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Abstract

Some recent results on controller design for unknown discrete multi-
variable plant are extended to include quantitative measures of the robust-

ness of the final design.

A number of recent papers (see, for example, [ﬂ = [{[) have considered
the génexal problem of investigating the robustness of stable multivariable
feedback systems in terms of topoldgiéal or quantitative conditions on admis-
sible plant perturbations that retain closed-loop stability. The greatest
impact of these ideas will most probably lie in the characterization of the
robustness of specific design techniques (see, for example [i],[5},[6])
where identification of design conditions which guarantee a large degree of
robustness will be important in providing both computable measures and rules
of thumb for applicationslpurposes. This notion takes its extreme form in
the construction of controllers for unknown systems @1,[7]—[12] where the
controller must be designed to ensure that closed-loop stability is guaran-
teed and also insensitive to the unknown components of system dynamics.

The purpose of this paper is to discuss the robustness of the technique
~given in [ld] and to extend its applications to provide computable measures
of permissible data inaccuracies.

Consider an m-input/m-output linear, time-invariant system described

by the model

x(t) A x(t) + B u(t)

y(t) C x(t) (1)
that is to be controlled digitally using synchronous input actuation

and output sampling of sample interval h > o. The sampled



input and output vectors u = u(kh) and yk = y{kh), k > o, are related

by a model of the form,

= +
Yo = ¥E thAu
y, = Cx (2)

with z-transfer function matrix

G(z) = C(zI - &) TA (3)

The following fundamental result is proved in Owens [10]: l

Lemma: Suppose that the controllable and observable mxm invertible,
minimum;phase, discrete system with z-transfer function matrix Q(z) is to

be approximated by the mxm, invertible, minimum-phase discrete system QA(Z).
Suppose that QA is stable in the presence of unity negative feedback and that
the poles of the closed-loop system generated by Q lie in the open ball ’zl <R
where R » l. Then the system Q is stable in the presence of unity negative

feedback if the contraction constant

A =l #l =1 -1
A= [T T -9 )] <1 (4)
where, if L(z) is any mxm matrix of z analytic and bounded in {z: 1 < Iz < R},
m
| ]]# max max J T, (@) (4)
l¢jem |zl=1 i=1

EEE

Remark 1: The use of the parameter R is for technical reasons only and can
be set to an arbitrarily large value in applications without loss of informa-

tion if L is proper. Also, no assumption about open-loop stability is required.

The result has a direct robustness interpretation (in fact, with suitable

choice of signal spaces, it is embedded in the results of [% ) but our concern
here is the application to stable controller design for unknown discrete systems.
More precisely, consider the case when the unknown plant G is unknown in the

numerical sense but it is known to have the structure



Grl(z) = (z-1) B +B. +B H(z) (6)
] 1 o]

where [BOI # O and H(z) is proper and stable. Equivalently, the plant is
minimum phase with CA (= B;l) nonsingular. The minimum-phase requirement
needs a model or physical information for verification but, using the tech-
niques of [;é], Bo can be deduced from open-loop plant step response tests.
Also, with the above definitions, Bl is not unique so it will be assumed
that it is chosen such that H(l) = O i.e. Bl represents plant steady statel
characteristics and can again be deduced from plant tests [}Q]. Throughout
the remainder of the paper we will assume that H is not known.

The control deéign procedure discussed in [1Q} is initiated by esti-
mating BO and By from plant tests and basing controller design on the first-

order approximate model GA of the form

-1
GA (z) = (z—l)BO + B1 (73

obtained by ignoring the states generating H in (6). The advantage of this
approach is that controller design for GA is a straightforward matter leading
to the proportional plus summation form of controller [ld},

(1-k.) (1-c,)=z
J., J

K(z) = B diag {1 - k,c, + = . } - B (8)
o 30 3 {z~1) 1¢d<m 1
which generates a stable feedback system if
£Jsm {92)

|kj| <1 , =% <€ e g8 = 1

and is capable of producing excellent responses from the approximate feedback
system [ld],
Applying the lemma with O = GK and QA = GA K it is immediately deduced

that:

Proposition 1: Suppose that G and K are minimum-phase and that the controller

K stabilizes the approximate model GA in the presence of unity negative



feedback, then K also stabilizes the real plant G if the contraction constant

A =] (G;l + K) mlBOHH <1 (10)

This result has the robustness interpretation that K stabilizes all unknown
minimum-phase, invertible systems of the form of (6) generated from (7) with
H satisfying (10). Of course, if a given system is unknown, then H is
unknown and (10) cannot be checked. A useful result can be obtained however

. =1
if the sample rate h is regarded as a design parameter [ld]:

Proposition 2 (see theorem 4.1 in Owens [ld]): Let the underlying continuous
system (1) be minimum-phase with [CBI # 0. Then for each choice of parameters
*
k.,c., 1 £ J ¢ m, satisfying (9) there exists a strictly positive h such
*

. =, =,
that, for sampling rates h > (h ) ~, the discrete system generated by (1)

has the form of (6) and the contraction condition (10) is satisfied.

Remark 2: In the proof given in [}Cﬂ it is, in fact shown that lim A =0
hro+

by proving the useful relationship

1im | |H|]] =0 (11)
h+o +

*
Remark 3: In general h is unknown as it depends upon the unknown dynamics

of H.

The theoretical interpretation of Proposition 2 is immediate, namely
that, in the presence of the defined continuous plant structure, controller
design for the discrete plant based upon the approximate first order model
will stabilize the plant (and hence, if integral action is included, generate
ideal steady state performance in response to step demands) provided that
the chosen sampling rate is fast enough. Morever, bearing in mind Remark 2,

it is clearly true that any increase in sampling rate will increase the




robustness of the design to changes in the unknown part of system dynamics H.

In the above analysis, despite the robustness of the design with respect
to the unknown dynamics H, the parameter matrices Bo'Bl are assumed to be
known exactly. We will now extend the above results to include an assess-
ment of the robustness of the design to errors in these parameter matrices.

More precisely, suppose that éo and B, are numerical estimates of BO and Bl

1
and that the approximate first order plant model (7) and designed controller
(8) are generated using these estimates father than the correct values.
Applying the lemma with Q = GK and GA = GAK it is easily verified that
Proposition 1 remains true if (10) is replaced by

=i,

A o= Il(_c;;l + B Lt G;l)|| <1 (12)

We can now state the following main result of this note.

Theorem: Let the underlying continuous system (1) be minimum-phase with

|CB] # O and suppose that the parameters kj'cj' 1<jgm, are specified and

satisfy (9). Suppose also that
(1) the chosen procedure for choosing él is such that
lim sup I]ﬁl = Bil[ < + o (13)
h~o+

(ii) the chosen procedure for choosing éo is such that [ﬁof # 0 and

(z-1)° vos-l
lm = lim sup max max ‘m‘:‘c—‘) ' Z IBO (BO"BO) ) I l
hoo+ 1gigm sz=l | I I
& L (14)

*
Then there exists a strictly positive number h such that the controller K
of the form of (8) with BO and Bl replaced by ﬁo and ﬁl respectively stabilizes
=7, I
the plant G for sample rates h > (h) g

(Note: Both BO and Bl' and hence the estimates ﬁo and ﬁl, are clearly

dependent upon the sample rate h-l).




The proof of the theorem is given at the end of the paper. Before giving

this however, it is important to interpret the result in the correct manner.
More precisely, it is important to interpret conditions (i) and (ii) correctly.
The other conditions can then be given the same interpretation as those in

Proposition 2. Both conditions relate to the required accuracy in measurement

of Bo and Bl.

Condition (i) is simply an abstract statement of the requirement that‘
errors in the estimate of the steady state performance of the plant should
have & guaranteed upper bound that is independent of chosen sampling rate.
This is easily achieved as steady state performance (and hence Bl) is inde-
pendent of sample rate. In fact the simple choice of ﬁl = O (see [;Q]) will
satisfy (i) and provide a partial simplification of the controller structures
as an added bonus.

In a similar manner condition (ii) represents an accuracy reguirement

in the estimation of the 'high fregquency' parameter Bo' although, in contrast

EQ B

|
|

1 the accuracy required in estimation of BO depends, partially, upon the
i |

chosen controller parameters kj,cj, lsj$m;

Perhaps the most important interpretation of the theorem however is in
terms of the robustness of the final design. It is clear that, under fast
sampling conditions, the stability of the closed-loop system is robust with
respect to the unknown dynamics in H és these dynamics play no part in the
stability conditions. It is also clear from (i) that, provided errors in
estimation of El are uniformly bounded, any destabilizing effect of a bad
choice of él can be offset by increased sample rates. Finally, if we arrange
our experiments [;Q] for estimation of B0 to an accuracy specified by (14)

any destabilizing effect of such errors can again be removed by increasing

the sampling rate.

Clearly the use of fast sampling rates is an important tool in producing

a robust design and, under these conditions, the tolerable errors in



estimation of BO and B. can be quantifiably large. Although the asymp-

1

totic methods used in the proof of the result formally require 'fast
sampling rates', experience with the application of the ideas indicates
that h* can in practice be quite large (corresponding to slow sampling
conditions). A numerical estimate of the h* cannot be obtained, however,

without numerical information concerning the unknowndynamics in H.

{
Proof of Theorem: The proof reduces to a demonstration that, under the

stated conditions, (12) holds for all fast enough sampling rates. It is

easily verified that

-1 -1 -1 -1
(GA + K) (G - GA ) =

. (Z_'l) - ~=1 . i -:v S
diag {(Wz_kj) (Z_Cj)}lsj:Sm ((z-1) (BB -I ) +B_ (8,-B)) +E B H(z) (15

~-=] ~
Noting that A_ < 1, it follows from (14) that lim sup]!BO (BO—BO)Il £ 1

T =¥y &
and hence that
lim sup ||ﬁ’l B || 2 (16)
ho o+ o o
Using (11), it then follows that
lim sup t|ﬁ?lB H|| < 2 lim [IHIl = O (17)
h-» o+ © ©° hro+
Finally, writing ﬁ;l = (ﬁ;lBO)B;l and using (16) it is seen that
lim sup ]]épl{Bl—ﬁl)ll £ 2 lim sup IfBl = ﬁlll lim sup IlB_lll =0 (18)
h-+ o+ © h-+ o+ h > o + ©

by (13) and the fact that B;l = CA =+ 0 as h =+ o +. This completes the
proof of the theorem as, using (17) and (18) in (15) it follows from (l4)

and (12) that

lim sup A = lw <1 (19)
h > o +

*
and hence that h > O exists with the required property.
(Note: the parameter R disappears from the analysis as, taking R >> O,

it is trivially verified that the maximum occurs on |z[ =1).



Remark 4: Taking BO = BO and §1 = Bl (i.e. exact measurements) the above

result reduces to Proposition 2 as (13) and (14) are trivially satisfield.
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