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Abstract:

Effective lubrication performance of metal-on-metal hip implants only requires optimum

conformity within the main loaded area, while it is advantageous to increase the clearance in

the equatorial region. Such a varying clearance can be achieved by using nonspherical

bearing surfaces for either acetabular or femoral components. An elastohydrodynamic

lubrication model of a novel metal-on-metal hip prosthesis using a nonspherical femoral

bearing surface against a spherical cup was solved under ISO standard specified dynamic

loading and motion conditions. A full numerical methodology of considering the geometric

variation in the rotating nonspherical head in elastohydrodynamic lubrication solution was

presented, which is applicable to all non-spherical head designs. The lubrication performance

of a hip prosthesis using a specific nonspherical femoral head, Alpharabola, was analyzed and

compared with those of spherical bearing surfaces and nonspherical Alpharabola cup

investigated in previous studies. The sensitivity of the lubrication performance to the

anteversion angle of the Alpharabola head was also investigated. Results showed that the

nonspherical head introduced a large squeeze film action and also led to a large variation in

clearance within the loaded area. With the same equatorial clearance, the lubrication

performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than

that of the conventional spherical bearings while worse than that of the metal-on-metal hip

prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by

the initial anteversion angle of the nonspherical head was small, compared with the

improvement resulted from the nonspherical geometry.

Keywords: metal-on-metal hip prostheses, elastohydrodynamic lubrication, nonspherical

bearing surfaces, Alpharabola surface, initial contact position
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1. INTRODUCTION

While the long term adverse biological effects of metallic wear particles on patients receiving

metal-on-metal (MOM) hip prostheses are still unknown, it is clear that the number of the

metallic wear particles is very large and they are of nanometer size [1, 2]. These particles are

very likely to be absorbed by the joint tissues and disseminated to other organs, resulting in

an increase in metal ion level [36]. The concerns raised by exposing to the metal ions

include hypersensitivity, tissue toxicity, carcinogenicity and DNA damage [79]. Therefore,

in order to avoid the potential risk of adverse biological reactions caused by the metallic

particles, it is necessary to minimize the wear of MOM hip prostheses through optimizing

designs which enhance lubrication.

Current MOM hip prostheses typically consist of a spherical femoral head articulating against

a hemispherical acetabular cup of a slightly larger diameter. These spherical MOM bearings

exhibit an initial running-in or bedding-in phase with a higher wear rate, followed by a

steady-state phase with a lower wear rate [1012]. During the running-in wear phase, the two

bearing surfaces of hip prostheses are slowly modified by wear, forming more conforming

bearing surfaces within the worn area [1316]. Within the worn patch, the clearance between

the two bearing surfaces is significantly reduced, compared with the initial value. This

produces a more conforming geometry of which the gap varies more gradually. Such a gap

reduces the pressure gradient at the inlet, resulting in the reduction in the Poiseuille flow. As

a result, more lubricant is allowed to flow into the main loaded area to improve lubrication.

Therefore, the worn geometry after the running in wear is more favorable to fluid film

lubrication [12, 14]. When fluid film lubrication prevails, the stead-state wear phase occurs at

a lower rate. Therefore, the presence of the running-in wear phase implies that spherical
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bearings are not optimal for MOM hip prostheses. The optimal bearing surfaces for MOM

hip prostheses should resemble those of the worn bearing surfaces after the running-in period,

with closer conforming surfaces.

In spherical MOM bearings, closer conforming surfaces can be produced by using a smaller

radial clearance. Previous studies [11, 1719] have shown that a smaller clearance is

preferable to enhance lubrication and minimize wear. However, a drastic increase in wear and

frictional torque resulted from an excessively small clearance has also been seen [20, 21].

Moreover, the reduction in clearance is limited by a number of practical factors. A reduction

in clearance results in an increase in the contact area and it is important to ensure that the

contact area is still confined within the bearing surface to avoid edge contact, particularly

when the anatomical position of the cup is considered. A smaller clearance also requires a

higher manufacturing accuracy in terms of reducing the non-sphericity and improving the

surface finish of the bearing surfaces. It is also important to consider the potential clamping

and equatorial contact under loading and when prostheses are put in through press-fit [22].

Therefore, it is only necessary to minimize the clearance of the MOM bearings within the

main loaded area to obtain a larger conforming region, while it is advantageous to increase

the clearance in the equatorial region to avoid the potential adverse factors. Such a variable

clearance can be achieved through using aspherical bearing surfaces for either acetabular

cups or femoral heads. The dry contact mechanics, steady-state and transient lubrication

analyses of a novel MOM hip prosthesis employing an Alpharabola acetabular cup have been

investigated [23, 24]. Significant improvement in film thickness from the Alpharabola cup

was predicted under both steady-state and transient walking conditions. This is consistent
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with a previous experimental study [25], in which the running-in wear between a worn

acetabular component after 5  106 cycles and a replaced pristine head was reduced.

This is also possible to use a nonspherical femoral head. DePuy’s aSphereTM is designed to

have a radius of curvature in the articulation zone (smaller clearance) larger than the radius of

curvature elsewhere. Such a design has been shown to produce exceedingly low wear rates

and ion release compared with the conventional spherical bearing couples [26]. Based on the

similar concept, there are a few other non-spherical designs [27, 28], among which is

Alpharabola surface. Through choosing appropriate parameters for one single function, the

Alpharabola femoral head can form a large conforming area at the loaded region and a large

equatorial clearance. Therefore, it can be expected to promote lubrication comparing with a

spherical bearing with similar equatorial clearance. However, the lubrication of a

nonspherical femoral head under realistic conditions can be quite complex, since the motion

of a nonspherical femoral bearing surface not only changes the local clearance at the loaded

area but also introduces additional squeeze-film action. Such a complex and important

problem, particularly using the Alpharabola bearing surface for the femoral head, has not

been tackled in the previous literature. The purpose of this study was to investigate the

transient elastohydrodynamic lubrication (EHL) of a novel hip prosthesis using an

Alpharabola head under the dynamic load and motion conditions specified by ISO standard.

Most importantly, the numerical method developed in the present study, incorporating the

rotation of the nonspherical geometry of the head in the EHL analysis of hip implants, is

applicable to other non-spherical head designs.

2. MODEL AND METHODS
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A MOM hip prosthesis consisting of a cobalt-chromium (CoCr) metallic spherical cup

articulating against a nonspherical head with the same material was studied in the present

study. The spherical cup was assumed to have a diameter of 28 mm and a thickness of 9.5

mm. Since the inclination of the cup has a negligible effect on the EHL under steady walking

conditions [29], the cup was positioned horizontally instead of anatomically with an angle of

45. The fixation of the acetabular cup is usually achieved either with or without cement.

Cement can provide a mechanical interlock into the cancellous bone and surface structure on

the back side of the cup. If the cementless method is used, the primary stability is achieved by

press-fitting while the long term secondary fixation is reached by the in-growth of bone to the

implant surface. In this study, the bone and the fixation of the cup were represented by an

equivalent support layer with a thickness of 2 mm and appropriate mechanical properties [30].

A Cartesian coordinate system (x, y, z), shown in Figs. 1 and 3, was fixed on the cup. When

the rotation angle of the head was zero, the surface of the nonspherical head was given by

equation (1):
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where R1 is the desired maximum radius of curvature of the head; α is a parameter to control

the variation rate of the radius of curvature. The maximum radius of curvature of the head (R1)

was specified to be the same as the radius of the cup, R2, to produce a local zero radial

clearance at the pole while a large equatorial clearance when the rotation angle of the head

was zero.

The lubricant in artificial hip joints is periprosthetic synovial fluid, which behaves as a

powerful non-Newtonian fluid under relatively low shear rates. However, it becomes

Newtonian, isoviscous and incompressible at higher shear rates (105/s) as experienced in hip
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joints during normal walking [3133]. Therefore a realistic viscosity of 0.002 Pa s was

adopted to simulate the in-vivo conditions [32]. The important geometric and mechanical

parameters of the transient EHL models of MOM hip prostheses using Alpharabola heads

adopted in this study are summarized in Tables 1.

In reality, both the load and motion experienced by human hip joints are three-dimensional

and time-dependent [34]. Since the resultant load is in the direction of about 10° medially to

the vertical axis and the major velocity component is in the flexion/extension direction [34],

only the vertical load component, wy, and the rotation velocity around the z axis, z, were

considered. Different patterns of load and velocity have been used to represent the complex

walking conditions in hip joints [35]. In this study, the walking conditions specified by the

ISO 14242-1 testing standard [36], shown in Fig. 2, were adopted.

The governing equations for the EHL analysis included the Reynolds, the film thickness and

the load equivalent equations. The Reynolds equation governing the hydrodynamic action

between the two bearing surfaces of the hip prosthesis took the following form in spherical

coordinates for the present study:
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where p is the hydrodynamic pressure; h is the film thickness;  is the viscosity of the

periprosthetic synovial fluid; t is time;  is the angular velocity of the femoral head;  and 

are spherical coordinates, as defined in Fig. 3. The boundary conditions for the Reynolds

equation at any instant were:

        0π,0,π,,0   pppp

0  pp , π0  , π0 
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The film thickness equation consisted of the undeformed gap formed by the bearing surfaces

and the elastic deformation of the surfaces due to the hydrodynamic pressure:

    sinsincossin,,h2 yx eetRRh (3)

where Rh is the varying radius of the aspherical head; ex and ey are the eccentricities of the

femoral head;  is the elastic deformation of the bearing surfaces.

The external load components were balanced by the integration of the hydrodynamic pressure:
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The details of the numerical method to solve the above governing equations have been given

elsewhere [24, 37]. In brief, the governing equations were non-dimensionalised to facilitate

the numerical analysis and improve the stability of the numerical process. A walking gait was

divided into 100 instants. At each instant, the Reynolds equation was solved using a multi-

grid method, while the elastic deformation was calculated using a multi-level multi-

integration technique [38]. Three levels of grid were used in the multilevel solver. On the

finest level, 257 nodes were arranged in both the  and  directions [39]. The load balance

was satisfied through adjusting the eccentricities of the head according to the calculated load

components from the hydrodynamic pressure.

Besides the variation in the load and rotation velocity experienced by the hip prostheses, the

varying geometry of the head is another independent time-dependant variable that also
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contributes to squeeze-film action. At each instant, the radial distance of each node on the

surface of the head, Rh(t, , ) in equation (3), was calculated as detailed below.

The mesh of the spherical coordinates was set on the cup. A local reference coordinate

system (x´, y´, z´) was fixed on the head. This reference coordinate system was coincident

with the fixed coordinate system when the rotation angle of the head was zero. In this way,

the geometry equation of the head at each instant and rotation angle remained the same in the

reference coordinate system:
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The geometry equation of the head in the fixed coordinate system was obtained by

transferring equation (5) using the Euler angular transformation:
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where T2, 1 is the similarity transformation from the reference frame to the fixed frame, in the

following form for the present study:
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where z is the rotation angle. It should be pointed out that if complex motions of

internal/external and abduction/adduction are considered, the above method is still valid by

using corresponding Euler angles.
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After the geometry equation of the head in the fixed coordinate system was solved, the

following equations:

x = Rh sin cos, y = Rh sin sin, and z = Rh cos (8)

were substituted into this geometry equation. The radius of curvature of the head at each node,

Rh(t, , ), was calculated by solving the resultant quadratic equation with Rh as unknowns.

The lubrication performance of the hip prosthesis using the Alpharabola head was compared

with those of the conventional spherical bearing and the hip prosthesis using an Alpharabola

cup. The modes of lubrication of the three types of hip prostheses were predicted based on the

lambda ratio, which is defined as

2
a(cup)

2
a(head)

min

RR

h
Λ


 (9)

where hmin is the minimum film thickness during a walking cycle; Ra(head) and Ra(cup) are

average roughness of the femoral head and acetabular cup respectively, typically in the range

between 5 and 15 nm [40]. The larger value of the roughness, 15 nm, resulting in a composite

surface roughness of 21 nm, was adopted in this study to estimate the worse case scenario.

The sensitivity of the lubrication performance to the initial implantation position of the

Alpharabola head was also investigated. This was studied by specifying an initial rotation

angle between 5 and 5 in the entraining direction for the Alpharabola head.

3. RESULTS

Fig. 4 shows the variation in the minimum and central film thicknesses and the maximum

pressure of an Alpharabola head hip prosthesis within four walking cycles. Although there
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are three independent time-dependant variables in present study, cyclic convergent solution

was obtained after three cycles. Results shown in Figs. 59 were taken from the fourth

walking cycle when the cyclic convergence was achieved. The typical profiles of lubricant

film and hydrodynamic pressure of an Alpharabola head hip prosthesis at the instants of 0.1 s,

0.3 s and 0.58 s are shown in Fig. 5. The detailed variation in the film thickness and pressure

distribution at the central line along the entraining direction in one normal walking gait is

elaborated in Fig. 6 for an Alpharabola head hip prosthesis. In order to explain the effect of

the nonspherical geometry of the head on the lubrication performance, Fig. 7 shows the

variations in the radial clearance between the cups and the heads for two nonspherical designs

at the centre of the cups ( = /2,  = /2) in one walking gait. Fig. 8 compares the central

and minimum film thicknesses and the maximum pressure between MOM hip prostheses

with an Alpharabola cup, an Alpharabola head and spherical bearing surfaces. The effect of

anteversion angles of 5 and 5 of the Alpharabola head on lubrication performance is

shown in Fig. 9.

4. DISCUSSION

The film thickness in MOM hip prostheses is mainly determined by the initial gap between

the cup and head, particularly the inlet gap, and the elastic deformation of the bearing

surfaces. For the hip prostheses using a nonspherical head, the initial undeformed gap was

time-dependant due to the rotation of the nonspherical head. Moreover, the time-dependent

load and motion resulted in transient hydrodynamic pressure and elastic deformation as well.

All these contributed to a significant squeeze-film action and influenced the predicted film

thickness and pressure in a complex manner for the Alpharabola head prosthesis, as shown in

Figs. 5 and 6.
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The nonspherical head generated two effects on the lubrication. Firstly, it produced additional

squeeze film action due to the change of geometry. However, because of the complex

kinematic conditions experienced as well as the potential synergistic effect, it is difficult to

specify the individual contributions of the load, velocity and geometry to the squeeze film

action. Nevertheless, it is clear that at about 0.2 s when the load was decreasing and the

velocity was increasing, both providing a separation effect, the film thickness at the inlet

became significantly thicker due to the squeezing effect caused by the geometric variation, as

observed from Fig. 6. Furthermore, at the instant of 0.4 s, both the radial clearances at the

main loaded area and the walking conditions of the Alpharabola head and Alpharabola cup

prostheses were similar. However, the central film thickness of the Alpharabola head

prosthesis was thicker than that of the Alpharabola cup prosthesis as shown in Fig. 8a. This is

another evidence of the squeeze film action caused by the geometric variation of the

nonspherical head.

Secondly, the rotation of the nonspherical head resulted in a variable clearance at the loaded

area. As shown in Fig. 7, for the case of  = 1.01, the radial clearance at the centre position of

the cup ( = /2,  = /2) varied from zero to 0.6 m. The effect of this radial clearance on

the hydrodynamic pressure can be highlighted by only considering the swing phase (0.6 s 

1.0 s) when the external load remained constant. Normally, the hydrodynamic pressure is

mainly determined by the bearing geometry and the external load. For the spherical bearing

surfaces and the Alpharabola cup, if the geometric parameters are given, the hydrodynamic

pressure is largely determined by load. Therefore, during the swing phase, the hydrodynamic

pressure remained nearly constant as shown in Fig. 8c for both cases. For the Alpharabola

head prosthesis, however, the contact area decreased during this stage with the increase in the
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clearance at the loaded area, as shown in Fig. 6. The hydrodynamic pressure thereby

increased as shown in Fig. 8c. The effect of this variable clearance on the film thickness can

be shown by examining the variation in the predicted central film thickness again. At the

instants of 0.3 s and 0.68 s, the zero clearance was achieved within the loaded conjunction,

resulting in a most conforming area there. Therefore, the effect of the squeeze film action on

the central film thickness was very strong at the instants of 0.4 s and 0.7 s because of the well

known time lag of the squeeze film action, as shown in Figs. 6 and 8a. At other instants, the

action of the squeeze film action was not as strong as at 0.4 s and 0.7 s because of the effect

of the increased clearance.

As shown in Fig. 7, when the zero clearance was not within the loaded area, the clearance of

the nonspherical head prosthesis with a larger  at that region was larger than that of the

prosthesis with a smaller . The conforming area of the head with  = 1.01 was therefore

smaller than that of the head with  = 1.0043. Consequently, the central and minimum film

thicknesses of the head with  = 1.0043 were thicker than those of the head with  = 1.01,

while the maximum pressure was lower, as shown in Figs. 4 and 8. This is consistent with the

well recognised conclusion for the spherical bearings [1719]. However, it should also be

noted that a larger  produces a larger equatorial radial clearance, which is important to avoid

the potential clamping and equatorial contact. Therefore, an optimum design of Alpharabola

head requires balanced consideration of the geometric parameters.

The lubrication performances of the hip prostheses using spherical bearing surfaces,

Alpharabola cup and Alpharabola head are compared by assuming a similar equatorial radial

clearance. The equatorial radial clearance of the Alpharabola head prosthesis was calculated

when its rotation angle was zero. The corresponding  value was approximately 1.0043 for
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the Alpharabola head prosthesis to produce an equatorial radial clearance of 30 m as used in

the spherical bearing surfaces. It is clear as shown in Fig. 8 that during most of the walking

cycle, the central film thickness for the Alpharabola head prosthesis was more than three

folds of that of the spherical bearing. The minimum film thickness of the Alpharabola head

prosthesis was significantly improved compared with the spherical bearing, especially during

the swing phase. On the other hand, when the nonspherical head was compared with the

nonspherical cup, a similar central film thickness was generated from 0.3 s to 0.7 s as

discussed above. However, during other time periods, the predicted film thickness for the

nonspherical head was considerably smaller than that of the nonspherical cup. Nevertheless,

the predicted lambda ratio suggests that both the Alpharabola head and Alpharabola cup

prostheses should benefit from fluid film lubrication during the whole walking gait, while the

spherical bearing may only experience fluid film lubrication during 10% of the walking cycle.

Similar conclusions were also reached for the maximum pressure. The maximum pressure of

the Alpharabola head prosthesis was only 1/3 of that of the spherical prosthesis during most

of a walking cycle, and was however about 70 % higher than that of the Alpharabola cup

prosthesis at the peaks of the load (0.1 s and 0.5 s).

The inclination and anteversion angles resulted from the implantation have direct effects on

the position of the zero clearance and may prevent the optimum lubrication performance. It is

therefore necessary to investigate the lubrication sensitivity of the lubrication performance of

the nonspherical head with respect to the initial contact position. As shown in Fig. 9, although

the maximum differences in central and minimum film thicknesses and maximum pressure

caused by an anteversion angel of 5 were 31.6%, 32.4% and 28.7% respectively, the film

thicknesses of the Alpharabola head were still much higher than those of the spherical

bearing, while the maximum pressure much lower. Moreover, since the pole of the
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nonspherical head passed the main loaded region twice during a flexion/extension gait, the

effect of geometrical variation was averaged. Therefore, the lubrication performance of the

nonspherical head can be expected to have a less dependence on the initial position,

compared with the Alpharabola cup prosthesis, in which the optimum contact position of the

nonspherical cup may always be out of the loaded area.

It should be noted that MOM bearings operate in a mixed lubrication mode, where both fluid

film and boundary layer can act to reduce wear. Enhanced film fluid film thickness and

entrainment not only reduce the solid to solid contact and hence wear, but also entrain more

serum protein into the contact which has the potential to replenish the complex protein

boundary layer on the metal surface so reducing friction and reducing mechanical and

corrosion wear.

However, the present predictions on the Alpharabola head need to be tested experimentally

using hip simulators in future work. Moreover, besides the orientation of components during

implantation investigated in this study, the complex hip joint motion during daily activities

may also have important effect on the lubrication optimisation of this novel hip implant.

Therefore, the sensitivity of the lubrication to different activities, such as climbing and going

down stairs, rising from sitting, etc., will also be investigated. It should also be pointed out

that although the clearance was focused in the present study, it is the local geometry at the

inlet of the lubricated conjunction that is mainly responsible for the predicted lubricant film

thickness. However, such geometry may be difficult to design since the inlet location depends

on the load which is time dependent during walking. More importantly, since the method

developed in the present study is generic, a number of other recently proposed non-spherical
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designs for the femoral heads [27, 28, 41] can be examined to provide better understanding of

how the local geometry of the bearing surfaces can influence lubrication.

4. CONCLUSION

A methodology of incorporating the nonspherical geometry of a rotating head was presented,

which is applicable to all the nonspherical head designs. The transient EHL of a novel hip

prosthesis using an Alpharabola head was investigated under dynamic load and motion

specified by ISO standard using the new developed method. The lubrication mechanism of

the hip prosthesis using Alpharabola head was analyzed. The lubrication performances of the

hip prostheses using spherical bearing surfaces, Alpharabola cup and Alpharabola head were

compared. The following conclusion can be drawn from the present study:

1. The lubrication mechanism of the MOM hip prostheses using nonspherical head was very

complicated because the nonspherical head not only introduced additional squeeze film

action but also resulted in a variable clearance at the loaded area.

2. Compared with the spherical bearing with the same equatorial radial clearance, the film

thickness of the Alpharabola head was significantly increased while the maximum pressure

significantly decreased.

3. The film thickness of the Alpharabola head was not as thick as that of the Alpharabola cup

with the same equatorial radial clearance, while the maximum pressure of the Alpharabola

head not as low as that of the Alpharabola cup.
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4. The initial anteversion angle affected the lubrication performance of the nonspherical head

prosthesis. However, compared with the lubrication improvement from the nonspherical

bearing geometry, this effect was not significant.
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Notation

ex, ey eccentricities of the femoral head from the centre of the cup (m)

fx, fy, fz calculated load components (N), defined in equation (4)

h film thickness (m)

p pressure (Pa)

R1 radius of femoral head for spherical hip prostheses; desired maximum

radius of the Alpharabola head (m)

R2 radius of the cup (m)

Ra(cup) average roughness of the cup (m)

Ra(head) average roughness of the head (m)

Rh varying radius of femoral head (m)

t time (s)

T2, 1 transformation matrix from the reference to the fixed coordinate systems

wy applied load in the y direction (N)

x, y, z fixed Cartesian coordinates on the cup

x´, y´, z´ reference Cartesian coordinates fixed on the head

 parameter controlling the variation rate of the radius of head

 rotation angle of the head

 elastic deformation of bearing surfaces (m)

 viscosity of synovial fluid (Pa s)

 lambda ratio, defined in equation (9)

,  angular coordinates in the entraining and side-leakage directions
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respectively

 angular velocity (rad/s)
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Captions

Table 1 Typical geometric and mechanical parameters adopted for the EHL

models of the MOM hip prostheses using an Alpharabola head

Fig. 1 A simple ball-in-socket configuration for the MOM hip prosthesis

employing an Alpharabola head

Fig. 2 Variation in the dynamic load (a), velocity and rotation angle of the head

(b) within a walking gait specified by the ISO standard

Fig. 3 Definition of spherical coordinates and mesh grid on a given level

Fig. 4 Predicted central and minimum film thicknesses (a) and maximum

pressure (b) for a MOM hip prosthesis using an Alpharabola head during

four walking cycles (R1 = R2 = 14 mm,  = 1.01)

Fig. 5 Film thickness profiles and pressure distributions of a MOM hip

prosthesis using an Alpharabola head at 0.1 s (a), 0.3 s (b) and 0.58 s (c)

within a convergent cycle (R1 = R2 = 14 mm,  = 1.01)

Fig. 6 Detailed variation in the lubricant film and hydrodynamic pressure at the

central line along the entraining direction at different instants of one

walking gait for an Alpharabola head hip prosthesis (R1 = R2 = 14 mm, 

= 1.01)

Fig. 7 Variation in the radial clearances at the loaded centre of the cup ( = /2,

 = /2) during one walking gait for two Alpharabola head designs (R1 =

R2 = 14 mm)

Fig. 8 Comparison of the central film thickness (a), minimum film thickness (b)

and maximum pressure (c) between the MOM hip prostheses using an
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Alpharabola head (R1 = R2 = 14 mm,  = 1.0043), an Alpharabola cup (R1

= R2 = 14 mm,  = 0.9957) and spherical bearing (R1 = 14 mm, R2 =

14.03 mm)

Fig. 9 Effect of the anteversion angle on the central film thickness (a), minimum

film thickness (b) and maximum pressure (c) of a MOM hip prosthesis

using a Alpharabola head (R1 = R2 = 14 mm,  = 1.0043)
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Table 1. Typical geometric and mechanical parameters adopted for the EHL models of the

MOM hip prostheses using an Alpharabola head

Thickness of the equivalent support layer 2 mm

Wall thickness of the cup 9.5 mm

 1.01, 1.0043

R2 14 mm

R1 14 mm

Elastic modulus of CoCr 210 GPa

Elastic modulus of the equivalent support

layer
2.27 GPa

Poisson’s ratio of CoCr 0.3

Poisson’s ratio of the equivalent support

layer
0.23

Viscosity of synovial fluid 0.002 Pas
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Fig. 1 A simple ball-in-socket configuration for the MOM hip prosthesis employing an
Alpharabola head
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Fig. 2 Variation in the dynamic load (a), velocity and rotation angle of the head (b) within a
walking gait specified by ISO standard
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Fig. 3 Definition of spherical coordinates and mesh grid on a given level
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(a)

(b)

Fig. 4 Predicted central and minimum film thicknesses (a) and maximum pressure (b) for a
MOM hip prosthesis using an Alpharabola head during four walking cycles (R1 = R2 = 14
mm,  = 1.01)
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(a)

(b)

(c)

Fig. 5 Film thickness profiles and pressure distributions of a MOM hip prosthesis using an
Alpharabola head at 0.1 s (a), 0.3 s (b) and 0.58 s (c) within a convergent cycle (R1 = R2 = 14
mm,  = 1.01)
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0.1 s 0.2 s

0.3 s 0.4 s

0.5 s 0.6 s
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0.8 s 1.0 s

Fig. 6 Detailed variation in the lubricant film and hydrodynamic pressure at the central line
along the entraining direction at different instants of one walking gait for an Alpharabola
head hip prosthesis (R1 = R2 = 14 mm,  = 1.01)

Fig. 7 Variation in the radial clearances at the loaded centre of the cup ( = /2,  = /2)
during one walking gait for two Alpharabola head designs (R1 = R2 = 14 mm)
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(a)

(b)

(c)

Fig. 8 Comparison of the central film thickness (a), minimum film thickness (b) and
maximum pressure (c) between the MOM hip prostheses using an Alpharabola head (R1 = R2

= 14 mm,  = 1.0043), an Alpharabola cup (R1 = R2 = 14 mm,  = 0.9957) and spherical
bearing (R1 = 14 mm, R2 = 14.03 mm)



38

(a)

(b)

(c)

Fig. 9 Effect of the anteversion angle on the central film thickness (a), minimum film
thickness (b) and maximum pressure (c) of a MOM hip prosthesis using a Alpharabola head
(R1 = R2 = 14 mm,  = 1.0043)
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