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Abstract 

High purity hydrogen (>95%) was produced at 600 °C and 1 atm by steam reforming of waste 

cooking oil at a molar steam to carbon ratio of 4 using chemical looping, a process that features 

redox cycles of a Ni catalyst with the in-situ carbonation / calcination of a CO2-sorbent 

(dolomite) in a packed bed reactor under alternated feedstreams of fuel-steam and air. The fuel 

and steam conversion were higher with the sorbent present than without it. Initially, the dolomite 

carbonation was very efficient (100 %), and 98 % purity hydrogen was produced, but the 

carbonation decreased to around 56% with a purity of 95% respectively in the following cycles. 

Reduction of the nickel catalyst occurred alongside steam reforming, water gas shift and 

carbonation, with H2 produced continuously under fuel-steam feeds. Catalyst and CO2-sorbent 

regeneration was observed, and long periods of autothermal operation within each cycle were 

demonstrated. 

Keywords: chemical looping; reforming; in-situ sorption; waste oil; nickel; dolomite.  
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Introduction 

The process of chemical looping has been the focus of growing attention in the past decade as a 

means of large scale power generation minimising CO2 emissions, by either producing a 

sequestration-ready CO2 effluent (chemical looping combustion) or decarbonising the fuel 

(chemical looping reforming). The production of hydrogen of high purity using process 

intensification measures such as chemical looping is desirable in chemical plants and petroleum 

refineries, as well as upstream of a fuel cell to alleviate the energy burden placed on gas 

separation and purification. Suitable feedstocks for steam reforming and steam gasification can 

be found in many commercial and industrial waste streams of biomass origins. These would 

typically have significant moisture content, such as the crude glycerol by-product of the 

transesterification of vegetable oils (Dou et al, 2009), and other 2
nd

/3
rd

 generation biofuels such 

as biomass pyrolysis oils, or micro algae suspensions. Used vegetable cooking oils exhibit a 

higher free fatty acid content, viscosity and polarity than the virgin oils, which makes their 

conversion to the fatty acid methyl esters of the biodiesel blend difficult. In the present study, 

waste cooking vegetable oil is converted to a nearly pure hydrogen gas separate from the CO2 

waste stream, using an advanced steam reforming process. The latter combines the chemical 

looping of a Ni-based catalyst as oxygen transfer material (OTM) and of a natural CO2 sorbent 

(dolomite), in a packed bed reactor. It has been shown in a previous publication that the Ni in the 

catalyst could repeatedly reduce and oxidise during the chemical looping reforming of waste 

cooking vegetable oil (WCO) in the absence of a CO2 sorbent (Pimenidou et al, in press). The 

present work focuses on the ability of the CO2 sorbent to repeatedly carbonate while generating a 

pure H2 gas under the fuel/steam feed, and to regenerate to its calcined oxide form under the air 

feed during the chemical looping reforming of the same waste oil. The aim of this study was to 
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carry out a number of cycles with high H2 purity syngas production while attempting to operate 

as close to autothermal as possible, that is, with little or any heat being supplied to the reactor. 

 

 

2 Materials and Methods 

2.1 Materials 

The OTM catalyst consisted of 18 wt % NiO supported on Al2O3 from Johnson Matthey, 

originally supplied in pellet form, broken up and sieved to 0.85-2 mm size particles. The CO2 

sorbent was pre-calcined dolomite from the Warmsworth quarry (South Yorkshire, England) 

broken up and sieved to the same size as the catalyst. 40g of fresh catalyst, with or without 

intimate mixing with 40 g of the calcined CO2 sorbent, were loaded at the centre of the reactor, 

preceded by 25 mm thick plug of spherical Al2O3 beads. The as-received dolomite was fully 

carbonated and had a composition of 21.3 wt% MgO, 30.7 wt% CaO, 0.3 wt% SiO2, 0.27 wt% 

Fe2O3, and 0.1 wt% Al2O3, and 47.33 wt% CO2. 

The waste cooking vegetable oil (WCO) contained 74.9 wt% C, 12.85 wt% H, 12.15 wt% O and 

0.10 wt% N, had a liquid density of 920 kg m
-3

 at 20 °C and a gross calorific value of 39.5 MJ 

kg
-1

. Based on its elemental mass formula, its average elemental molar formula was 

C1H2.04O0.122. Details of the analytical techniques used for the oil characterisation can be found in 

Pimenidou et al, 2010. The molar formula was equivalent to 3(CH1.67 + C18H37.1O2.31), where 

‘CH1.67’ represents the portion of non-oxygenated glycerol ‘backbone’ molecule per fatty acid 

chain, and where the ‘C18’ fatty acid chain is chosen here to reflect on the WCO’s origin as 

rapeseed oil. The oxygen content of 2.31, larger than the expected 2 of vegetable fatty acid 

chains, confirmed the increased polarity of the waste oil compared to that of its virgin rapeseed 

oil source.  
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2.2 Reactor set-up and experimental procedure 

A detailed description of the reactor set up, including a diagram, is given in Pimenidou et al 

(2010). To summarise, a stainless steel temperature controlled and kaowool insulated reactor of 

ID 2.05 cm and 26.9 cm length, providing 89 cm
3
 volume containing the bed materials (40 g of 

18wt%NiO/Al2O3 catalyst with or without 40 g calcined dolomite), was fed from the bottom via 

a co-axial injector with steam in the inner pipe, preheated to 150 °C and near-vapourised WCO 

in the annular space at 300 °C. When not using the CO2-sorbent, the experiments were carried 

out both manually diluted with Al2O3 beads (Dbeads ≈1.5 mm) to achieve the same reactor bed 

volume as when using the sorbent, and undiluted, thereby achieving roughly half the bed volume 

than when using the CO2 sorbent. As the observed reactant conversions were very poor and 

accompanied by excessive carbon deposition when using the Al2O3 beads dilution, subsequent 

experiments were carried out without it. Peristaltic pumps maintained the liquid flows of WCO 

and water at 0.55 and 2.32 cm
3
 min

-1
 (20 °C) respectively, achieving a molar steam to carbon 

ratio of 4. The steam to carbon ratio of 4 provided a better operation than 2.5 in the absence of 

CO2 sorbent (Pimenidou et al, 2010) and thus was chosen for the present study. A gas flow of 

600 cm
3
 min

-1
 (STP) of N2 was employed during the fuel/steam feed and the N2 purge period 

separating the fuel/steam feed from the air feed, as in the chemical looping experiments without 

sorbent reported in Pimenidou et al (2010). The air flow rate was also 2000 cm
3
 min

-1
 (STP) 

during the air feed. The reactor effluent passed through two condensers and water traps prior to 

online analysis every 5 seconds of CO, CO2 and CH4 by non-dispersive infra-red absorption, H2 

by thermal conductivity detection and O2 via paramagnetic analysis, using Uras 14, Caldos 15 

and Magnos 106 ABB analysers respectively. It was shown through off-line GC-FID analysis 

that there were no other higher hydrocarbons produced in the same set up without sorbent 
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(Pimenidou et al, 2010), and therefore the dry gases were also assumed here to contain N2 molar 

fractions corresponding to the balance to 1 of the sum of the CO, CO2, CH4, H2 and O2 measured 

mol fractions. 

The procedure followed to pre-reduce the catalyst to initiate the cycling experiments is described 

in detail in Pimenidou et al, 2010. In the present work, the reactor temperature was set at 600 °C 

for all the experiments under both fuel-steam and air feeds. Three thermocouples placed in the 

middle of the reactor bed, above and below the middle, measured the temperatures at 1 second 

intervals, allowing the monitoring of the endotherms and exotherms resulting from the reactions 

during both feeds. 

2.3 Reactions and output calculations 

The reaction mechanism under each type of feed is outlined in the first two sub-sections, 

followed by the energetic of the process under the two feeds and a description of the equations 

used to derive the process outputs. A nomenclature is provided in the appendix. 

2.3.1  Reaction mechanism under fuel/steam/N2 feed (reducing mode): 

An oxygenated hydrocarbon fuel with a molar elemental formula of CnHmOk, reduces the 

oxidised catalyst via the unmixed combustion reaction henceforth termed ‘UC’ (Dupont et al, 

2007), producing CO2 and H2O as by-products. While NiO undergoes reduction, significant 

coking may occur from the thermal decomposition of the fuel and of its pyrolysis products. The 

maximum reduction rate of NiO is therefore (2n+0.5m-k) mol per mol of CnHmOk fuel converted. 

This emphasises the relative positive contributions of both the C and H fuel-contents to the NiO 

reduction rate, in contrast to the negative contribution of the O fuel-content. Once Ni is 

sufficiently reduced, steam reforming of the WCO, henceforth termed ‘SR’ can occur on the 

catalyst, with CO and H2 as the products, which is followed by in-situ water gas shift ‘WGS’. 
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Both the UC and SR/WGS reactions are then followed by the carbonation (‘Carb’) of the 

calcined sorbent. When using dolomite as the sorbent, this is a chemisorption reaction, where 

only Ca, and not Mg, acts as the active site for the carbonation. 

According to Le Chatelier’s principle, by shifting the equilibria the CO2-producing reactions UC 

and WGS  to the right, the carbonation of the Ca-based sorbent allows not only the elimination of 

CO2 from the gases, promoting UC, but also a decrease in the amount of CO produced, thereby 

further promoting SR. This results in an increased fuel conversion, a process termed ‘sorption 

enhancement’. Once SR and WGS are established, a nearly pure H2 gas evolves, eliminating the 

need for the downstream high- and low- temperature water gas shift reactors required by a 

conventional steam reforming process. Thus sorption enhancement represents a process 

intensification measure. The production of the by-products methane and carbonaceous deposits 

during this feed would be accompanied by a lower H2 yield, here defined by the molar ratio of 

H2 produced to the theoretical maximum mol of H2 from the complete SR and WGS reactions. 

Assuming complete reactions SR and WGS in the absence of UC, and notwithstanding 

thermodynamic limitations (mainly due to reverse-WGS), the maximum hydrogen purity can be 

calculated as: 

H2 max purity =   WCO.for the %3.74
)2/(

)2/(
100 






kmnnn

nkmn
 

With a carbonation reaction achieving complete removal of CO2, and ignoring thermodynamic 

limitations, the maximum H2 purity becomes 100 %.  The maximum production of H2 obtainable 

from sorption enhanced steam reforming the WCO, again disregarding thermodynamic 

limitations, is therefore 2.90 mol H2 /mol of C in the fuel-feed.  

2.3.2 Reaction mechanism under air feed (oxidising mode) 
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Upon switching to air feed, the carbon deposits burn via full or partial oxidation (‘C-Ox’ and ‘C-

POx’) depending on the reactor bed temperature, magnitude of the air flow and the oxidation 

reactions being or not mass transfer limited. The Ni on the catalyst support then consumes 

oxygen via Ni oxidation to NiO (‘Ni-Ox’). 

In the presence of a carbonated sorbent, the higher temperatures reached during the air feed 

allow the sorbent to regenerate through decarbonation, also called calcination, henceforth termed 

‘Calc’.  

 2.3.3 Energetics under the two feeds 

In the described mechanism, the UC, SR and Calc reactions are endothermic, while WGS, Carb, 

C-Ox, C-POx, and Ni-Ox exothermic. Of the latter, C-Ox and C-POx are more likely to occur on 

the outer surface of the reactor bed particles, where carbon filaments may form, where they 

generate a heat that may be easily swept away by the gas flows. In contrast, the Ni-Ox and Carb 

reactions are highly exothermic reactions which take place deeper within the particles of catalyst 

and sorbent respectively. Despite the ability of the sorption enhanced chemical looping 

reforming process to cope with coking fuels by cyclically oxidising the carbon deposits (unlike 

conventional catalytic steam reforming), it remains desirable to prevent coke deposition from the 

point of view of both optimising heat transfer and achieving a maximum H2 yield. Without 

carbon deposition, the heat transfer would be expected to move deeper in the reactor bed and 

allow better coupling of the oxidation of nickel with the strongly endothermic calcination 

(regeneration) of the sorbent.  

2.3.4. Calculation of process outputs 
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While carbonation occurred, the output gas did not contain CO2, and we shall see in the results 

section, that CO and CH4 concentrations were also negligible. With more time on stream, the 

sorbent began to saturate, corresponding to a CO2-breakthrough period. Finally, the sorbent 

reached its maximum sorption capacity for the conditions of the experiment, and a ‘CO2-steady 

state’ was established, similarly to the one that occurred in the absence of sorbent (Pimenidou et 

al, 2010). We are mindful of not calling this regime a full steady-state as transient reactions 

involving NiO reduction or carbon deposition may still be occurring. 

- Fuel conversion fraction during the fuel/steam/N2 feed: 

Direct calculations of the fuel conversion during CO2 sorption via the carbon balance were not 

possible due to the inability to measure the carbonation rate ‘ carbCOn ,2
 ’ on the solid sorbent at any 

given time prior to, or during CO2 breakthrough. However, assuming the expected effect of 

sorption enhancement, caused by the coupling of UC with Carb, or (SR+WGS) with Carb, a 

minimum fuel conversion fraction ‘XWCO,PB’ during carbonation prior to- and during CO2-

breakthrough could be estimated by approximating it to the conversion reached at the CO2-

steady state (post-CO2 breakthrough): 

 

inWCO
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Eq.1

 

Where the suffix ‘PB’ stands for ‘prior to CO2 breakthrough or pre-CO2 breakthrough’, ‘BT’ 

means ‘during CO2-breakthrough’, and ‘SS’ is ‘at CO2-steady state, post CO2-breakthrough’.  In 

Eq. 1 and the following equations, the n  symbol is used to represent a molar rate, and y, a mol 

fraction, while the constants n, m and k represent the elemental molar composition of the WCO 

fuel (CnHmOk).  

- Sorbent carbonation rate and total carbonation efficiency during the fuel/steam/N2 feed: 
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Using the value of XWCO,PB derived with Eq. 1, as well as the knowledge of the molar production 

rates of the carbon containing co-products CO and CH4, an estimate of the total molar production 

rate of CO2 and thus of carbonation rate ( carbCOn ,2
  ) could be obtained via Eq. 2 below:   

 
BTPBCOCHCO

BTPBN

inN

inWCOBTPBWCOcarbCO yyy
y

n
nnXn

,
,,

,

,,,, 24

2

2

2




















Eq. 2 

In the RHS of Eq. 2, the first, positive term represents the molar rate of carbon converted from 

the fuel, and the second, negative term, the molar evolution rates of the gaseous carbon-

containing products. 

Prior to CO2-breakthrough, since none of the carbon containing products were detected, as will 

be seen in the results section, the negative term in Eq. 2 was negligible, and carbCOn ,2
   was able to 

simplify to the first positive term only. During CO2-breakthrough, the second negative term was 

significant and accounted for the simultaneous emergence of CO2, CO and CH4 in the output gas 

stream. 

Equation 3 gives the total carbonation efficiency as the sum of the carbonation efficiencies prior 

to and after CO2 breakthrough, obtained by integration of the carbonation rates over the 

characteristic durations of pre-CO2 breakthrough and CO2 breakthrough regimes.  

  
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,,0,,

2

2

100
CO

t

t
BTcarbCOBTinWCOPBWCO

BTPB
n

dtnttnnX
SS

BT







Eq.3

 

In Eq. 3, t0 is defined as the time at breakthrough of H2 , taken as evidence of onset of sorption 

enhanced steam reforming, tBT was the time at breakthrough of CO2, when the sorbent began to 

reach its capacity, and tSS, was the time at reaching CO2 steady state, evidencing the sorbent 

having reached its maximum capacity. 
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It was of interest to split the total carbonation efficiency ‘’ during fuel and steam feed into its 

pre-breakthrough (PB) and breakthrough contributions (BT ) because for the former, H2 purity 

was close to 100%, while for the latter, the H2 purity slowly decreased to the steady state of the 

non-sorption enhanced process (ca. 70%). For some applications such as proton exchange 

membrane fuel cells (PEMFC), which are very sensitive to H2 purity, maximising the duration of 

the pre-CO2 breakthrough period is desirable, whereas for solid oxide fuel cells (SOFC) or 

molten carbonate fuel cells (MCFC), more tolerant of other syngas compounds, H2 purity may 

not be so critical. 

The carbonation efficiency values were calculated for each performed cycle to assess the sorbent 

performance over repeated sorption enhanced chemical looping reforming cycles of the waste 

cooking oil.  

- Steam conversion fraction during the fuel/steam/N2 feed: 

In the steam reforming coupled with water gas shift, the production of hydrogen is the result of 

the contributions of the fuel-hydrogen and of the steam-hydrogen. Generally, for a ‘CnHmOk’ 

oxygenated fuel reacting with (2n-k) H2O via SR/WGS, the maximum production of H2 is ((2n-

k)+0.5m), indicating clearly that in conditions of maximum H2 production, the steam 

contribution fraction is (2n-k)/(2n-k+0.5m) and that of the fuel, 0.5m/(2n-k+0.5m). For the 

C1H2.04O0.122 waste cooking oil, the steam contribution can therefore account for 64.9% of the H2 

produced through SR/WGS, while that of the fuel is only 35.1%. Therefore steam conversions, 

which are rarely reported in the literature on steam reforming, have a great effect on the material 

efficiency of the process. Factors limiting the steam conversion are not only equilibrium 

limitations, which the presence of the CO2-sorbent intend to overcome, but also the catalyst’s 

activity in both the steam reforming and the water gas shift reactions. 
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Using the fuel conversion fraction from Eq.2 and an elemental balance on hydrogen, a minimum 

value for the steam conversion fraction can be estimated using Eq. 4 below: 
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The first, positive term in the RHS of Eq. 4 represents the formation of the hydrogen containing 

products and the second, negative term accounts for the known contribution of the fuel to the 

hydrogen products, leaving only the contribution of water to the same.

 

- Selectivity of the carbon-containing products in the gas phase during the fuel-steam feed:  

These were defined as: 

24

24

24

COor  COor  CH

COor  COor  CH 100(%)
COCOCH yyy

y
Sel




 Eq.5 

- NiO molar reduction rate and extent of NiO reduction during fuel-steam feed: 

From an elemental balance of oxygen, it is possible to also estimate a constant rate of NiO 

reduction during carbonation, and thus establish whether reduction of the catalyst (UC) may have 

been concurrent with steam reforming (SR) and carbonation (Carb). This is expressed in Eq. 6:  

     PBWCOinWCOPBOHinOHcarbCOPBCOCOPBdryoutPBNiNiO XnkXnnyynn ,,,2,2,2,,, 22
2

  Eq.6 

Where the values of XWCO, PB, carbCOn ,2
  and XH2O,PB,  were pre-determined by Eqs. 1, 2 and 4.  

In the RHS of Eq. 6, the first, positive term represents the molar rate of O leaving the reactor as 

gaseous products (no O2 is produced under these reducing conditions), the second positive term 

is the molar rate of O creating the carbonate, and the last two negative terms represent the molar 

rate of O converted from water and fuel respectively. 
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However, in the pre-breakthrough regime, where H2 was the only dry gas product detected, Eq. 6 

was able to simplify to Eq. 7 below: 

 
 SSH

inN

HSSWCOinWCOPBNiNiO
y

n
ykmnXnn

SS

,

,

,,,

2

2

,2 1
5.02





  Eq. 7 

The equation above reflected that the NiO reduction rate prior to CO2 breakthrough, i.e. when H2 

was the only gas product, was equal to the maximum rate of reduction arising from fuel 

conversion (  kmnXn SSWCOinWCO  5.02,,
 ) through the unmixed combustion reaction, minus the 

molar rate of hydrogen evolving from the process. This is because one mol of H2 could 

potentially have reduced an additional mol of NiO to Ni by forming water. It has to be stressed 

that Eq. 7 is not expected to provide an accurate value of the reduction rate of NiO at any given 

time prior to CO2 breakthrough, but is a time-averaged estimate, as any transient effect that the 

rate may have undergone, e.g. early peak followed by drop, would not be accounted for. The 

purpose of this equation was to merely help assess whether the NiO reduction via unmixed 

combustion was more likely to have occurred prior to, or concurrently to steam reforming, its 

fuel-consuming competitor, where the latter situation may be preferable due to allowing H2 

production earlier in the process. 

 

3. Results and discussion 

3.1 Process outputs during WCO/steam/N2 feed  

3.1.1 Steam reforming outputs and energetics 
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H2 and CO2 mol fractions measured during the WCO/steam/N2 feeds for 6 cycles 

conducted in the presence of the CO2-sorbent dolomite are shown in Fig.1(a), with Fig. 1(b) 

showing the electrical power input to the reformer in % of the maximum.  

There was a long period in Fig. 1b where the power input to the reformer was automatically cut 

off, corresponding to a visible lack of CO2 in the products in Fig. 1a, as the heat produced in the 

reactor from the carbonation reaction caused the temperature to exceed the set point of 600 °C.  

In the case of the first cycle, this period lasted 700 seconds. This illustrated the increased energy 

efficiency of the sorption enhanced chemical looping reforming process over that of the 

conventional steam reforming process. 

The H2 % purity, defined here as the % dry mol fraction ratio of  H2 to the sum of the H2, CO, 

CO2 and CH4, i.e. the H2 mol % corrected for 0 N2, is plotted with time on stream for the six 

cycles in Fig. 2, focusing mainly on the pre-CO2 breakthrough period. Figures 1a and 2 indicated 

that all the cycles exhibited a period of time where the only significant gas species in the reactor 

products was hydrogen, these corresponded to purities above 90% between 800 and 1400 s for 

all the cycles, and 97% purity reached for cycles 1 and 6 for more than 700 s. Therefore, as 

expected from sorption enhancement, during this period the effect of the sorbent was to, not only 

fully chemisorb CO2, but also to cause nearly complete conversion of CO and CH4, virtually 

eliminating them from the syngas. The following section assesses the efficiency of the process 

via the fuel and steam conversion fractions, selectivity of the carbon containing products, and H2 

purity in post CO2-breakthrough conditions (steady state ‘SS’), listed in Table 1. Note that the H2 

purity listed in table 1 are the minimum values reached in Fig. 2 after the plateaus of high purity 
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of  pre-CO2 breakthrough. These outputs are compared to the corresponding process for the same 

conditions in the absence of CO2 sorbent in the reactor (results of the study published in 

Pimenidou et al, 2010).  We have shown in Pimenidou et al (2010), that when operating with a 

mass of 80 g of the NiO-Al2O3 catalyst at the same feed flows as the present work, WCO 

conversion fractions of average 0.9 and steam conversion fractions of 0.27 were recorded over 6 

cycles. This contrasted with the results when using only 40 g of catalyst with the same feed rates, 

which only achieved WCO and steam conversion fractions of 0.2 and 0.06 respectively, also 

averaged over 6 cycles. Unfortunately the size of the reactor meant that more than 80 g of bed 

material could not be accommodated in the reactor.  Therefore the present conditions of 40 g 

catalyst with 40 g calcined dolomite using the same feed rates were not expected to yield WCO 

and steam fractions exceeding 0.20 and 0.06 by significant amounts. Surprisingly, a comparison 

of the two conditions ‘40 g of catalyst’ vs. ‘40 g catalyst + 40 g dolomite’ in Table 1 shows that 

the WCO and steam conversion fractions post-CO2 breakthrough were significantly larger in the 

presence of the sorbent for the 6 cycles than without the sorbent, with average values of  0.31 

and 0.12 respectively. This may have been caused by the catalytic cracking activity of dolomite, 

and its resistance to coking, as previously observed by Simell and Son-Bredenberg (1990), 

Myren et al (2002), Devi et al (2005) and Srinakruang et al (2006). The first cycle with the 

sorbent exhibited the highest reactant conversions, with WCO and steam conversion fractions of 

0.46 and 0.19. From the 2nd cycle, the process outputs lowered to nearer the average and, 

notwithstanding a dip during the 5th cycle, remained around the average for the remainder of the 
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cycles. The highest conversions observed in the first cycle were accompanied by a mid-reactor 

temperature lower than the average by 15 °C, reflecting the endothermicity of SR in post-CO2 

breakthrough conditions. The lower temperature in turn affected the selectivity of the carbon 

containing products, with higher CH4 and lower CO. As the cycles settled into a less performant 

fuel conversion, the heat demand in the reactor decreased accordingly and the mid reactor 

temperature remained close to the set temperature of 600 °C.  

The H2 purity during CO2-steady state (post-CO2 breakthrough) was, with an average of 70.7 %, 

close to the theoretical maximum in absence of carbonation of 74.3% and notwithstanding 

thermodynamic limitations quoted in section 2.3.1. A more realistic comparison can be made by 

using thermodynamic equilibrium calculations following the methodology outlined in Pimenidou 

et al (2010), and previously applied to the reactor without sorbent, using the mid-reactor 

temperature as input and assuming the typical rapeseed oil composition used in Pimenidou et al 

(2010). This new calculation yielded H2 purities between 69.4 % and 70.2%, with an average of 

70.0% over the 6 cycles, in very good agreement with the measurements. The selectivity to CO, 

CO2 and CH4 products with time-on-stream in post-CO2 breakthrough conditions is listed in 

Table 1. The high selectivity to CO2 between 78% and 89% indicated there must have been good 

conditions for sorption enhancement of the chemical looping reforming during the preceding 

carbonation period. The values predicted by the equilibrium calculations were SelCO, eq=21-25%, 

SelCO2,eq =70%, SelCH4,eq=5-8%, which would have been less propitious for CO2 sorption. This 

calculated equilibrium selectivity was however reproduced quite closely by the experiments 

without CO2 sorbent in the reactor, as can be seen in Table 1.  
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 3.1.2 Carbonation efficiency 

Using the mass of calcined dolomite present in the reactor (40 g) and the known mass fraction of 

CaO in the fully carbonated sorbent (0.307), the maximum molar capacity for CO2 capture 

max,2COn  was calculated to be 0.417 mol. The characteristic times t0, tBT and tSS are indicated in 

Fig.1 for the first cycle, representative of all the cycles. Table 2 lists the values of (tBT - t0), (tSS - 

tBT), i.e. the durations prior to- and during CO2-breakthrough, and their carbonation efficiencies 

PB, BT, with the total , for the six cycles carried out with the sorbent in the reactor using Eq. 

3.  Given the error-propagating nature of the calculation of the total carbonation efficiency  via 

Eq. 3, it was remarkable that the obtained value for the first cycle, at 101%, was so near 100%. It 

was also expected from previous dolomite carbonation studies (Pimenidou et al, 2009), that the 

first cycle be able to fully carbonate the sorbent, as was the case here. The values in table 3 

indicate that  decreased sharply in the second cycle, but more or less stabilised for the 

remainder of the cycles to an average of 55.9 % over cycles from 2 to 6. Decreases of 

carbonation efficiency upon repeated cycling were expected for calcined dolomite, which, as all 

un-pretreated natural CaO-based sorbents, would have exhibited poor chemical stability due to 

sintering (Harrison, 2008).  

With regards to the pre-CO2 breakthrough carbonation efficiency PB, it exhibited the same trend 

as , with a maximum obtained in the initial cycle (74 %) followed by a sharp decline and 

stabilisation at around 42 % to the exception of cycle 5. In the observed absence of carbon 

containing products during pre-CO2 breakthrough, there were two main parameters that 

contributed to the value of the pre-CO2 breakthrough carbonation efficiency PB : the WCO 

fractional conversion XWCO, which determined the rate of CO2 production and thus controlled 

that of carbonation, and the pre-CO2 breakthrough duration (tBT - t0), over which the rate of 
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carbonation was integrated. Table 2 indicates that the low value of PB obtained in cycle 5 

(17.3%) was not due to (tBT - t0), which itself was of similar duration as cycles 3 and 4, but to the 

lower fraction of fuel conversion (0.23), the lowest of the 6 cycles. This suggests not a limitation 

of the carbonation process but a momentary abnormality in the activity of reactions UC, SR and 

WGS. Accordingly, this low pre-CO2 breakthrough carbonation efficiency was later 

compensated by a longer CO2-breakthrough period, yielding a total efficiency close to those of 

the post-initial cycles. It is difficult to find a reason for the lower WCO conversion obtained at 

cycle 5, as the experiments without sorbent did not exhibit this anomalous dip in conversion, and 

the cyclic experiments were carried out without interruption.   

Sustaining the relatively high level of carbonation for six cycles is a strong indicator that 

regeneration of the sorbent must have occurred to a significant extent via the exotherms 

generated during the air feed steps introduced between each WCO/steam/N2 feeds, which will be 

verified qualitatively in the ‘air feed’ section of the results.

 

 3.1.3 NiO reduction 

Table 3 lists the pre-CO2 breakthrough values of the NiO reduction rate PBNiNiOn ,
  per cycle 

using Eq. 7, derived from the elemental balance of oxygen, alongside the fuel conversion 

fraction. One would expect the two parameters to follow the same trend since the H2 mol fraction 

reached at CO2-steady state, yH2,SS, varied little over the six cycles, and the remaining terms in 

Eq. 7 were input values that remained constant for all the cycles. Nevertheless, the term 

 SSH

H
y

y
SS

,2

,2 1

1


 in Eq. 7 exacerbated the small variations in yH2,SS and was responsible for the 

slight divergence between them. Using Eq. 7, and integrating the estimated NiO reduction rate 

during pre-CO2 breakthrough until 100% of the NiO was reduced, yielding the number of Ni 
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moles produced (nNi), a ‘time to final reduction’ (tFR) could be obtained, where 
NiNiO

Ni
FR

n

n
t







 . 

For all the cycles, tFR was found to be either well within the pre-breakthrough period (cycles 2, 5 

and 6) or to coincide with breakthrough (cycles 3 and 4). Recall that the first cycle started from a 

H2-reduced catalyst and thus Eq. 7 would only apply to the following cycles.  On this basis, the 

processes of steam reforming, carbonation and reduction of NiO to Ni would appear to have 

occurred alongside one another. It is noteworthy that when comparing the contributions of the 

two fuel consuming reactions (reduction of NiO via UC) and SR (steam reforming) to the total 

fuel conversion, the steam reforming was dominant across the cycles 2-6. This is illustrated in 

Table 3 by the % ratio ‘Rred’ of the estimated NiO reduction rate per cycle in pre-breakthrough to 

the maximum possible reduction rate for the same cycle via UC, defined by Eq. 8 below: 

 


















kmnXn

n
R

SSWCOinWCO

PBNiNiO

red
5.02

100
,,

,




 Eq. 8  

where this maximum reduction rate is reached in the absence of steam reforming. The results in 

Table 3 indicate that, since Rred remained between 10 and 20 % for all the relevant cycles (2-6), 

most of the fuel conversion would have resulted from steam reforming. This was shown to be 

also the case in the study without sorbent. A possible uncertainty about the % reduction state of 

the bed in the initial stages of the fuel feed may arise from the fact that there was an initial time 

t0 between the start of the mixture feed and the first detection of H2 by the online thermal 

conductivity analyser. One could interpret t0 as representing two periods, a first non-reactive 

(long) period accounting for all the feeds to transport through the piping, reactor and analysers, 

and possibly, a shorter reactive second period where all or a significant amount of the WCO 

could have converted via solely the NiO reduction via the unmixed combustion (UC) reaction. 

Its CO2 product would have been captured by the sorbent, and its co-product H2O would have 
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condensed in the water trap, resulting in no dry gas products being detected, in this aspect 

making it indistinct from a non-reactive period. The 40 g of the catalyst, corresponding to 

9.64×10
-2

 mol of Ni, would have fully reduced in only 63 s if a full conversion of the WCO had 

occurred via UC. In the absence of an accurate way of monitoring the onset of build up of water 

condensate, it was not possible to differentiate between non-reactive and potentially reactive 

periods ‘pre-t0’ due to the presence of the sorbent. To circumvent this uncertainty, we use the 

outputs of the experiments carried out without the sorbent to assess whether an initial reactive 

‘reducing-only’ period was likely to have occurred. In the absence of sorbent, if the reduction 

reaction UC had initially occurred on its own, CO2 would have been detected in significant 

concentrations well before H2. For instance, this was observed in a previous study using methane 

as the fuel (Dupont et al, 2008).  A fuel conversion would then be derived from the rate of 

evolution of CO2. In addition, the hydrogen elemental balance would also yield a significant 

negative steam conversion, as water would have been produced by UC, (rather than consumed by 

SR and WGS). Further, a peak in the NiO reduction rate would result from the elemental O 

balance. All of these were observed in Dupont et al (2008) when using methane as the fuel in 

chemical looping reforming conditions. However, it was clear from observing the outputs of the 

experiments with 40 g of catalyst without sorbent, that none of these manifestations had occurred 

with the present experiments with the WCO fuel. This is shown in Figs. 3a-b, which display the 

dry syngas mol fractions and the water conversion fraction for cycle 4 without sorbent, as a 

representative of typical ‘no-sorbent’ cycle behaviour. Figure 3a shows a CO2 profile that started 

slightly earlier than the H2 profile but not in significant amount, which then translated into a 

steam conversion fraction that exhibited a very small initial negative dip due to UC, immediately 

followed by a much more significant rise in positive values caused by SR and WGS (Fig. 3b). 
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Thus in the presence of the sorbent, a reducing-only initial period would most likely have been 

briefly present but with expected very small activity even if sorption enhanced by Carb, and the 

reduction of the NiO would  have been gradual, occurring alongside the steam reforming and 

carbonation reactions. This then further reinforced the assumptions made earlier to derive Eq. 7 

and the integration of the NiO reduction rate from time t0 and not before. This finding is 

significant, as, had the reducing reaction occurred prior to the steam reforming/water gas shift 

reactions, the production of pure hydrogen would have been delayed. Upon up-scaling of the 

process, this would cause exaggerated intermittency in the production of H2. The combination of 

the WCO fuel with the sorption enhanced chemical looping reforming process using this Ni-

Al2O3 catalyst was therefore a beneficial one, as the Ni catalyst did not seem to require full 

reduction nor full fuel conversion prior to becoming active in hydrogen production by steam 

reforming and water gas shift. 

3.2 Process outputs during air feed 

During the air feed, four main reactions were susceptible to occur: the two carbon oxidation 

reactions (C-Ox and C-POx), the nickel oxidation reaction (Ni-Ox) and the calcination of the 

sorbent (Calc). Both C-Ox and Calc would have generated CO2, while the three reactions C-

Ox,C-POx and Ni-Ox consumed oxygen, therefore the carbon and oxygen elemental balances 

were not sufficient to determine the three unknown rates of Ni oxidation, carbon oxidation, and 

sorbent calcination. Thus a qualitative discussion is carried out in the following section. Figure 

4(a) plots the rates of evolution of CO2 and CO with time-on-stream during the air feed of the 

first cycle, juxtaposed with the mid-reactor and top-reactor temperatures curves. As soon as the 

temperatures exceeded the set temperature of 600 °C, the power to the reactor’s heating coil was 

automatically cut-off, and this corresponded to a period of time of ca. 400 s. This period ended 
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with O2 concentration in the products recovering from a low mol fraction to ca. 21% of the air 

feed (not shown). A period of flushing of the products from the previous feeds was observed for 

the initial 200 s, as was observed and discussed in the experiments carried out without the 

sorbent (Pimenidou et al, 2010). This was identified thanks to the matching profiles of CH4 and 

H2 (peaks not shown), which could only have formed during the WCO/steam/N2 feed. Some CO 

and CO2 also evolved during this flushing period. Between 300 and 500 s, CO2 increased as a 

result of carbon oxidation, followed by a CO increase when the lack of oxygen hampered 

complete oxidation. We have shown in the study without sorbent and using the O elemental 

balance, that at this stage, Ni oxidation also occurred, and began its trend to dominate the 

consumption of oxygen. The exothermicity of these simultaneous oxidation reactions contributed 

to a rise in the reactor bed temperatures from 600 to above 800 °C (Fig. 4a). 

It was expected that when the bed temperatures exceed 750 °C, de-carbonation would occur, but 

it is possible that larger solid temperature gradients deep in the bed material would allow for a 

more significant de-carbonation to take place. These solid temperature gradients would not have 

been accurately reflected by the thermocouple temperatures, which would have been closer to 

bulk gas reactor temperatures. This would explain how, when multiplying the peak rate of CO2 

evolution (4×10
-4

 mol/s) under air feed, by the assumed duration of the de-carbonation (the 300 s 

indicated in Fig. 4a by temperature exceeding 750 °C), only 29% of the CO2 capacity of the 

sorbent was accounted for. In contrast, as seen previously in Table 2, the next carbonation cycle 

under fuel feed allowed for 46% of the capacity to be reached. This suggested a significantly 

longer de-carbonation period than that indicated by the duration for which thermocouple 

temperatures exceeded 750 °C, and would support higher solid temperatures at the seat of the 
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oxidation reactions able to better couple with the endothermic decarbonation (calcination) 

reaction. 

Considering the WCO/steam/N2 and air feeds as the two main reactive cycle conditions, and 

ignoring the potential reactivity of the N2 purge, such as carbonaceous deposits playing a role in 

the reduction of NiO (Dupont et al, 2008), the advantages of the sorption enhanced chemical 

looping reforming process were demonstrated over a restricted number of cycles. These included 

production of high purity H2, improved fuel and steam conversion, and autothermality for 

extended periods of time, as well as the ability to cope with partial fuel conversion without 

deleterious effects of carbon deposits, due to integration of the oxygen transfer catalyst and 

sorbent regeneration steps within the process. Thus on one hand, these features make the process 

very promising, and this, coupled with the fact that the chosen fuel, waste cooking oil, will 

remain in plentiful supply for the foreseeable future, would justify further research and 

development. On the other hand, the results revealed complex reaction mechanisms at work, 

where individual steps were difficult to isolate and quantify with the current set up and methods. 

For a better understanding of all the significant reactions in the process and of their interactions, 

fundamental studies with increased analytical capabilities in monitoring the extent of the OTM’s 

redox states and sorbent’s usage with time on stream appear necessary. In addition, although the 

process was shown to operate without obvious deterioration for six cycles, tests designed to 

establish the life expectancy of the OTM and sorbent in the conditions of sorption enhanced 

chemical looping reforming in packed bed configuration, and the extent to which their chemical 

reactivity influences the process would be desirable. 

 

4. Conclusion 
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The chemical looping reforming of waste cooking vegetable oil on a Ni-Al2O3 catalyst in the 

presence of dolomite for in-situ CO2 sorption has been shown to operate for six cycles at 600 °C 

at a steam to carbon ratio of 4 without obvious deterioration in fuel and steam conversion, H2 

purity and carbon products selectivity. Better fuel and steam conversions than in the absence of 

sorbent, carbonation efficiencies that stabilised around 56% of the ideal value for the following 5 

cycles, and evidence of regeneration of both the catalyst and the sorbent under the two types of 

feeds were found. 

 

Appendix: Nomenclature 

  Carbonation efficiency (%) 

BT Suffix relevant to the CO2-breakthrough regime (carbonation with sorbent 

saturation) 

Calc  Decarbonation (calcination) reaction (CaCO3 →CaO+CO2)  

Carb  Reaction of carbonation of the solid sorbent (CaO+CO2→ CaCO3) 

C-Ox  Complete carbon oxidation reaction (C+O2 → CO2) 

C-POx  Partial carbon oxidation reaction (C+0.5O2 → CO) 

H2 % pur Hydrogen purity (%) calculated by 100×(yH2/(yH2+yCO+yCO2+yCH4)) 

Ni-Ox   Nickel oxidation reaction (Ni+0.5O2 →NiO) 

      Molar rate (mol s-1) 

n, m, k  Elemental amounts of C, H and O in the fuel (mol) 

n



24 

 

OTM  Oxygen transfer material 

PB  Suffix relevant to the pre-CO2 breakthrough regime (during carbonation) 

Sel  Selectivity to a specific product (%) 

SS  Suffix relevant to CO2-steady state or post-CO2 breakthrough conditions. 

SR  Steam reforming reaction (CnHmOk reacting with steam producing CO and H2) 

t   Characteristic time (s) 

Tmid  Mid reactor bed temperature (°C) 

UC Unmixed combustion reaction (reduction of NiO by CnHmOk, producing Ni, CO2, and 

H2O) 

WCO  Waste cooking vegetable oil 

WGS  Water gas shift reaction (CO+H2O  CO2+H2) 

X  Fractional conversion 

y  Gas mol fraction 
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Table 1 Process outputs at steady state (post-CO2 breakthrough) for 6 cycles without (left) and 

with (right) the CO2 sorbent present (40 g of catalyst, S:C ratio of 4, set reactor temperature of 

600 °C). 

 

 
Without sorbent               With 40 g of calcined dolomite  

C 
X 

WCO 

X 

H2O 

Sel 

CO 

Sel 

CO2 

Sel 

CH4 

H2 

% pur 

T 

mid 

X 

WCO 

X 

H2O 

Sel 

CO 

Sel 

CO2 

Sel 

CH4 

H2 

% pur 

T 

mid 

1 0.19 0.07 12 86 2 70.5 579 0.46 0.19 4 81 15 69.7 584 

2 0.21 0.07 16 80 4 68.9 585 0.30 0.11 10 89 1 71.3 597 

3 0.20 0.06 20 74 5 68.5 585 0.31 0.10 10 89 1 70.5 604 

4 0.14 0.06 23 70 7 67.3 589 0.32 0.12 11 87 2 70.1 604 

5 0.22 0.05 16 68 16 64.8 587 0.23 0.08 11 86 3 70.6 604 

6 0.20 0.07 23 69 7 68.8 591 0.27 0.11 16 78 6 72.3 601 

av 0.19 0.06 18 75 7 68.1 586 0.31 0.12 10 85 5 70.7 599 

 
 

 

 

Table 2 Durations of CO2 pre-breakthrough and breakthrough periods, pre-breakthrough rate of 

carbonation,  carbonation efficiencies prior to- and during CO2 breakthrough, and total 

carbonation efficiency for each cycle during the chemical looping reforming of WCO at S:C of 4 

with sorbent and the set reactor temperature of 600 °C.  
 

Cycle 
t0 

 

tBT - t0 

(s) 

tSS -tBT 

(s) 
PBcarbCOn ,,2



(mol s
-1

) 

PB 

(%) 

BT 

(%) 





1 230 1270 990 2.42×10
-4

 73.7 27.3 101 

2 400 750 550 1.59×10
-4

 34.2 12.0 46.2 

3 2290 1105 555 1.61×10
-4

 42.6 12.6 55.2 

4 1700 1000 725 1.70×10
-4

 40.7 20.2 60.9 

5 1500 1025 890 1.22×10
-4

 17.3 35.9 53.2 

6 1800 1480 545 1.42×10
-4

 50.3 13.8 64.1 
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Table 3  Estimate of NiO reduction rate in pre-CO2 breakthrough conditions and % ratio of NiO 

reduction rate to maximum reduction rate achievable by fuel conversion 

 


















kmnXn

n
R

SSWCOinWCO

PBNiNiO

red
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100
,,

,




  for cycles 2-6 and same conditions as Table 2. 

 

 

Cycle  PBNiNiOn ,
 (mol s

-1
) % Rred 

2 0.66 ×10
-4

 14.5 

3 0.84×10
-4

 18.0 

4 1.01×10
-4

 20.5 

5 0.61×10
-4

 17.2 

6 0.41×10
-4

 10.0 
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Fig. 1(a) Dry mol % of H2 (upper curves group) and CO2 (lower curves group) for each cycle 

(C1-6) measured online every 5 s during the WCO/steam/N2 feed with 40 g of catalyst and 40 g 

of calcined dolomite, using a S:C of 4 at a set reactor temperature of 600 °C. (b) Electrical power 

input to the reactor for the first cycle (% of maximum). 
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Fig. 2  H2 % purity for cycles C1-6 in same experimental conditions as Fig. 1. End values near 

70% after high plateau (post CO2-breakthrough) correspond to tabulated values in Table 1. 

  

Fig. 3 (a) Dry syngas mol fractions and (b) estimated water conversion fraction for cycle 4 

without sorbent, 40 g catalyst, S:C=4, Tset=600 °C, same flows as in Fig. 1.  
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Fig. 4 (a) Rates of CO2 and CO evolution for the air feed of the first cycle with sorbent (bottom 

curves) and mid- and top-reactor temperature-time curves (top). (b) Percent electrical power 

input to the heater during air feed of first cycle. 
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