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Embedding Distortion Modeling for Non-orthonormal

Wavelet Kernel based Watermarking Schemes

Deepayan Bhowmik and Charith Abhayaratne

Department of Electronic and Electrical Engineering, University of Sheffield,

Sheffield, S1 3JD, United Kingdom.

ABSTRACT

In this paper a universal embedding distortion model for wavelet based watermarking is presented. The present
work extends our previous work on modelling embedding distortion for watermarking algorithms that use or-
thonormal wavelet kernels to non-orthonormal wavelet kernels, such as biorthogonal and non-linear wavelets.
By using a common framework for major wavelet based watermarking algorithms and the Parsevals energy
conservation theorem for orthonormal transforms, we propose that the distortion performance, measured using
the mean square error (MSE), is proportional to the sum of energy of wavelet coefficients to be modified by
watermark embedding. The extension of the model to non-orthonormal wavelet kernel is obtained by rescaling
the sum of energy of wavelet coefficients to be modified by watermark embedding using weighting parameters
that follows the energy conservation theorems in wavelet frames. The proposed model is useful to find optimum
input parameters, such as, the wavelet kernel, coefficient selections and subband choices, for a given wavelet
based watermarking algorithm.

Keywords: Watermarking, wavelet, distortion performance, non-orthonormal wavelet kernel.

1. INTRODUCTION

Digital watermarking attracts major attention from the researchers and industries, as a latest protection tool
for multimedia in digital right management. Often watermarking algorithms adopt a base technology based on
the state of the art compression schemes. For example, a numerous number of wavelet based watermarking
schemes1–11 are proposed by the researchers due to the standardisation of wavelet based JPEG2000 compression
scheme. Though many independent algorithms are available in the literature, a gap has been identified which
requires a generalised mathematical analysis to identify the relationship between distortion performance and
various input parameters, responsible for embedding distortion. Few works12 have been carried out towards this
problem but they mainly focused on their own algorithms.

In our previous work13 we addressed this issue and came out with a generalised model for embedding distortion
for wavelet based watermarking schemes. This model generalised all major wavelet based schemes under one
common platform and presented a mathematical relationship between distortion performance metric such as
mean square error (MSE) and responsible input parameters including wavelet kernels, subband selection and
coefficient selection. The said model was constructed on orthonormal bases which conserves energy in the signal
domain and the transform domain. Thus this model is only valid for orthonormal wavelet kernels such as Haar,
Daubechies-4, or Daubechies-8.

To give a universal acceptance of the model we have extended our work which includes non-orthonormal
wavelet bases such as biorthogonal and non-linear wavelet kernels. The rest of the paper is organised with a brief
discussion of the previous work and the propositions made, in Sec. 2. The extended new analysis is presented in
Sec. 3 followed by example simulation results in Sec. 4. Section 5 includes concluding remarks on this universal
embedding distortion model.
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2. DISTORTION PERFORMANCE MODEL FOR ORTHONORMAL WAVELET
BASES

A generalised distortion performance model for wavelet based watermarking scheme is presented in.13 The
model is analysed and verified with orthonormal wavelet kernels. In the said model two different goals have been
achieved: generalisation of wavelet based embedding schemes and the effect of input parameters on distortion
performance. We shall discuss these briefly in order to provide sufficient background for the extension of this
work for non-orthonormal wavelet bases.

2.1 The common framework for wavelet based watermark embedding

Although many different wavelet based watermarking schemes available, it possible to accommodate most of
them in a common formal framework14 by dissecting them into common functional blocks. In most of the
algorithms the basic embedding principle remains same and the modified coefficient C ′

m,n at (m, n) position, can
be presented as:

C ′

m,n = Cm,n + ∆m,n, (1)

where Cm,n is the coefficient to be modified and ∆m,n is the modification due to watermark embedding. The
modification algorithms can broadly be divided in two groups: direct modification1,2, 7, 10,11 and quantisation
based modification.3,4, 6, 8

2.1.1 Direct modification

Direct modification algorithms are generalised in the following modification value ∆m,n at (m,n) position:

∆m,n = (a1)α(Cm,n)bWm,n + (a2)vm,nWm,n + (a3)βCw + (a4)Sm,n, (2)

where a1, ..., a4 are boolean variables to identify the presence of each of the components for a given methodology,
Cm,n is the coefficient to be modified, α is the watermark weighting factor, b = 1, 2... is the watermark strength
parameter, Wm,n is the watermark value, vm,n is the weighting parameter based on pixel masking in HVS model,
β is the weighting parameter in the case of fusion based scheme, Cw is the watermark wavelet coefficient and
Sm,n is any other value which is normally a function of Cm,n. In most of the algorithms watermark weighting
parameters α and β are user defined to an optimal value.

2.1.2 Quantisation based modification

In this case, the modification (∆m,n) is performed based on a ranked order quantisation update. The median value
of a local area (typically a 3x1 coefficient window) is usually modified to a quantised step and the quantisation
step δ (−δ ≤ ∆ ≤ δ) is decided upon a local minima (Cmin) and local maxima (Cmax) of the selected window
coefficients. The expression to determine δ varies in different algorithms.

The realisation of different wavelet based watermarking algorithms using the common framework, are de-
scribed in Tab. 1. As the watermark information or a weighting parameter is fixed and user defined often the
modification value ∆ is either a function of the selected coefficient Cm,n or a local minima (Cmin) and maxima
(Cmax).

2.2 Embedding Distortion Performance Analysis

In this mathematical model a relationship is established between distortion performance metric and the water-
mark embedding parameters. Based on the Parseval’s energy conservation theorem a set of propositions have
been made and proved in .13 Here we have described the propositions which are based on the orthonormal
wavelet bases and the extension of the same for the non-orthonormal bases are described in the next section.

Proposition 1. Sum of the noise power in the transform domain is equal to sum of the noise power in the
input signal for orthonormal transforms. If the input signal noise is defined by ∆x[n] and the noise in transform
domain is ∆y[k] then

∑

n

|∆x[n]|2 =
∑

k

|∆y[k]|2, (3)



Table 1. Realisation of wavelet based algorithms using different combination of input parameters

Method Selection Coeff Subband Wavelet Level Reference ∆ as
< a1, a2, a3, a4 > Selection Kernel Function of

Direct(b = 2) < 1, 0, 0, 0 > High Haar 2 1 f(Cm,n)
Direct(b = 1) < 1, 0, 0, 0 > All Biorthogonal 3 2 f(Cm,n)
Direct(b = 1) < 1, 0, 0, 0 > Low Biorthogonal, 3 15 f(Cm,n)

Non-linear
Direct < 0, 0, 1, 0 > High Orthogonal 4 11 f(Cm,n)
Direct < 0, 0, 0, 1 > High Any 2 10 f(Cm,n)

Quantisation - Low Any 2 6 f(Cmin, Cmax)
Quantisation - High Haar 1 4 f(Cmin, Cmax)
Quantisation - High Any 2 3 f(Cmin, Cmax)

where n ∈ Z is the length of the input signal and k ∈ Z is the length in the transform domain, respectively.

Proof. For the proof our previous work13 is requested to refer.

Now using Proposition 1 and the common generalised framework the relationships are stated between the
modification energy sum in the coefficient domain to embed the watermark and the distortion performance
metrics.

Proposition 2. In a wavelet based watermarking scheme, the mean square error (MSE) of the watermarked
image is directly proportional to the sum of the energy of the modification values of the selected wavelet coefficients.
The modification value itself is a function of the wavelet coefficients and therefore we propose two different cases
based on the categorisation.

Case A. For the direct modification embedding method the modification is a function of the selected coefficient
to be watermarked and the relationship between MSE (Pp) and the selected coefficient (Cm,n) is expressed as:

Pp ∝
∑

|f(Cm,n)|2. (4)

Case B. For the quantisation based method the modification is a function of the neighbouring wavelet co-
efficients of the selected median coefficient to be watermarked and the relationship between MSE (Pp) and the
wavelet coefficients Cmin and Cmax is expressed as:

Pp ∝
∑

|f(Cmin, Cmax)|2. (5)

Proof. For the proof our previous work13 is requested to refer.

3. EMBEDDING DISTORTION PERFORMANCE ANALYSIS FOR
NON-ORTHONORMAL WAVELET BASES

In this section we have extended our previous propositions for non-orthonormal wavelet bases. We recall embed-
ding distortion performance metric mean square error (MSE) which is defined as follows:

Definition 1. The Mean Square Error (MSE) or average noise power Pp in pixel domain between original
image I and watermarked image I ′ is defined by:

Pp =
1

MN

M−1
∑

j=0

N−1
∑

i=0

|I(j, i) − I ′(j, i)|2, (6)

where M and N are the image dimension and j and i indicate each pixel position.

We also recall the Parseval’s equality for the energy conservation in the signal domain and the transform
domain.



Definition 2. In the Parseval’s Equality, the energy is conserved between an input signal and the transform
domain coefficient in the case of an orthonormal filter bank wavelet base.16 Assuming the input signal x[n] with
the length of n ∈ Z and the corresponding transformed domain coefficients of y[k] where k ∈ Z, according to
energy conservation theorem,

‖x‖2 = ‖y‖2. (7)

On the other hand non-orthonormal wavelets such as biorthogonal wavelets do not hold conservation of energy.
But for a stable expansion, the transform domain coefficients have to satisfy the Eq. (8).16

A
∑

k

|y[k]|2 ≤ ‖x‖2 ≤ B
∑

k

|y[k]|2, (8)

where A and B are the orthonormality correction factor.

Based on the discussed propositions and the definitions we shall build the extended model and make the new
propositions.

As suggested in Eq. (8), for a non-orthonormal wavelet base an orthonormality correction factor is required
and we shall call this as a weighting factor W which is defined as follows:

W =
‖x‖2

∑

k |y[k]|2
, (9)

where x and y is the input signal and the transform domain coefficients, respectively.

We consider the polyphase matrix representation of the discrete wavelet transform (DWT)17 and its recon-
struction. The inverse DWT can be defined by a synthesis filter bank using the polyphase matrix M ′(z) =
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)

where h′(z) represents the low pass filter coefficients and g′(z) is the high pass filter coefficients and

the subscripts e and o denote even and odd indexed terms, respectively. The transform domain coefficient y can
be re-mapped into input signal x as bellow:

(

xe(z)
xo(z)

)

=
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)(

ye(z)
yo(z)

)

. (10)

Considering ∆y is the noise introduced in wavelet domain and ∆x is the modified signal after the inverse
transform, using the Linearity property of the Z transform of the filter coefficients and signals in the polyphase
matrix, it is proved in our previous work13 that

(

∆xe(z)
∆xo(z)

)

=
(

h′

e
(z)

g′

e
(z)

h′

o
(z)

g′

o
(z)

)(

∆ye(z)
∆yo(z)

)

. (11)

In a polyphase decomposition we use different low pass and high pass filter banks. Therefore at each of the
different transform points, we receive different weighting factors W g and Wh, corresponding to high or low pass
filters, respectively. Now the Proposition 2 can be extended as follows, accommodating the weighting factors for
non-orthonormal transforms:

∑

(|∆xe|
2 + |∆xo|

2) = W g
∑

(|∆ye|
2 + |∆yo|

2) + Wh
∑

(|∆ye|
2 + |∆yo|

2),
∑

n

|∆x[n]|2 = W g
∑

(|∆ye|
2 + |∆yo|

2) + Wh
∑

(|∆ye|
2 + |∆yo|

2). (12)

Now using the generalised framework, and the extension of the Proposition 1, the Eq. (12) can be applied to
build the relationship between the modification energy in the coefficient domain to embed the watermark and
the distortion performance metrics for orthonormal as well as non-orthonormal wavelet bases.

Proposition 3. In a wavelet based watermarking scheme, the mean square error (MSE) of the watermarked
image is directly proportional to the weighted sum of the energy of the modification values of the selected wavelet
coefficients.

Pp ∝
∑

WΘΥ|∆m,n|)|
2, (13)



where W is the weighting parameter at each subband and Θ represents the subband no. at Υ decomposition
level.

The modification value itself is a function of the wavelet coefficients and therefore, we propose an example
case of direct modification, based on the general framework.

Example Case. For the direct modification embedding method the modification is a function of the se-
lected coefficient to be watermarked and the relationship between MSE (Pp) and the selected coefficient (Cm,n) is
expressed as:

Pp ∝
∑

WΘΥ|f(Cm,n)|2, (14)

where W is the weighting parameter at each subband and Θ represents the subband no at Υ decomposition level.

Proof. The watermark embedding is generally performed by modifying the wavelet coefficients in any wavelet
based algorithms. Due the modification, an error is introduced in transform domain which is similar to any
noise in the transform domain. Therefore, the sum of the energy of the modification value due to watermark
embedding in the wavelet domain is equal to the sum of the noise energy in the transform domain. From Eq. (1)
and Eq. (3), the energy sum of the modification value ∆m,n can be defined as:

∑

m,n

|∆m,n|
2 =

∑

k

|∆y[k]|2. (15)

Similarly, the pixel domain distortion performance metrics which is represented by MSE is considered as the
noise error created in the signal due to the noise in wavelet domain. Therefore, the sum of the noise energy in
the input signal is equal to the sum of the noise error energy Pp in the pixel domain:

Pp.(MN) =
∑

n

|∆x[n]|2, (16)

where M and N are the image dimensions. Now the relationship between the distortion performance metric
MSE of the watermarked image and the coefficient modification value which is normally a function of the selected
wavelet coefficients can be decided using the extended Proposition 1.

Thus from with the help of Eq. (12), combining Eq. (15) and Eq. (16), we can write:

Pp.(MN) =
∑

m,n W g|∆m,n|
2 +

∑

m,n Wh|∆m,n|
2, (17)

where M and N are the image dimensions. Hence for any watermarked image, the average noise power Pp is
proportional to the sum of the energy of the modification values of the selected wavelet coefficients:

Pp ∝
∑

m,n W g|∆m,n|
2 +

∑

m,n Wh|∆m,n|
2. (18)

Now in the case of 2-D wavelet decompositions, the wavelet kernel transfer function, for each subband at each
decomposition level are different and so that the weighting factors are. Hence the ∆ in Eq. (18) are associated
with a corresponding weighting parameter for each subband at each decomposition level. We define the weighting
parameter as WΘΥ at each subband and Θ represents the subband no. at Υ decomposition level.

With the help of the common framework a relationship is established between the error energy of the water-
marked image and the selected wavelet coefficient energy of the host image. For example, a direct modification
based algorithm, the mean square error Pp is directly proportional to the weighted sum of the energy of the
modification value ∆ which is a function of wavelet coefficient value as stated below:

Pp ∝
∑

WΘΥ|f(Cm,n)|2 . (19)

where W is the weighting parameter at each subband and Θ represents the subband no. at Υ decomposition
level.

For an orthonormal wavelet kernels the value of the weighting parameters are equal to unity whereas for
a non-orthonormal wavelet kernel, different weighting parameter values are suggested for different subbands at
each decomposition level.

¥



4. EXPERIMENTAL SIMULATIONS

Experimental simulations have been carried out to verify the propositions made in the previous section. There
are two different parts of the experiment conducted: calculation of the weighting parameters and simulation of
the propositions.

4.1 Calculation of the weighting parameters

The weighting parameters are calculated for each subband at each decomposition level for various wavelet kernels.
We have done a three level decomposition and calculated the weighting parameter value for each of the ten
subbands. A set of different non-orthonormal wavelet kernels including 5/3, 9/7, spline 9/3, spline 16/4, 9/11-A
and 9/11-B18 are chosen for the experiments. We have considered the energy ratio (refer Eq. (20)) for each
subband one at a time while keeping other subband values to zero.

WΘΥ =
‖x‖2

∑

|yΘΥ|2
, (20)

where WΘΥ is the weighting parameter at Θ subband at Υ decomposition level, yΘΥ is the coefficient value at
Θ subband at Υ decomposition level and x is the output pixel values after the inverse wavelet transform. The
weighting parameters are calculated for the experimental image set and generalised by averaging them. It is
observed that these parameters are image independent. The corresponding weighting parameters for different
subbands at each decomposition levels are calculated and shown Tab. 2 along with the error. The errors presented
here display accuracy up to the 95% confidence interval.

Table 2. Weighting parameter values of each subband at each decomposition level for various non-orthonormal wavelets

5/3 9/7 9/3 16/4 9/11A 9/11B
LL3 0.97±0.01 1.00±0.00 0.97±0.01 0.94±0.01 1.01±0.00 0.86±0.03
LH3 0.55±0.02 1.11±0.01 0.53±0.02 0.25±0.02 1.91±0.07 0.13±0.01
HL3 0.56±0.02 1.14±0.01 0.52±0.02 0.24±0.02 1.99±0.07 0.12±0.01
HH3 0.52±0.01 1.09±0.02 0.46±0.01 0.18±0.01 2.15±0.01 0.11±0.01
LH2 0.70±0.03 1.04±0.02 0.66±0.03 0.38±0.03 1.46±0.05 0.27±0.03
HL2 0.66±0.02 1.04±0.01 0.65±0.02 0.34±0.02 1.49±0.04 0.25±0.02
HH2 0.79±0.02 0.97±0.02 0.74±0.02 0.40±0.02 1.23±0.01 0.40±0.02
LH1 1.29±0.04 1.10±0.01 1.27±0.04 1.43±0.08 0.91±0.02 1.53±0.11
HL1 1.30±0.03 1.10±0.01 1.27±0.03 1.45±0.07 0.92±0.02 1.49±0.09
HH1 2.41±0.07 1.18±0.02 2.34±0.07 4.28±0.24 0.59±0.01 6.46±0.41

4.2 Simulations of the propositions

For the simulation purpose we have chosen one example case2 of direct modification from the generalised frame-
work. Two different sets of results are obtained and displayed to verify the effects of different input parameters
which are responsible for embedding distortion performance. These two sets of experimental arrangements and
resulting plots are discussed separately as follows:

• In the experiment Set 1, the un-weighted and the weighted sum of energy of the selected wavelet coefficients
to be modified and MSE of the watermarked image have been calculated using the same α and the same
binary watermark logo. A set of combinations of the subbands have been used to embed the watermark.
For example, after three level of wavelet decompositions, ten subbands are created such as LL3, HL3, LH3
and HH3 at 3rd decomposition level, HL2, LH2 and HH2 at 2nd decomposition level and HL1, LH1 and
HH1 at 1st decomposition level. Now six combinations have been chosen for the experiments: AF3 (LL3,
HL3, LH3 and HH3), AF2 (LL3, HL3, LH3, HH3, HL2, LH2 and HH2), AF1 (LL3, HL3, LH3, HH3,
HL2, LH2, HH2, HL1, LH1 and HH1), HF3 (HL3,LH3 and HH3), HF2 (HL2, LH2 and HH2) and HF1



Table 3. Correlation coefficient values between sum of energy and the MSE for different wavelet kernel in various subband
combinations

5/3 9/7 9/3 16/4 9/11A 9/11B
AF3 0.99 0.99 0.99 0.99 0.99 0.98
AF2 0.99 0.99 0.99 0.99 0.99 0.98
AF1 0.99 0.99 0.99 0.99 0.99 0.98
HF3 0.98 0.99 0.98 0.95 0.98 0.95
HF2 0.99 0.99 0.99 0.97 0.99 0.96
HF1 0.99 0.99 0.99 0.97 0.99 0.97

(HL1, LH1 and HH1). We have used various non-orthonormal wavelet kernels including 5/3, 9/7, spline
9/3, spline 16/4, 9/11-A and 9/11-B and observed the results for each selected subband combination. The
correlation plots of MSE vs. un-weighted energy sum and MSE vs. weighted energy sum is displayed in
Fig. 1 and Fig. 2. In each of the figures Row 1 represents MSE vs. the un-weighted energy sum and Row 2
represents corresponding plots after applying the weighting parameters. The correlation coefficients of the
weighted energy sum are also calculated and presented in Tab. 3.

In another representation, a set of graphs are plotted in Fig. 3 and Fig. 4. These plots present the average
values of the MSE, un-weighted and the weighted sum of energy for the test image set. In each of the fig-
ures Column 1 presents average MSE, Column 2 presents un-weighted average energy sum and Column 3
represents weighted average energy sum. The error bars denote the accuracy up to the 95% confidence
interval. In these graphs the trends have been compared for MSE vs un-weighted energy sum and the trend
after weighting correction.

• In the experiment Set 2, the performance for different subband combinations are plotted for each wavelet
kernel in a similar fashion as mentioned in experiment Set 1 in order to observe the trend. The results are
shown in Fig. 5 and Fig. 6 and in each of the figures Column 1 presents average MSE, Column 2 presents
un-weighted average energy sum and Column 3 represents weighted average energy sum. As earlier, a 95%
confidence interval is considered which is denoted by the error bars.

From the results it is observed that the proportionality relation does not exist or poorly presents in case of
a un-weighted energy sum. But with the introduction of the weighting parameters, a strong proportionality
relation is observed for each individual subband combination or wavelet kernel, as suggested in the proposition
as shown in Fig. 1 and Fig. 2. On the other hand, in the pattern graphs in Fig. 3, Fig. 4, Fig. 5 and Fig. 6,
the MSE and the un-weighted energy sum graph patterns does not show similarity whereas a pattern similarity
is regained after applying the weighting parameters. Also a strong correlation of more than 0.95 is observed
between MSE of the watermarked image and the weighted energy sum of the selected wavelet coefficients to be
modified.

An extensive simulation is performed using 25 different images from Kodak data base and the results strongly
support the proposed model for a wide range of input images and various non-orthonormal wavelet kernels.

5. CONCLUSIONS

A universal embedding distortion performance model is presented here for wavelet based watermarking schemes.
We have extended our previous model which considers only orthonormal wavelet kernels, to non-orthonormal
wavelet kernels such as biorthogonal and non-linear wavelets. The current model suggests that the MSE of
the watermarked image is directly proportional to the weighted sum of energy of the modification values of
the selected wavelet coefficients and this proposition is valid for orthonormal as well as non-orthonormal wavelet
kernels. In the case of the non-orthonormal wavelet bases a weighting parameter is introduced and it is computed
experimentally for different non-orthonormal wavelet bases. This universal model is verified by experimental
simulations with a wide range of wavelet kernels.



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF3 subband comb. (MSE vs Energy Sum) 

Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF2 subband comb. (MSE vs Energy Sum) 

Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF1 subband comb. (MSE vs Energy Sum) 

Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

2 4 6 8 10 12 14 16

x 10
9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF3 (MSE vs Weighted Energy Sum) 

Weighted Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

2 4 6 8 10 12 14 16

x 10
9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF2 (MSE vs Weighted Energy Sum) 

Weighted Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

2 4 6 8 10 12 14 16

x 10
9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

9 Direct mod.: AF1 (MSE vs Weighted Energy Sum) 

Weighted Sum of Energy

M
S

E

 

 

5/3
9/7
9/3
16/4
9/11A
9/11B

Figure 1. Correlation plots: MSE vs. sum of energy for different subband combinations. Wavelets used: 1. 5/3 2.9/7
3.9/3 4.16/4 5.9/11A 6.9/11B. Row 1 : Without weighting parameter, Row 2 : with weighting parameter.
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Figure 2. Correlation plots: MSE vs. sum of energy for different subband combinations. Wavelets used: 1. 5/3 2.9/7
3.9/3 4.16/4 5.9/11A 6.9/11B. Row 1 : Without weighting parameter, Row 2 : with weighting parameter.
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Figure 3. Similarity pattern graph among MSE, un-weighted energy sum and weighted energy sum for different subband
combinations. Wavelets used: 1. 5/3 2.9/7 3.9/3 4.16/4 5.9/11A 6.9/11B. Column 1 : Average MSE, Column 2 : Average
un-weighted energy sum, Column 3 : Average weighted energy sum.
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Figure 4. Similarity pattern graph among MSE, un-weighted energy sum and weighted energy sum for different subband
combinations. Wavelets used: 1. 5/3 2.9/7 3.9/3 4.16/4 5.9/11A 6.9/11B. Column 1 : Average MSE, Column 2 : Average
un-weighted energy sum, Column 3 : Average weighted energy sum.

[9] Gong, Q. and Shen, H., “Toward blind logo watermarking in JPEG-compressed images,” in [Proc. Int’l
conf. on parallel and distributed computing, applications and technologies (PDCAT 2005) ], 1058–1062 (Dec.
2005).

[10] Feng, X. C. and Yang, Y., “A new watermarking method based on DWT,” Lect. Notes in Comp. Sc. 3802,
1122–1126 (2005).

[11] Kundur, D. and Hatzinakos, D., “Toward robust logo watermarking using multiresolution image fusion
principles,” IEEE Trans. Multimedia 6, 185–198 (Feb. 2004).

[12] Ejima, M. and Miyazaki, A., “On the evaluation of performance of digital watermarking in the frequency
domain,” in [Proc. IEEE ICIP ], 2, 546–549 (Oct. 2001).

[13] Bhowmik, D. and Abhayaratne, C., “A generalised model for distortion performance analysis of wavelet
based watermarking,” in [Proc. 7th Int’l Workshop on Digital Watermarking (IWDW ’08), Lect. Notes in
Comp. Sc. ], (Nov. 2008).

[14] Bhowmik, D. and Abhayaratne, C., “Evaluation of watermark robustness to JPEG2000 based content
adaptation attacks,” in [Proc. IET Int’l Conf. on Visual Info. Eng. (VIE ’08) ], 789–794 (Jul.-Aug. 2008).

[15] Zhang, Z. and Mo, Y. L., “Embedding strategy of image watermarking in wavelet transform domain,” in
[Proc. Image Compression and Encryption Technologies ], 4551(1), 127–131, SPIE (2001).



0 1 2 3 4 5 6 7
2

3

4

5

6

7

8

9
x 10

6 Direct mod.: wavelet: 5/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

M
S

E

 

 
MSE

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

10
x 10

7 Direct mod.: wavelet: 5/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

E
ne

rg
y 

S
um

 

 
Energy Sum

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7
x 10

7 Direct mod.: wavelet: 5/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

W
ei

gh
te

d 
E

ne
rg

y 
S

um

 

 
Weighted Energy Sum

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9
x 10

6 Direct mod.: wavelet: 9/7 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

M
S

E

 

 
MSE

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8
x 10

7 Direct mod.: wavelet: 9/7 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

E
ne

rg
y 

S
um

 

 
Energy Sum

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8
x 10

7 Direct mod.: wavelet: 9/7 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

W
ei

gh
te

d 
E

ne
rg

y 
S

um

 

 
Weighted Energy Sum

0 1 2 3 4 5 6 7
2

3

4

5

6

7

8

9
x 10

6 Direct mod.: wavelet: 9/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

M
S

E

 

 
MSE

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

10

11
x 10

7 Direct mod.: wavelet: 9/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

E
ne

rg
y 

S
um

 

 
Energy Sum

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7
x 10

7 Direct mod.: wavelet: 9/3 

Subband comb.: 1.AF3 2.AF2 3.AF1 4.HF3 5.HF2 6.HF1

W
ei

gh
te

d 
E

ne
rg

y 
S

um

 

 
Weighted Energy Sum

Figure 5. Similarity pattern graph among MSE, un-weighted energy sum and weighted energy sum for different wavelet
kernels. Subband combinations used: 1. AF3 2.AF2 3.AF3 4.HF3 5.HF2 6.HF1. Column 1 : Average MSE, Column 2 :
Average un-weighted energy sum, Column 3 : Average weighted energy sum. AF3, AF2 and AF1 values are scaled to fit
in the same graph.
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Figure 6. Similarity pattern graph among MSE, un-weighted energy sum and weighted energy sum for different wavelet
kernels. Subband combinations used: 1. AF3 2.AF2 3.AF3 4.HF3 5.HF2 6.HF1. Column 1 : Average MSE, Column 2 :
Average un-weighted energy sum, Column 3 : Average weighted energy sum. AF3, AF2 and AF1 values are scaled to fit
in the same graph.


