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An inductive proof of the relationship between the asymptotic behaviour
of multivariable root-loci and the projected Markov parameters introduced by

Kouvaritakis and Bdmunds is provided.

Work on the generalization of the root-loci methodology to multivariable
systems is now well advanced with contributions in the areas of algebraic |
function theory [l]—[2J, numerical methods [3}—[5] and compensation theory
[5}—[7]. A brief review of the state of the art to 1980 can be found in [g]
and to 1978 in [9].

The purpose of this note is to provide a concise inductive proof of the
basic results provided by Kouvaritakis and Edmunds [5] in a generalized form
that relates to the techniques of dynamic transformation published by Owens [3].

Consider the m-input/m-output, linear, time-invariant system S(A,B,C) in
B subjected to unity negative feedback with scalar gain p and, in particular,

consider the unbounded solutions of the resulting return-difference relation

+ =
IIm P Q(s), 0 (1)
where Q(s) = C(sIn = A)_lB is the system transfer function matrix. Note that
=1 -2
= £ T mmm
Q(s) s Q *ts "o (2)

for 'large enough' values of s where {Qj} are the system Markov parameter

matrices and

Q.=¢CcaA "B , ] (3)

3|

AWV
=

Note also [3], [4], [6] that S(A,B,C) is said to have uniform rank k if
0, =0 (G <k , Ile#O (4)

k P
or, equivalently, if lim s Q(s) is finite and non-zero
S+
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s (1) A . ;
Proposition 1: If Q (s) = Q(s) # 0, there exists an integer kl > 1 such
k
1
that the limit lim s L Q( )(s) exists and is non-zero (i.e. kl is the
e (1) (1)
index of the first non-zero Markov parameter of Q ). Moreover, Q has
no infinite zeros of order < kl.
-k
1

Proof: If ps . - 0 as p -+ « then pQ( )(s) + O and equation (1) cannot be

satisfied.

|

The next step in the analysis is to embed the unbounded solutions of (1) in

the unbounded solutions of the sequence of extended relations

T, +p 03 (s) + 2, (s,p)| = o (5)
]

j-1 :
where nj =m - E di > o, Q(j) is strictly proper and Qj(s,p) is a mxm matrix
i=1

function of s and p. We clearly retrieve (1) by setting j=1 and Qlts,p) =0

The basic propositions are as follows:

(3)

Proposition 2: If Q (s) # O, there exists an integer kj > 1 such that the
limit
; k., _(3) A _(3)
llmSjQJ(s)=Q]3 (6)
| 8]+ .

exists and is non-zero. Assume that

(a) lim s Qj(s,p) =0 )
p—)—OO
on all unbounded branches of the root-locus satisfying lim
-1 kj—l proo
P s = 0, and
(b) Qéj) has ":simple nall structure' in the sense [5] that we
3 .
can construct a nonsingular eigenvector matrix W, of'Q(]) such that
J kj
AL 0
J
-1 1
W, Q]ij) W, = (8)
A Hy 1 | g 0

where the matrix Aj is nonsingular of dimension djxdj and dj = Rank Qij).
]



th &7 :
Then equation (5) has kj dj kj order infinite zeros whose asymptotic
directions and pivots are identical to those of the uniform rank kj system
A .
c.(s) 8v. 0P (o) v, (9)
J J ]

where Vj, Uj are djxnj and.njxdj matrices respectively obtained by parti-

tioning of th and W, as follows

Y3
=F.
w=[u, m] , wW.o= --- (10)
J ] J N
] l
(Note: (i) The assumptions on @, are trivially verified if Qj = Q.
J

Under the stated conditions, however, note that the number, asymptotic
directions and pivots of the k;h order infinite zeros are independent of Qj.

(ii) The matrices M, and Nj are clearly related to the annihilators
described in [5]. In fact they are identical if j=1 and kj=l).

Proof of Proposition 2: The proof is a straightforward application of

previous techniques and is outlined below.

We consider only unbounded branches of the root-locus satisfying
_ kj—l -1 k.
lim p s = O and note that p s J is bounded on all other branches.

pr
To prove this, write (5) in the form

P kj
E S L
J 5]

(”mn+95am|=o (11)

k
; -1 7
and note from (6) and (7) that the left-hand-side approaches 1 if p "s J

is unbounded. This is clearly impossible! Next write (5) in the form

_l 3
0= |I + W, {PQ{J)(S) + Q.(s,p)} W.!
n . j j ]
3|
(3)
_ I, +p G,(s) +V, Q.(s,p)U,, PV, (s)M, + V.0, (s,p)M,
= |"a P 5y g fyteRIU50 P VSR SIM 34 2B
pn, 09 v +n.a (spu,T - o N0 (im0, (s,p)M,
3 ] g ] ngdj J 5 ]
= |2 +p N, Q(j)(S) M, + N, Q. (s,p) M| X
nzd, ] J i 3 ]
i3
(3) 9
|14, * P Gy(8) +p ¥ (s,p) (12)

j
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where, from Schurs' formula,
(3) A -1 (3)
s = - V. s)M. + V, O.(s M,) (L
vy (s,p) p (p jQ (s) . 5 % /P) -
J ]
(3) -1 (3)
+ p N, O (s)M. + N, Q. (s,p)M.) (pN, Q (s) U,
: 3 g By Sl Sy i j
=i,
+ N, Q.(s,p)U,) + V. 2.(s,p)U, (13)
5 R T
% (4) =
Note that G.(s) is clearly of uniform rank k, as 1lim s Jg.(s) = V.0 I g
] J sy ] 17k g
,Aj which is nonsingular by assumption. Note also that
. (3) K, (5)
1im s 3 v, 03 (s) M, = lims I n, 97 (s) M,
S ] J g > ]
. (3)
- lims I N, 07/ (s) U, =0 : (14)
P ] J
We now focus attention on those branches of the root-locus where
o K-l o K,
P s J -+ 0 and p s J has only non-zero cluster points as p*+® (i.e. only
th order infinite zeros). On such branches it follows from (7) and (14)
that
k_+l (9)
lim sy 7 (s,p) =0 (15)
p—)—DO

th
and hence that (12) is dominated by Gj(s) and, in particular, the kj and

(kj+l)th Markov parameter matrices of Gj(s). The result now follows using

identical reasoning used in the case of uniform rank systems in references

[3] and [6] P

Proposition 3: With the notation of PropositionZ2, suppose that d, < nj and

k
-1 2
consider only those branches of the root-locus where lim p s J=0. on
such branches, equation (5) can be replaced by
j+1
I rp o) +a, (s =0 (16)
n . J+1
j+1
where
(3+1) Ky # -1
0™ (o) =n.(x_ + P (s)s J6) TB.(s) M, (17)
N, J J J ]
J
k 5
' +
pm s g sy =6 (18)



= 5 =
+ -1
G, =U, A, V. (19)
J J ] i
and
(3) =5 9 -4 (4)
P.(s) =07 (s) - s Jij = s (20)
3
(§+1) . , .
If Q (s) 2 0, there exists a integer kj+l > kj such that the limit
k
: i+ j+1 A i+
lim s 7 lQ(j )(s) = Q;j L (21)
| s ]+ 341
exists and is non-zero (i.e. kj+l is the index of the first non-zero Markov
(3+1) . . o |
parameter of Q ). Moreover, equation (5) has no infinite zero of order v
in the range k, < v ¢ kj+l - 1 and

lim s Qj+l(5.p) =0
pee

(22)
4 Fpe™
on all unbounded branches of the root-locus satisfying lim p s J = 0.
p—-H)D
Proof of Proposition 3: Using Schur's formula, definition
tities (14), write (12) in the form
o=]1 + W lp o
n J

(20) and the iden-
(3)
i

+ Q. (s, W,
(s) J(s p)} ]l

[z + £ -1
. ( 0’ K, A) o) }
P -1 < [T -1
'a T - | ;P w.{
J s ] J o T J
My41
P .(s) + Q. (s,p)}w,
B % j 2RI |
P o -1
= + — I_ + + —=— A v, P, U,
|Id. W Aj |. ] - o, *o5c ]) {p ; ](s)
J s ] ] J s ]
+ Vv, Q. (s,p U} . |1
J 3] J
where

+ N, M. (s,p)M,
o1 3 3 J]

(23)
" (g8 = {p Pj(s) + Qj(s.p)} - {pP.(s) + Qj(S.p)}Uj (Idj +
(1. +-2 Ao Np e (s) +aLs,m} un T, o+
a, k., 3 3 § 3 j d
i 83
P =,
- A ) \'a
gy j

j .
{p Pj(s) + 0. (s,p)}

(24)



The nonsingularity of Aj ensures that the first determinant in (23) is never
k

_l ]

zero on unbounded branches of the root-locus such that p s J 5 0 as p* =,

A similar result also holds for the second determinant as

js) =1, ;
(I. + —=— A7) V. P.(s) U. +V. 2.(s,p) U.}
a. | Tk, 3 e ¥y Byle) 0y % ¥, Hytewpd Uy
] 5 ]
sk' -1 k, sk'
= (A +—N T qv. s T p(s) u +v, ZLa (s,p) U}
j p j j j j p 3 j
i
-+ 0 (as p + =) (25)

due to the definition of P,, property (7) of Qj and the fact that we are
]

focussing attention only on those unbounded parts of the root-locus where

k k. -1
B : 1 s
je) ls ] (and hence p s ] ) tend to zero as p + ®. Equation (23) there-
fore reduces to
o=|1 + N, . (s,p) M.] (26)
J 3 J

Ny41
our proof of (16) proceeds by analysis of r}(S,p)- First, we use the matrix
identity
=], =T
(I + XY) "X = X(I + ¥X) (27)

to write P_ in the form

C(s,p) ={pP, +0.} -{pp, +0.}u (1 +-L2 A)"
j j j j 37 3 d;, k. 3
j s 3
vj{In + {p Pj + Qj} U,(Id + —%~Aﬂj)_l vj)Fl
: 3 - B
{pP, +Q.} (28)
3| 3
Next note that
X - XY(I + XY) X = (I + xy) T ox (29)
and hence that we can write
(s,p) = (I + {p p. + 0. (s }u. (1 +
ra(s p (T p j(S) 3( /P) 5 “a.
] J
P ik =1
ALY T vl {p P.(s) + Q.(s,p)} (30)
k ] 3 B Xy j oP

w
.



The identity

(1T +x0) - (14 x) T

- (I + xv) T X(Z - Y) (I + XZ)-l (31)

then leads to
; sk' =1, =1
Mi(s,p) = (I +{pP.(s) +0.(s,p)} LU A" v)
J n J J P ] 3] J

j

(3)

{p Pj(s) + Qj(s,p)} Y, (s,p) (32)

where
(3)
v = (I + P, ( + Q. (s, U, (I .
b, (8,P) ( ns {p 5 s) 5 (s p} 5 dj skj 5

k,
]
s -1
Q.(SI }]' { U, A. XN. =
J F P J ] J

~1

p
U. (I +—=—A7A.) v, )I(I + {p P, (s) +
d. k. .
185 o 3 J J ny ]
skj -1 -1
Q. (s,p) U, A, V)) P,(s) + Q. (s,p)} (33)
] s/p) ) p J 3 3 tp j ° j =P

Finally, we use the matrix identity

-1 -1
(I + XY) X - (I + 2Y) 2

= (I + XY)“lX - Z(I + Yz)“l (using (27))

= (1 + xv) t (X-2) (I + vz) * (34)

to write
k -1

: 1
(s,p) =p(I +P.(s) s u. A, VvV.,) p.l(s)
r; E P ny s I I 3

+ wéj)(s,p) =+ wéj)(S.p) (35)

where
k,

(3) ~ s

Vs (s,p) = (Inj + {p Pj(s) + ﬂj(s,p)} = AT V)

k. ~

+ 21y, 2,
p ]

=1
V. p P, (s)) (36)
i 3 J P J ®

Q.(s,p) (I
X J(s p) ( i

becomes

_ (3+1) (1) (3)
&= )T +pQ (s) + Nj w2 (s,p) Mj + Nj N

(S,P)M_
j|

(37)
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which is just (16) if we set
0,y (5:0) = Nj(wéj)(s,p) - w;j)(s,p))Mj (38)
Equation (18) follows trivially from (20) and, provided Q(j+l) Z 0, the
existence of kj+l > kj is generated.
Let v be arbitrary in the range k., < y < k - 1 (v need not be

j o~ j+1
integer [ld]!) and consider these unbounded branches of the root-locus

-1 v -1l u
such that p S - 0 as p + ©, Note that p s

-~ 0 as p + = for all
£ V.

We now prove that (22) holds on all unbounded branches of the root

; -1 v
locus satisfying p © s =+ O as p=+ », by proving the same result for both

éj) and w;j). After a little manipulation, we see that X
: J
=1
lim s w(j)(s,p) = lim s {p P.(s) +q.(s,p)} U.(E——-A. -
2 3 J e 3
pre pre
p -
(1. +=—A4. ")v.{p B.(s) + §.(s,p)
a, kj 5 5 1P Py . P}
S
kj k
- J -
=lims{pP. (s) +80,(s,p} U, == ATFEZ1_+p)7?
e ] J ] P J P d.
J
k.
w
— {ppr.(s) +2_ (s,p)}
P J ]
=0 (39)
-1 v =i K,
if p 's *0 as it follows that p "s I, O, and hence that
k.,
8 J
lim £{p P_(s) +0,(s,p)} Z—
S50 ] 3 p
§ r skj
= lim{ s (s Ip_(s)) + (sQ.(s,p))}
i 4
= ] ' 6 =0
K +1 (40)
lim s J P.(s) . § =1

5 >



(the limit existing from the definition of Pj(s)). Also, using (3©)

(3)

lim s w3 (s,p) = lim s Qj(s,p) =0 (41)
k. =]
-1y ] 1
where p s ° (and hence p "s ) > 0 as p » «., Clearly (39) and (41)

indicate that (22) holds on all unbounded branches of the root-locus where

=4 SV - O as p +» » and v is any real number in the range kj£ v £ k,+l-l,
— J
and, in particular, for v = k. = TL. ‘
THEL |
Finally, we prove that (5) has no infinite zeros in the range
kj <v' g kj+l = 1 using the following arguments. Firstly, if kj+l = kj + 1

we see that the result is trivial as the range is empty. Suppose therefore

that k'+l -1> kj and consider the choice of v = kj. The above analysis
k
_l i
indicates that, if p s J 5+ 0 as p > + «, then Q.+l(s,p) -+ 0. Also, if
]

.+ '+
P s o + 0, then it is easily verified that p Q(] l)(s) -+ O and hence that
(3+1) , .
T +p @ + Qj+l + 1 as p + @, This clearly contradicts (16) so we
must conclude that p s_ FEL is either finite and non-zero or unbounded on
k.

-1
all unbounded branches of the root-locus where p "s J 5 0. 1In other terms,

there are no infinite zeros between kj and kj+l - 1. This completes the

proof of the result.

We are now in a position to describe a computationai method paralleling
that due to Kouvaritakis and Edmunds [S] by noting that the results of
Proposition 3 ensure that the assumptions of Proposition 2 (with the exception
of (b)) are satisfied. They can hence be applied recursively with a
starting condition provided by Proposition 1. More precisely:

(3)

..Step 1: Set j=1 , Ql(s,p) Z 0 and Q (s) = Q(s)

Step 2: If Q{J)(s) Z 0, calculate kj and, by spectral decomposition of
its leading non-zero Markov Parameter, construct the djxdj
uniform rank kj system Gj(s) = Vj Q(J)(s) Uj. (Note: condition

(b) of Proposition 2 must be valid for this to be achieved. This

is clearly generically the case!)
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Step 3: Use known techniques (e.g. [3] - [6]) to compute the asymptotic
B, ] th ;

directions and pivots of the kjdj kj order infinite zeros of

Gj (Note: Proposition 2 and induction ensures that these asymp-

1
totes are also asymptotes of Q = Q( )).

(3+1)

Step 4: If n = m, step. Otherwise construct Q (s), replace j+1

J+1
by j and return to step 2.

As in [51 the complex transfer function matrix manipulations involved'

(3+1)

in the construction of Q from Q(J) can be replaced by elementary

manipulations of the systems state-space model S(A,=,C).

(3)

Proposition 4: 0 J (s) has a realization S(Aj,Bj,Cj) in R of the form

v
.'\ s(a,B,C) if § =1
¥
sJ = s(Aj,B.,Cj) =
T, .A B ) if 4>
\ J=1 =141 51" §-1 =3/ LE
(42)
k.—}_
where T =I -BG.cCaA , T 2 1 (43)
i n i3 99
and
i-1 5
CA, "B,=0 (i<k) , cAJd B#O (44)
I j 33 j
(1)

e

Proof: If j=1, the result is trivial as Q Q. Consider therefore the

case of j *» 1 and suppose, using induction, that S. 1 has the required form

and properties. Note also the identity,

L. B
(s I —F)l=Xlel—l+F§lsQ’(sI -t
n n
l:
2 .
=7 SR sT s - T (45)
G

valid for all & >0 and for all nxn matrices F. The transfer function matrix

of Sj is just



5-1%-17 By
(46)

(5 T A
Mo By Mg By g f

using (45) with F = T, Using (44) we see that, for

A, and £ = k.,
3=t 3=

1°

I
-
Q
=
N
I
i
N
o

K B (47)
i-2 + j-1
Gy ol T =By G B ;
j=% j-1 ( n J=1 J=1L j=L j=k

L
. &
)Aj"l'l kj—l L

and hence, using the properties of the eigenvector matrix Wj,

il
c. (T, .A M =0 , ifk
B 1% TP ByeiMya -1
k, K,
J=L _ il 8

N 8 L} B A = N i A 48
T L WL 151" =1 ()

The transfer function matrix in (46) now reduces to

- -k k k,
gt j-1 * j-1,-1
A - A + B, G, .C, A B, .
° Nj—lcj-l ! - (SIn j-1 jld=1"3~1 ) F=L J~1
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-k k
S 11 =1
=s N, . . sI - A B (I +
3-1%5-1%551 (5T, = Byy) By oy
k
+ j=-1 -1 -1
A - A
G,y 51 (ST, =By ) "B, ) My (49)
after use of the matrix identity (27). But this is just 09’ (s) (as
required) as
k o fo, . #i-1
c. adlier —a lB, = ) s e -4
3=1 n g=1 J=1 A J~1 J=1 o ! |
i=1
£ 1 ¢ . i~1 ks il
=s 3 y s c, A B, s 7% p (s (50)
i=k, _+1 J- ] J
J=1
by (44), and, using (27) again,
k k
+ - -1 -1 + -1
=1 = ]
P I+ G = + P S G P 51
j—l( j—ls Pj_l) (T §-1 j—l) 4=1 (51)

The result is now completed by noting that if S, is a representation of Q(j),
(44) trivially from the definitions. J

(Note: the state space realization of Q(J)
can be used to deduce the state space realization S(Aj,BjUj, VjCj) of Gj

and hence its leading Markov parameters that are regquired to deduce its
asymptotic directions and pivots).

In summary the paper has provided a rigorous inductive proof of the
results of Kouvaritakis and Edmunds {5} in a form that relates them to the
use of uniform rank systems in Owens [3],[4] and [6|. In particular, the
nature of the approximation Al (introduced without justification) in
Appendix A of [5] has been identified as being valid for the prediction of

the orders asymptotic directions and pivots of all infinite zeros of the

system.
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