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Abstract
The purpose of this paper is to illustrate, using specific examples,
the stability region, the contraction condition region and the monotonic
condition region in parameter plane. It is our intention to show that
contraction condition region is a substantial part of the complete stabilit;
region for high gain (continuous) or for fast sampling (discrete) systems

and hence gives considerable insight into system robustness.

We consider an unknown continuous multivariable system G(s), satisfying
certain conditions, namely,
L o
(a) G(s) = C(gI - a) B is minimum phase

(b) |cB|# 0.

Remark 1: These conditions are equivalent to the requirement that
|c(s)|# 0 and
G (s) =sA + A + A H(s)
o 1 o
|a| #0 , H() =0 (1)

where H(s) is proper and stable.

Under these conditions {|l|,|2|,|3|), a multivariable first-order type
model given by

G, =sA + A (2)

is an adequate model for the purposes of designing a high-performance
feedback controller and the system G(s) will be stable for P + I controller

(]4|) given by



K(s) = io diag {K,+C +K_.C./s} - A (3)
B 1<j<m

if the contraction constant A defined by

} (sh T(A -2 )+A T(A -a)
164 iy o o ] 1 1

_ ) s
A |Idlag‘{(s+Kj)(s+cj)

~ita ms))) || (4)
(@] (o]

is strictly less than 1. The ideal values of io and ﬁl are usually

_ =1 _ o ) |
AO = (CB) » A= (cA "B) 4 (5)
the tuning parameters must satisfy
X, >0 ,C, »Q (1< 3 < m
J J
and H(s) must satisfy (1).
Remark 2: Defining H(s) as
~ i -1 =1,
H(s) = A " (G " (s) = G_ (s)) (6)
o A

it can be shown from (1) and (2) that H(s) is related to é(s) by

A (s(A-A) + (A.-A.) + A H(s)) (7)
[e) o o 1 1 e}

1

H(s)

and H(s) = H(s) when A = A , A. = A_.
o] e} 1 1

The contraction conditions in terms of ﬁ(s) in

A ; = ~
A = |[aiag {(5+Kj)(s+c,)} (- H(s))[] <1 (

l<j<m

[eo]

The contraction condition (8) is a sufficient but not necessary

condition. It is our aim, however, to show with examples that the region

defined by the contraction condition in the parameter space of matrices

(iofﬁl} can be a substantial part of the real stability region. We also

hope to find the region where a monotonic condition (see|5!) is satisfied.

In such cases Ab is assumed to be known exactly.




Remark 3: By suitable choice of il (|5]) we can sometimes make the
feedback operator H monotonic and sign definite and in th#se case the

contraction condition becomes ([5])

w A J|A;1(G_l(o) - A max  y(K,,C) <1 (9)

||
2 l<j<m

where y(K,C) is an upper bound for the norm of a minimal realization of

S

; m
(54K) (54C) in the Banach space Cm(o, ) .

Now consider an unknown controllable and observable m-input m-output linear

time-invariant discrete system with state-space form
=$ x_ + Au X € R
® K K '
m m
=Cx_,YvY._ER , u_€R ,K>0 (10)

with mxm z-transfer function matrix

G(z) = C(zI - ¢)_1A (11)
m

whose inverse can be represented in the form
=1
G (z) =B (z-1) + B, +B_ H(z)
o) d: 0
H(z) is proper and stable, H(l) = O , |BO| # 0 (123

and a multivariable first-order model takes the form

~1 % &
GA (z) = (z—l)BO + Bl (13)

In this case the suggested controller (|5J) has the multivariable

proportional plus summation form

(l—K.)(l—Cj)z

K(z) = B diag{l - K,C, + } - B (14)
© )3 tardd 1<j<m 1
The contraction condition in this case is (IBI)
, (z-1) =1 ~=1 ~
= ———————— - _ + -
A | |diag {(Z—Kj)(z—C.)} ((z 1)13O (BO BO) B, (Bl Bl)

l<j<m

~-1
= B B H(z)) || <1 (15)



where typical values of Bo and Bl are

B = (ch)t, B = (cx - tyt
o 1 m

and we assume that |Kj| ¢l =12 w1l < <m
J

Remark 4: The contraction condition (95) can be written as

, (z-1) & |
= — L - H < |
A ]ldlag{{z_Kl){z_c')} (- H(z)) || <1 (16)
J l<j<m
where H(z) is given by
5 Py A -1
H(z) =B (G "(2) - G_ (2))
e} A
=Tl % "
= - B “((z-1)(B -B )+(B_.-B_)-B H(z)) (L)
o] o o S | o
when éo = BO and ﬁl = B. (nominal wvalues) it is clear that
H(z) = H(z)
Remark 5: In those cases when éo = Bo' we can sometimes choose ﬁl to make
the feedback operator H(z) monotonic and sign definite (see |5|). In such
cases the contraction condition becomes
A = =ik ~
At 2 B e (W -B) || max y(k,,C) <1 (18)
o 1 m J

1<j<m
: 2 : , m
where the function y: R =+ R is any upper bound for the norm in Qm of a

minimal realization of (z-1
( )/{z—K)(Z—C}

We will now obtain the actual stability domain the contraction condition

region and the monotonic conditicn region in parameters plane for two examples.

Actual stability region

Example 1: Continuous system

For simplicity consider the single input/single output system with

state-space form




x(t) x(t) + u(t)

0 =3

y(t) =1 1]z (19)

and transfer function

2(s+1)

G(s) = i (553

The closed-loop characteristic polynomial is

p (s) = |sIn—A+BKC (20)

where, for simplicity, we will take proportional control action only of
the form

K(s) =k Ao - Al (21)

The closed-loop system is asymptotically stable if, and only if, the roots
of pc be in the open left-half complex plane. Therefore, after a little
manipulation, the actual stability region is described by the relation

kA - A > 1.5 (22)
[¢] 1
Example 2: Discrete System
Take Example 1 subjected to synchronized piecewise constant input
.
and output sampling of frequency h = 10. The induced discrete model

takes the form

1.105 (0] 0.105

0 0.741 0.086

v, = |1 1] % » K>0 (25)

The open-loop system has poles at the points 1.105 , 0.741 and one
zero at the point 0.905 inside the unit circle. (i.e.thesystem is minimum

phase) .



We will take proportional control action only of the form (taking

Cj = 1 and Kj = 0 in (14))

K(z) =B - B (24)
o 1

and note that the closed-loop system is asymptotically stable iff, the roots

of zIm - ¢ + AKC| lie in the open unit circle in the complex plane.

. . 1+ .
By usning transformation z = Eﬁg‘ and routine algebra, for actual |

stability region in parameters (ﬁo,ﬁl), we require that

1.45 < (B - B.) < 10.07 (25)
o 1

Contraction condition region

Using (8), the contraction condition region for example 1 in parameters
A LA space becomes
(a_rA)) sp

<=1~ R -
A | (B - 0.5)s"+(B +A -1)s + (A + 1.5)
o [¢] o 1 1

Max < 1

2
s + (K+l)s + K

s=jw
That is, we need

(c-a 2)2 + b2 2
{ g < ® = (26)
(K-—w ) + (K+1) w

Max

w=l
where a=A (A - 0.5)
e} o
P T —
b=2a (A +A_-1)
o] o 1
and c = ﬁ—l(i +1.5)
o] 1

Remark 6: By varying w, we can find parameter (AO,Al) numerically, such

that (26) is not satisfied.

If we take, for illustrative purposes, Ao = A = 0.5 and il=Al= -1.5

(nominal values) then



2.2 22
(C-apy ) + b w

Max { }

2.2 2
(K- ) +(K+1) w2

occurs at m2 = K and to satisfy the contraction condition we require
K > 3. This should be compared with the exact result K > O obtained from
equation (22).

For finite K and at high frequency (i.e. letting w =+ « in (26)) we also
see that we need |

A > 0.25 (27)
.O

to satisfy the contraction condition i.e. AO must be estimated to a certain

accuracy (c.f. |4|)

For example 2 (discrete system), the contraction condition from (15)

becomes
Max max 5
:zl i ; az ; bz + ¢ & 1 . (28)
z + zd
w1 .
where a=B (B -B)
o o o

c = ﬁ"l(o.gos (B -B ) - 0.905(B_-B_)-0.346)
o o o 1 1
= - -
= -B. + O. - 1. -
b =B (Bl Bl 0 345(130) 1 905(13O BO))

d - 0.905

and the parameter R can be set to an arbitrary large value.

Remark 7: Taking R >> 1, it is easy to verify that the maximum occurs

on |z| = 1.

By writing z = ele(|z| = 1), the contraction condition can be written as

2 ) . 2
{(aCDSZB + bCosB + C)° + (aSin26 + bSlnB)} " 1 (29)

2 2
(CosB@ + d) + Sin 6




= @ e
Remark 8: By varying 8(- m < 8 <1f)we can find (ﬁo,ﬁl) such that the

contraction condition (29) is not satisfied.

Monotonic condition region:

For example 1, it is assumed that Ao is known exactly, that is AO = A =

0.5 and the feedback operator H is

aes) = a Tt - c i)
o] A
L (s43) (s-1) .
=2 e 038 — Ag)
I .
= 1 2Al ol (30)

which is clearly monotonic and sign-definite if 1 - 2Al < 0, that is,

we require

In this case, the monotonic condition from (9) is simply

a4 ||2(-1.5 - Al|| max y(k,C) < 1 (31)
We can take (see |5|) v = 1/K, for an upper bound of a minimal realization
)
of Ty and (31) becomes
~ 1
A= |2(-1.5 - A £< 1 (32)

For example, when K = 10, the values of 0.5 < A, < 3.5 will satisfy the

1

monotonic condition.

Remark 9: Taking Al = 0.5 in (32), we require K > 4 to satisfy monotonic
condition. This should be compared with the exact value of K > O and the

standard contraction value K > 3.

For example 2, (discrete system), the feedback operator

b % 0.033
= 0. ~ .19 R
E(z) = 0030 ke Sy z-0.905

when B =B = -5.23
o o



H is monotonic and sign-definite if él > 0.309. The monotonic

condition from (18) is simply

yr & o.191(1§l + 1.5)| vy(k,0) <1 (33)

We can take y(K,C) = 1 _l X (see 5 ).
and taking K =0 , y = 1.
The expression (33) reduces to
y & |0.191(B, + 1.5)| < 1 (34)
and the wvalues of 0.309 < El < 3.7 will satisfy the monotonic condition.

This should be compared with exact result - 4.84 < él < 3.7. cbtained from

equation (25).

Results and Conclusions:

The stability region, the contraction condition region and the
monotonic condition region may be plotted in the (ﬁo Al) space for example
1. This has been done in Fig. 1 for K = 10. It is seen from the Figure
that the contraction condition region does not contain any points for which

Ab < 0.25 (see also expression (27)).

T

It is known (!l|,|3 4|} that by increasing gain K, the contraction
condition region will increase and hence the monotonic condition region.
This is illustrated in Fig. 2 where K = 50.

The regions of stability, the contraction and monotonic are plotted
in the (ﬁoﬁl) plane for example 2, in Fig. 3. for 't = 10.

It is clear from the examples that the contraction condition region is
a substantial part of the actual stability region and increases as gain
increases. (for continuous system). We have also shown in the Figures 1
2 and 3, the monotonic condition region. Monotenicity is an important

propertyﬁ which can be useful in designing a simple controller for unknown

systems (see [6|,|7|).
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