vicinity of the d.c. (z=1l) point which will be
bent towards the origin. As the confidence circles have radii of the
order of 1/3 in this region, note that the (-1,0) will still lie outside
the confidence circles indicating that the contraction condition will i
still be satisfied and hence stability retained. A detailed discussion
of this possibility is omitted.

Controller Design for an Unknown Multivariable System

Consider the stable, two-input/two-output system with transfer

function matrix

s+3 1
8/3
Gls) = 3oy (a7 D) {53
1 s+3

that is assumed to be unknown for the purposes of this example. Assume
however that we have access to a set of responses from zero initial
conditions to unit steps in the individual inputs 1 and 2. The responses
to a unit step in the fifst input are given in Fig. 12, the responses to
a unit step in the second input being obtained (by symmetry) by inter-
changing the labels ¥y and Yy- Note immediately that the syétem has
monotone interaction effects of approximately 30% in magnitude relative
to the diagonal terms. This makes it possible to consider a diagonal
approximate model. Suppose, for simplicity, that some effort is made

to model the diagonal terms and hence to obtain the approximate model

g—(s+3) 1 0 i
GA(s) = = = g(s) I, (64)
(s+2) (s+4) 0o 1

Note that GA - G is stable, monotonic and sign-definite with
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E=1/3 10 and hence that

e, - cll =118/l = 173 (65)

Restricting our attention to the case of proportional, unity

feedback control with K(s) = k 12 where the gains are identical in

each loop. It is easily verified that K stabilizes GA if k> o,

and hence that, if G (and hence FKG) is controllable and observable

and 1(2) < 1, the controller K will also stabilize the unknown plant

min

G. The condition K2 < 1 can be written as

k
su}:a m ‘ 1/3 < 1 (66)
S=1W
| s =r

This relationship could be analysed graphically in a number of ways but,
for simplicity, note that Re{g(s)} > O on the D-contour and hence that
(66) reduces to the range of gains
- 3/4< k<3 (67)

that guarantees the stability of the closed-loop system for the real
unknown plant. This prediction should be cbmpared with the actual
stability range k > - 3/4. There is clearly some pessimism involved
in totally neglecting the unknown interaction dynamics but this is only
to be expected if no attempt is made to model them.

Finally, choosing k = 2 within the guaranteed stability band, the
closed-loop responses of the real and approximating feedback systems

are given in Fig. 13 for comparative purposes. The inclusion of integral

action K(s) = k(1 + %E)) could be considered to remove the steady state
errors but this is omitted here. We will note however, that the chosen

approximate model is good enought for this purpose as, examining

the inverse Nyquist plot of gk given in Fig. 14 with superimposed
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confidence circles and noting that integral action bends the locus
towards the origin in the vicinity of s = o but leaves the radii of
the confideﬁce circles unaffected, it is clear that the (-1,0) point
will not enter any confidence circle if the reset time T chosen is
long enough. The contraction condition will therefore still be satis-
fied and hence stability retained provided that the controllability
and observability of KFG has not been violated.
Conclusions

The paper has considered the general problem of identifying a
large class of practical situations where controller design can be
undertaken for a dynamically complex continuous or discrete, scalar
or multivariable process using only simple (and, in some cases, pencil
and paper) operations on transient data obtained from simulations or
plant tests. A detailed knowledge of the open-loop plant model is not
required provided that it is stable and the analysis is particularly
simple if the plant has no oscillatory properties in the open-loop.
In many ways the analysis caﬁ be regarded as a rigorous justification
of the well-known intuitive fact that it is not necessary to model a
system too accurately if the model is to be used for feedback control
design. The primary contribution of this paper in this sense is to
quantify what we mean by 'sufficient' accuracy in terms of the transient
error between plant and its approximate model and to express the criteria
in terms that ::can easily be checked graphically for both scalar and
multivariable systems.

The procedures described are based upon the use of a simple (and
possibly highly accurate) model of the plant dynamics deduéed, say,
from transient data. The degree of flexibility available to the
designer is considerable. In particular, and within certain well-defined

constraints, he can choose the order and dynamic complexity of the model
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to be used. In general the design of the control system based on the
approximate model can proceed using well-known frequency domain design
techniques(l_S). Although one might envisage that this step will be
undertaken with the aid of a CAD facility, the flexibility in choice of
model order may reduce the design to a pencil and paper study. In
general, however, a higher order medel will tend to produce less
conservative results.

Finally, the key to the simplicity of the techniques developed here
is the construction of approximate models with ménotone modelling error.
Although this is shown to be easily achieved for nonoscillating discrete
plant, a few problems can arise when consideration is given to oscillating
or continuous plant. This is not thought to be a major problem as many
industfial processes do not have open-loop oscillatory tendencies and
the use of discrete plant models is increasing as the use of digital

control elements increases. It is however, under consideration and will

be the subject of a future report.
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Appendix

To prove lemma 2, consider first the discrete case and expand

T(z) in the_form -

N e ) (68)

k=1
Stability ensures that this series is absolutely convergent for

|z] 2 1. It is easily verified that T is both monotonic and sign-

definite if, for each pair of indices (i,J), the sequence {TFE)}R>1
i >

consists of entirely positive or entirely negative terms. In this

case, we see that, for |z| = 1,

@

T (k)
5 < .. = k = |T, (1
|Tij(z)| < kzllle [ |kzl Tij)| l 15 ) | -
and hence that
m

]fT[J = max sup E fT..(z)]

l<igm zedD 4=1 I

m
=max ) [T, (L] =||T(D)]] (70)
1¢igm =1 ] m
In the continuous case, we can write

T(s) = [ H(te °F a4t (71)

o

where H(t) is the plant impulse response matrix. Stability ensures
that the integral exists for Re s > o. Again we note that T is
monotonic and sign-definite if, and only if, for each pair of indices
(i,3), the function Hij(t) is entirely positive or negative for t = o.

Under these conditions, taking Re s 2 o,

(e}

|Tij(s}| < fo IHij(t)|dt

= |jmO Hij(t)dt| - }Tij(o)l (72)

and the result follows using a similar argument to (70).
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